Intuitionistic Fuzzy $\widehat{\beta}$ Generalized Continuous Mappings

¹R.Kulandaivelu, ²S.Maragathavalli and ³K. Ramesh

¹Department of Mathematics, Dr.N.G.P. Institute of Technology, Tamilnadu, India ²Department of Mathematics, Government Arts College, Udumalpet, Tamilnadu, India. ³Department of Mathematics, CMS College of Engineering and Technology, Tamilnadu, India

Abstract

In this paper we have introduced intuitionistic fuzzy $\hat{\beta}$ generalized continuous mappings and studied some of their basic properties.

Key words

Intuitionistic fuzzy topology, intuitionistic fuzzy $\hat{\beta}$ generalized closed sets, intuitionistic fuzzy $\hat{\beta}$ generalized continuous mappings, intuitionistic fuzzy $\hat{\beta}$ a $T_{1/2}$ space and intuitionistic fuzzy $\hat{\beta}$ b $T_{1/2}$.

I. INTRODUCTION

The concept of fuzzy sets was introduced by Zadeh [11] and later Atanassov [1] generalized this idea to intuitionistic fuzzy sets using the notion of fuzzy sets. On the other hand Coker [4] introduced intuitionistic fuzzy topological spaces using the notion of intuitionistic fuzzy sets. In this paper, we introduced intuitionistic fuzzy $\hat{\beta}$ generalized continuous mappings and studied some of their basic properties. We arrived at some characterizations of intuitionistic fuzzy $\hat{\beta}$ generalized continuous mappings.

II. PRELIMINARIES

Definition 2.1: [1] Let X be a non empty fixed set. An *intuitionistic fuzzy set* (IFS in short) A in X is an object having the form

$$A = \{ \langle x, \mu_A(x), \nu_A(x) \rangle / x \in X \}$$

where the functions $\mu_A(x)$: $X \to [0, 1]$ and $\nu_A(x)$: $X \to [0, 1]$ denote the degree of membership (namely $\mu_A(x)$) and the degree of non-membership (namely $\nu_A(x)$) of each element $x \in X$ to the set A, respectively, and $0 \le \mu_A(x) + \nu_A(x) \le 1$ for each $x \in X$. Denote the set of all intuitionistic fuzzy sets in X by IFS (X).

Definition 2.2: [1] Let A and B be IFSs of the form

 $A = \{\langle x, \mu_A(x), \nu_A(x) \rangle / x \in X \}$ and $B = \{\langle x, \mu_B(x), \nu_B(x) \rangle / x \in X \}$. Then

- (a) $A \subseteq B$ if and only if $\mu_A(x) \le \mu_B(x)$ and $\nu_A(x) \ge \nu_B(x)$ for all $x \in X$
- (b) A = B if and only if $A \subseteq B$ and $B \subseteq A$
- (c) $A^c = \{ \langle x, v_A(x), \mu_A(x) \rangle / x \in X \}$
- (d) $A \cap B = \{ \langle x, \mu_A(x) \wedge \mu_B(x), \nu_A(x) \vee \nu_B(x) \rangle / x \in X \}$
- (e) $A \cup B = \{ \langle x, \mu_A(x) \vee \mu_B(x), \nu_A(x) \wedge \nu_B(x) \rangle / x \in X \}$

For the sake of simplicity, we shall use the notation $A = \langle x, \mu_A, \nu_A \rangle$ instead of $A = \{ \langle x, \mu_A(x), \nu_A(x) \rangle / x \in X \}$. Also for the sake of simplicity, we shall use the notation $A = \{ \langle x, (\mu_A, \mu_B), (\nu_A, \nu_B) \rangle \}$ instead of $A = \langle x, (A/\mu_A, B/\mu_B), (A/\nu_A, B/\nu_B) \rangle$.

The intuitionistic fuzzy sets $0_{\sim} = \{ \langle x, 0, 1 \rangle / x \in X \}$ and $1_{\sim} = \{ \langle x, 1, 0 \rangle / x \in X \}$ are respectively the empty set and the whole set of X.

Definition 2.3: [3] An *intuitionistic fuzzy topology* (IFT in short) on X is a family τ of IFSs in X satisfying the following axioms.

- (i) $0_{\sim}, 1_{\sim} \in \tau$
- (ii) $G_1 \cap G_2 \in \tau$ for any $G_1, G_2 \in \tau$

(iii) $\cup G_i \in \tau$ for any family $\{G_i / i \in J\} \subseteq \tau$.

In this case the pair (X, τ) is called an *intuitionistic fuzzy topological space* (IFTS in short) and any IFS in τ is known as an intuitionistic fuzzy open set (IFOS in short) in X.

The complement A^c of an IFOS A in IFTS (X, τ) is called an intuitionistic fuzzy closed set (IFCS in short) in X.

Definition 2.4:[3] Let (X, τ) be an IFTS and $A = \langle x, \mu_A, \nu_A \rangle$ be an IFS in X. Then the intuitionistic fuzzy interior and intuitionistic fuzzy closure are defined by

```
\begin{split} & \text{int}(A) = \ \cup \ \{ \ G \ / \ G \ \text{is an IFOS in } X \ \text{and} \ G \subseteq A \ \}, \\ & \text{cl}(A) = \ \cap \ \{ \ K \ / \ K \ \text{is an IFCS in } X \ \text{and} \ A \subseteq K \ \}. \end{split}
```

Note that for any IFS A in (X, τ) , we have $cl(A^c) = [int(A)]^c$ and $int(A^c) = [cl(A)]^c$.

Definition 2.5: [4] An IFS $A = \langle x, \mu_A, \nu_A \rangle$ in an IFTS (X, τ) is said to be a

- (i) intuitionistic fuzzy semi closed set (IFSCS for short) if $int(cl(A)) \subseteq A$,
- (ii) intuitionistic fuzzy pre-closed set (IFPCS for short) if $cl(int(A)) \subseteq A$,
- (iii) intuitionistic fuzzy α -closed set (IF α CS for short) if cl(int(cl(A))) \subseteq A,
- (iv) intuitionistic fuzzy γ -closed set (IF γ CS for short) if cl(int(A)) \cap int(cl(A)) \subseteq A

The respective complements of the above IFCSs are called their respective IFOSs.

The family of all IFSCSs, IF α CSs and IF γ CSs (respectively IFSOSs, IF α OSs and IF γ OSs) of an IFTS (X,τ) are respectively denoted by IFSC(X), IF α C(X), IF α C(X) and IF γ C(X) (respectively IFSO(X), IFPO(X), IF α O(X) and IF γ O(X)).

Definition 2.6:[12] Let A be an IFS in an IFTS (X, τ) . Then

```
sint(A) = \bigcup \{ G / G \text{ is an IFSOS in } X \text{ and } G \subseteq A \},
```

 $scl(A) = \bigcap \{ K / K \text{ is an IFSCS in } X \text{ and } A \subseteq K \}.$

Note that for any IFS A in (X, τ) , we have $scl(A^c) = (sint(A))^c$ and $sint(A^c) = (scl(A))^c$.

Definition 2.7:[9] An IFS A in an IFTS (X, τ) is an

(i) intuitionistic fuzzy generalized closed set (IFGCS in short) if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is an IFOS in X.

Definition 2.8:[9] An IFS A in an IFTS (X, τ) is said to be an *intuitionistic fuzzy generalized semi closed set* (IFGSCS in short) if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is an IFOS in (X, τ) .

Definition 2.9:[9] An IFS A is said to be an *intuitionistic fuzzy generalized semi open set* (IFGSOS in short) in X if the complement A^c is an IFGSCS in X.

The family of all IFGSCSs (IFGSOSs) of an IFTS (X, τ) is denoted by IFGSC(X) (IFGSO(X)).

Definition 2.10:[5] Let f be a mapping from an IFTS (X, τ) into an IFTS (Y, σ) . Then f is said to be *intuitionistic* fuzzy continuous (IF continuous in short) if $f^{-1}(B) \in IFO(X)$ for every $B \in \sigma$.

Definition 2.11: [5] Let f be a mapping from an IFTS (X, τ) into an IFTS (Y, σ) . Then f is said to be an

- (i) intuitionistic fuzzy semi continuous mapping (IFS continuous mapping for short) if $f^{-1}(B) \in IFSO(X)$ for every $B \in \sigma$
- (ii) intuitionistic fuzzy α -continuous mapping (IF α continuous mapping for short) if $f^{-1}(B) \in IF\alpha O(X)$ for every $B \in \sigma$
- (iii) intuitionistic fuzzy pre continuous mapping (IFP continuous mapping for short) if $f^{-1}(B) \in IFPO(X)$ for every $B \in \sigma$
- (iv) intuitionistic fuzzy β continuous mapping (IF γ continuous mapping for short) if $f^{-1}(B) \in IF\gamma O(X)$ for every $B \in \sigma$.

Definition 2.12: [10] Let f be a mapping from an IFTS (X, τ) into an IFTS (Y, σ) . Then f is said to be an intuitionistic fuzzy generalized continuous mapping (IFG continuous mapping for short) if $f^{-1}(B) \in IFGC(X)$ for every IFCS B in Y.

Definition 2.13: [10] Let f be a mapping from an IFTS (X, τ) into an IFTS (Y, σ) . Then f is said to be an intuitionistic fuzzy semi-pre continuous mapping (IFSP continuous mapping for short) if $f^{-1}(B) \in IFSPO(X)$ for every $B \in \sigma$.

Result 2.14:[9] Every IF continuous mapping is an IFG continuous mapping.

Definition 2.15:[8] A mapping f: $(X, \tau) \to (Y, \sigma)$ is called an *intuitionistic fuzzy generalized semi continuous* (IFGS continuous in short) if $f^{-1}(B)$ is an IFGSCS in (X, τ) for every IFCS B of (Y, σ) .

Definition 2.16: [8] An IFTS (X, τ) is said to be an intuitionistic fuzzy $\hat{\beta}$ $\mathbf{a}T_{1/2}$ (IF $\hat{\beta}$ $\mathbf{a}T_{1/2}$ in short) space if every IF $\hat{\beta}$ GCS in X is an IFCS in X.

Definition 2.17: [8] An IFTS (X, τ) is said to be an intuitionistic fuzzy $\hat{\beta}$ \mathbf{b} T_{1/2} $(IF\hat{\beta})$ \mathbf{b} T_{1/2} in short) space if every IF $\hat{\beta}$ GCS in X is an IFGCS in X.

III. INTUITIONISTIC FUZZY $\hat{\beta}$ GENERALIZED CONTINUOUS MAPPINGS

In this section we have introduced intuitionistic fuzzy $\hat{\beta}$ generalized continuous mappings and investigated some of their properties.

Definition 3.1: A mapping $f:(X, \tau) \to (Y, \sigma)$ is called an intuitionistic fuzzy $\hat{\beta}$ generalized continuous (IF $\hat{\beta}$ G continuous in short) mapping if $f^{-1}(B)$ is an IF $\hat{\beta}$ GCS in (X, τ) for every IFCS B of (Y, σ) .

Example 3.2: Let $X = \{a, b\}$, $Y = \{u, v\}$ and $G_1 = \langle x, (0.1, 0.1), (0.5, 0.6) \rangle$, $G_2 = \langle y, (0.5, 0.6), (0.3, 0.1) \rangle$. Then $\tau = \{0_{\neg}, G_1, 1_{\neg}\}$ and $\sigma = \{0_{\neg}, G_2, 1_{\neg}\}$ are IFTs on X and Y respectively. Here $\mu_{G_1}(a) = 0.1$, $\mu_{G_1}(b) = 0.1$, $\theta_{G_1}(a) = 0.5$, $\theta_{G_1}(b) = 0.6$, $\theta_{G_2}(u) = 0.6$, $\theta_{G_2}(u) = 0.3$, and $\theta_{G_2}(v) = 0.1$. Define a mapping $f: (X, \tau) \to (Y, \sigma)$ by f(a) = u and f(b) = v. Then clearly for the IFCS 0_{\neg} , 1_{\neg} in Y, $f^{-1}(0_{\neg})$ and $f^{-1}(1_{\neg})$ are IF $\widehat{\boldsymbol{\beta}}$ GCS in X. Let us consider the IFCS G_2^c in Y. Then $f^{-1}(G_2^c) = \langle x, (0.3, 0.1), (0.5, 0.6) \rangle$ is an IF $\widehat{\boldsymbol{\beta}}$ GCS in X. Hence f is an IF $\widehat{\boldsymbol{\beta}}$ G continuous mapping.

Theorem 3.3: Every IF continuous mapping is an IF $\hat{\beta}$ G continuous mapping but not conversely.

Proof: Let $f:(X, \tau) \to (Y, \sigma)$ be an IF continuous mapping. Let A be an IFCS in Y. Since f is an IF continuous mapping, $f^{-1}(A)$ is an IFCS in X. Since every IFCS is an IF $\widehat{\beta}$ GCS, $f^{-1}(A)$ is an IF $\widehat{\beta}$ GCS in X. Hence f is an IF $\widehat{\beta}$ G continuous mapping.

Example 3.4: Let $X = \{a, b\}$, $Y = \{u, v\}$ and $G_1 = \langle x, (0.2, 0.1), (0.5, 0.6) \rangle$, $G_2 = \langle y, (0.4, 0.3), (0.3, 0.1) \rangle$. Then $\tau = \{0_{\sim}, G_{1, 1_{\sim}}\}$ and $\sigma = \{0_{\sim}, G_{2, 1_{\sim}}\}$ are IFTs on X and Y respectively. Define a mapping $f: (X, \tau) \to (Y, \sigma)$ by f(a) = u and f(b) = v. Then f is an IF $\widehat{\boldsymbol{\beta}}$ G continuous mapping. Now consider the IFCS $G_2^c = \langle y, (0.3, 0.1), (0.4, 0.3) \rangle$ is an IFCS in Y. Then $f^{-1}(G_2^c) = \langle x, (0.3, 0.1), (0.4, 0.3) \rangle$ is not an IFCS in X. Hence f is not an IF continuous mapping.

Theorem 3.5: Every IF α continuous mapping is an IF $\hat{\beta}$ G continuous mapping but not conversely.

Proof: Let $f:(X,\tau) \to (Y,\sigma)$ be an IF α continuous mapping. Let A be an IFCS in Y. Then by hypothesis $f^{-1}(A)$ is an IF α CS in X. Since every IF α CS is an IF $\widehat{\beta}$ GCS, $f^{-1}(A)$ is an IF $\widehat{\beta}$ GCS in X. Hence f is an IF $\widehat{\beta}$ G continuous mapping.

Example 3.6: Let $X = \{a, b\}$, $Y = \{u, v\}$ and let the IFS $G_1 = \langle x, (0.3, 0.1), (0.5, 0.6) \rangle$, $G_2 = \langle x, (0.7, 0.7), (0.1, 0.1) \rangle$ and $G_3 = \langle y, (0.3, 0.3), (0.4, 0.5) \rangle$. Then $\tau = \{0_{\sim}, G_{1,} G_{2,} 1_{\sim}\}$ and $\sigma = \{0_{\sim}, G_{3,} 1_{\sim}\}$ are IFTs on X and Y respectively. Define a mapping $f: (X, \tau) \to (Y, \sigma)$ by f(a) = u and f(b) = v. Then f is an IF $\widehat{\beta}$ G continuous mapping.

Let us consider the IFCS $G_3^c = \langle y, (0.4, 0.5), (0.3, 0.3) \rangle$ in Y. Then $f^{-1}(G_3^c)$ is not an IF α CS in X. Hence f is not an IF α continuous mapping.

Theorem 3.7: Every IFG continuous mapping is an IF $\hat{\beta}$ G continuous mapping but not conversely.

Proof: Let $f:(X,\tau)\to (Y,\sigma)$ be an IFG continuous mapping. Let A be an IFCS in Y. Since f is an IFG continuous mapping, $f^{-1}(A)$ is an IFGCS in X. Since every IFGCS is an IF $\widehat{\beta}$ GCS, $f^{-1}(A)$ is an IF $\widehat{\beta}$ GCS in X. Hence f is an IF $\widehat{\beta}$ G continuous mapping.

Example 3.8: Let $X = \{a, b\}$, $Y = \{u, v\}$ and $G_1 = \langle x, (0.1, 0.7), (0.2, 0.1) \rangle$, $G_2 = \langle y, (0.3, 0.8), (0.1, 0) \rangle$. Then $\tau = \{0_-, G_1, 1_-\}$ and $\sigma = \{0_-, G_2, 1_-\}$ are IFTs on X and Y respectively. Define a mapping $f: (X, \tau) \to (Y, \sigma)$ by f(a) = u and f(b) = v. Then f is an IF $\widehat{\beta}$ G continuous mapping. Now consider the IFCS $G_2^c = \langle y, (0.1, 0), (0.3, 0.8) \rangle$ in Y. Then $f^{-1}(G_2^c) = \langle x, (0.1, 0), (0.3, 0.8) \rangle$ is not an IFGCS in X. Hence f is not an IFG continuous mapping.

Theorem 3.9: Every IF $\hat{\beta}$ G continuous mapping is an IFGS continuous mapping but not conversely.

Proof: Let $f:(X,\tau) \to (Y,\sigma)$ be an IF $\widehat{\beta}$ G continuous mapping. Let A be an IFCS in Y. Then by hypothesis $f^{-1}(A)$ is an IF $\widehat{\beta}$ GCS in X. Since every IF $\widehat{\beta}$ GCS is an IFGSCS, $f^{-1}(A)$ is an IFGSCS in X. Hence f is an IFGS continuous mapping.

Example 3.10: Let $X = \{a, b\}$, $Y = \{u, v\}$ and $G_1 = \langle x, (0.1, 0.2), (0.3, 0.4) \rangle$, $G_2 = \langle y, (0.4, 0.5), (0.1, 0) \rangle$. Then $\tau = \{0_-, G_1, 1_-\}$ and $\sigma = \{0_-, G_2, 1_-\}$ are IFTs on X and Y respectively. Define a mapping $f: (X, \tau) \to (Y, \sigma)$ by f(a) = u and f(b) = v. Then f is an IFGS continuous mapping. Let us consider the IFCS $G_2^c = \langle y, (0.1, 0), (0.4, 0.5) \rangle$ in Y. Then $f^{-1}(G_2^c)$ is not an IF $\widehat{\boldsymbol{\beta}}$ GCS in X. Hence f is not an IF $\widehat{\boldsymbol{\beta}}$ G continuous mapping.

Remark 3.11: IFP continuous mapping and IF $\hat{\beta}$ G continuous mapping are independent of each other.

Example 3.12: Let $X = \{a, b\}$, $Y = \{u, v\}$ and $G_1 = \langle x, (0, 0.9), (0.5, 0.1) \rangle$, $G_2 = \langle y, (0.7, 0.7), (0, 0.3) \rangle$. Then $\tau = \{0_{\sim}, G_1, 1_{\sim}\}$ and $\sigma = \{0_{\sim}, G_2, 1_{\sim}\}$ are IFTs on X and Y respectively. Define a mapping $f: (X, \tau) \to (Y, \sigma)$ by f(a) = u and f(b) = v. Then f is an IFP continuous mapping. But f is not an IF $\widehat{\boldsymbol{\beta}}$ G continuous mapping since $G_2^c = \langle y, (0, 0.3), (0.7, 0.7) \rangle$ is an IFCS in Y but $f^{-1}(G_2^c) = \langle x, (0, 0.3), (0.7, 0.7) \rangle$ is not an IF $\widehat{\boldsymbol{\beta}}$ GCS in X.

Example 3.13: Let $X = \{a, b\}$, $Y = \{u, v\}$ and $G_1 = \langle x, (0.2, 0.2), (0.5, 0.6) \rangle$, $G_2 = \langle y, (0.4, 0.5), (0.3, 0.2) \rangle$. Then $\tau = \{0_{-}, G_{1}, 1_{-}\}$ and $\sigma = \{0_{-}, G_{2}, 1_{-}\}$ are IFTs on X and Y respectively. Define a mapping $f: (X, \tau) \to (Y, \sigma)$ by f(a) = u and f(b) = v. Then f is an IF $\widehat{\beta}$ G continuous mapping. But f is not an IFP continuous mapping since $G_2^c = \langle y, (0.3, 0.2), (0.4, 0.5) \rangle$ is an IFCS in Y but $f^{-1}(G_2^c) = \langle x, (0.3, 0.2), (0.4, 0.5) \rangle$ is not an IFPCS in X.

Remark 3.14: IFy continuous mapping and IF $\hat{\beta}$ G continuous mapping are independent of each other.

Example 3.15: Let $X = \{a, b\}$, $Y = \{u, v\}$ and $G_1 = \langle x, (0.4, 0.6), (0.2, 0.2) \rangle$ $G_2 = \langle y, (0.6, 0.2), (0.4, 0.3) \rangle$. Then $\tau = \{0_-, G_1, 1_-\}$ and $\sigma = \{0_-, G_2, 1_-\}$ are IFTs on X and Y respectively. Define a mapping $f: (X, \tau) \to (Y, \sigma)$ by f(a) = u and f(b) = v. Then f is an IFγ continuous mapping. But f is not an IF $\widehat{\beta}$ G continuous mapping since $G_2^c = \langle y, (0.4, 0.3), (0.6, 0.2) \rangle$ is an IFCS in Y but $f^{-1}(G_2^c) = \langle x, (0.4, 0.3), (0.6, 0.2) \rangle$ is not an IF $\widehat{\beta}$ GCS in X.

Example 3.16: Let $X = \{a, b\}$, $Y = \{u, v\}$ and $G_1 = \langle x, (0.5, 0.1), (0.5, 0.9) \rangle$, $G_2 = \langle y, (0.2, 0.1), (0.7, 0.8) \rangle$. Then $\tau = \{0_{-}, G_{1}, 1_{-}\}$ and $\sigma = \{0_{-}, G_{2}, 1_{-}\}$ are IFTs on X and Y respectively. Define a mapping $f : (X, \tau) \to (Y, \sigma)$ by f(a) = u and f(b) = v. Then f is an IF $\hat{\beta}$ G continuous mapping but f is not an IFγ continuous mapping since $G_2^c = \langle y, (0.7, 0.8), (0.2, 0.1) \rangle$ is an IFCS in Y but $f^{-1}(G_2^c) = \langle x, (0.7, 0.8), (0.2, 0.1) \rangle$ is not an IFγCS in X.

Remark 3.17: IFS continuous mapping and IF $\hat{\beta}$ G continuous mapping are independent of each other.

Example 3.18: Let $X = \{a, b\}$, $Y = \{u, v\}$ and $G_1 = \langle x, (0.3, 0.5), (0.1, 0.1) \rangle$, $G_2 = \langle y, (0.1, 0), (0.8, 0.8) \rangle$. Then $\tau = \{0_{\neg}, G_{1, 1_{\neg}}\}$ and $\sigma = \{0_{\neg}, G_{2, 1_{\neg}}\}$ are IFTs on X and Y respectively. Define a mapping $f: (X, \tau) \to (Y, \sigma)$ by f(a) = u and f(b) = v. Then f is an IF $\widehat{\beta}$ G continuous mapping. But f is not an IFS continuous mapping since $G_2^c = \langle y, (0.8, 0.8), (0.1, 0) \rangle$ is an IFCS in Y but $f^{-1}(G_2^c) = \langle x, (0.8, 0.8), (0.1, 0) \rangle$ is not an IFSCS in X.

Example 3.19: Let $X = \{a, b\}$, $Y = \{u, v\}$ and let $G_1 = \langle x, (0.1, 0.2), (0.4, 0.5) \rangle$, $G_2 = \langle x, (0.3, 0.3), (0.1, 0.2) \rangle$ and $G_3 = \langle y, (0.4, 0.4), (0.2, 0.3) \rangle$. Then $\tau = \{0_{-}, G_{1}, G_{2}, 1_{-}\}$ and $\sigma = \{0_{-}, G_{3}, 1_{-}\}$ are IFTs on X and Y respectively. Define a mapping $f: (X, \tau) \to (Y, \sigma)$ by f(a) = u and f(b) = v. Then f is an IFS continuous mapping. But f is not an IF $\widehat{\boldsymbol{\beta}}$ G continuous mapping since $G_3^c = \langle y, (0.2, 0.3), (0.4, 0.4) \rangle$ is an IFCS in Y but $f^{-1}(G_3^c) = \langle x, (0.2, 0.3), (0.4, 0.4) \rangle$ is not an IF $\widehat{\boldsymbol{\beta}}$ GCS in X.

Theorem 3.20: A mapping $f: X \to Y$ is an IF $\hat{\beta}$ G continuous if and only if the inverse image of each IFOS in (Y, σ) is an IF $\hat{\beta}$ GOS in (X, τ) .

Proof: Necessity: Let A be an IFOS in (Y, σ) . This implies A^c is an IFCS in Y.Since f is an IF $\widehat{\beta}$ G continuous mapping, $f^{-1}(A^c)$ is an IF $\widehat{\beta}$ GCS in (X, τ) . Since $f^{-1}(A^c) = (f^{-1}(A))^c$, $f^{-1}(A)$ is an IF $\widehat{\beta}$ GOS in X.

Sufficiency: Let A be an IFCS in (Y, σ) . Then A^c is an IFOS in Y. By hypothesis, A^c is an IF $\widehat{\beta}$ GOS in (X, τ) . Hence A is an IF $\widehat{\beta}$ GCS in X.

Theorem 3.21: Let $f:(X,\tau) \to (Y,\sigma)$ be a mapping and let $f^{-1}(A)$ be an IFRCS in X for every IFCS A in Y. Then f is an IF $\widehat{\beta}$ G continuous mapping.

Proof: Let A be an IFCS in Y. Then $f^{-1}(A)$ is an IFRCS in X. Since every IFRCS is an IF $\hat{\beta}$ GCS, $f^{-1}(A)$ is an IF $\hat{\beta}$ GCS in X. Hence f is an IF $\hat{\beta}$ G continuous mapping.

Theorem 3.22: Let $f:(X, \tau) \to (Y, \sigma)$ be an $IF\widehat{\beta}$ G continuous mapping. Then f is an IF continuous mapping if X is an $IF\widehat{\beta}$ a $T_{1/2}$ space.

Proof: Let A be an IFCS in Y. Then $f^{-1}(A)$ is an IF $\hat{\beta}$ GCS in X by hypothesis. Since X is an IF $\hat{\beta}$ aT_{1/2} space, $f^{-1}(A)$ is an IFCS in X. Hence f is an IF continuous mapping.

Theorem 3.23: Let $f:(X, \tau) \to (Y, \sigma)$ be an IF $\widehat{\beta}$ G continuous mapping. Then f is an IFG continuous mapping if X is an IF $\widehat{\beta}$ bT_{1/2} space.

Proof: Let A be an IFCS in Y. Then $f^{-1}(A)$ is an IF $\hat{\beta}$ GCS in X, by hypothesis. Since X is an IF $\hat{\beta}$ bT_{1/2} space, $f^{-1}(A)$ is an IFGCS in X. Hence f is an IFG continuous mapping.

Theorem 3.24: Let $f:(X, \tau) \to (Y, \sigma)$ be an IF $\widehat{\beta}$ G continuous mapping and $g:(Y, \sigma) \to (Z, \eta)$ is an IF continuous mapping, then $g \circ f:(X, \tau) \to (Z, \eta)$ is an IF $\widehat{\beta}$ G continuous mapping.

Proof: Let A be an IFCS in Z. Then $g^{-1}(A)$ is an IFCS in Y, by hypothesis. Since f is an IF $\widehat{\beta}$ G continuous mapping, $f^{-1}(g^{-1}(A))$ is an IF $\widehat{\beta}$ GCS in X. That is $(g \circ f)^{-1}(A)$ is an IF $\widehat{\beta}$ GCS in X. Hence the mapping g o f is an IF $\widehat{\beta}$ G continuous mapping.

Theorem 3.25: Let $f:(X, \tau) \to (Y, \sigma)$ be a mapping from an IFTS X into an IFTS Y. Then the following conditions are equivalent if X is an IF $\hat{\beta}$ aT_{1/2} space:

- (i) f is an IF $\hat{\beta}$ G continuous mapping
- (ii) If B is an IFOS in Y then $f^{-1}(B)$ is an IF $\hat{\beta}$ GOS in X
- (iii) $f^{-1}(int(B)) \subset int(cl(int(f^{-1}(B))))$ for every IFS B in Y.

Proof: (i) \Rightarrow (ii): It is obviously true.

(ii) \Rightarrow (iii): Let B be any IFS in Y. Then int(B) is an IFOS in Y. Then $f^{-1}(\text{int}(B))$ is an IF $\hat{\beta}$ GOS in X. Since X is an IF $\hat{\beta}$ aT_{1/2} space, $f^{-1}(\text{int}(B))$ is an IFOS in X. Therefore, $f^{-1}(\text{int}(B)) = \text{int}(f^{-1}(\text{int}(B))) \subseteq \text{int}(\text{cl}(\text{int}(f^{-1}(B))))$.

(iii) \Rightarrow (i): Let B be an IFCS in Y. Then B° is an IFOS in Y. By hypothesis $f^{-1}(\text{int}(B^c)) \subseteq \text{int}(\text{cl}(\text{int}(f^{-1}(B^c))))$. This implies $f^{-1}(B^c) \subseteq \text{int}(\text{cl}(\text{int}(f^{-1}(B^c))))$. Hence $f^{-1}(B^c)$ is an IF $\hat{\beta}$ GOS in X. Since every IF α OS is an IF $\hat{\beta}$ GOS, $f^{-1}(B^c)$ is an IF $\hat{\beta}$ GOS in X. Hence $f^{-1}(B^c)$ is an IF $\hat{\beta}$ GOS in X. Hence $f^{-1}(B^c)$ is an IF $\hat{\beta}$ GOS in X. Hence $f^{-1}(B^c)$ is an IF $\hat{\beta}$ GOS in X. Hence $f^{-1}(B^c)$ is an IF $\hat{\beta}$ GOS in X. Hence $f^{-1}(B^c)$ is an IF $\hat{\beta}$ GOS in X. Hence $f^{-1}(B^c)$ is an IF $\hat{\beta}$ GOS in X. Hence $f^{-1}(B^c)$ is an IF $\hat{\beta}$ GOS in X. Hence $f^{-1}(B^c)$ is an IF $\hat{\beta}$ GOS in X.

Theorem 3.26: Let $f:(X, \tau) \to (Y, \sigma)$ be a mapping. Then the following conditions are equivalent if X is an IF $\hat{\beta}$ aT_{1/2} space:

- (i) f is an IF $\hat{\beta}$ G continuous mapping
- (ii) $f^{-1}(B)$ is an IF $\hat{\beta}$ GCS in X for every IFCS B in Y
- (iii) $cl(int(cl(f^{-1}(A)))) \subseteq f^{-1}(cl(A))$ for every IFS B in Y.

Proof: (i) \Rightarrow (ii): is obviously true.

(ii) \Rightarrow (iii): Let A be an IFS in Y. Then cl(A) is an IFCS in Y. By hypothesis, $f^{-1}(cl(A))$ is an IF $\widehat{\beta}$ GCS in X. Since X is an IF $\widehat{\beta}$ aT_{1/2} space, $f^{-1}(cl(A))$ is an IFCS in X. Therefore, $cl(f^{-1}(cl(A))) = f^{-1}(cl(A))$. Now $cl(int(cl(f^{-1}(A)))) \subseteq cl(int(cl(f^{-1}(cl(A))))) \subseteq f^{-1}(cl(A))$.

(iii) \Rightarrow (i): Let A be an IFCS in Y. By hypothesis $cl(int(cl(f^{-1}(A)))) \subseteq f^{-1}(cl(A)) = f^{-1}(A)$. This implies is an IF $\hat{\beta}$ GCS in X and hence it is an IF $\hat{\beta}$ GCS in X. Therefore, f is an IF $\hat{\beta}$ G continuous mapping.

REFERENCES

- [1] Atanassov. K., Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20 (1986), 87-96.
- [2] Chang, C., Fuzzy topological spaces, J. Math. Anal. Appl., 24, 1968, 182-190.
- [3] Coker, D., An introduction to fuzzy topological space, Fuzzy sets and systems, 88, 1997, 81-89.
- [4] El-Shafhi, M.E., and A. Zhakari., Semi generalized continuous mappings in fuzzy topological spaces, J. Egypt. Math. Soc. 15(1)(2007), 57-67.
- [5] Gurcay, H., Coker, D., and Haydar, A., On fuzzy continuity in intuitionistic fuzzy topological spaces, jour. of fuzzy math., 5(1997), 365-378.
- [6] Hanafy, I.M., Intuitionistic fuzzy continuity, Canad. Math Bull. XX(2009), 1-11.
- 7] Joung Kon Jeon, Young Bae Jun, and Jin Han Park, Intuitionistic fuzzy alpha continuity and intuitionistic fuzzy pre continuity, International Journal of Mathematics and Mathematical Sciences, 19 (2005), 3091-3101.
- [8] R.Kulandaivelu, S.Maragathavalli and K.Ramesh, Intuitionistic fuzzy $\hat{\beta}$ generalized closed sets in intuitionistic fuzzy topological spaces (Submitted)
- [9] Seok Jong Lee and Eun Pyo Lee, The category of intuitionistic fuzzy topological spaces, Bull. Korean Math. Soc. 2000, 63-76.
- Young Bae Jun and Seok- Zun Song, Intuitionistic fuzzy semi-pre open sets and Intuitionistic semi-pre continuos mappings, jour. of Appl. Math and computing, 19(2005), 467-474.
- [11] Zadeh, L. A., Fuzzy sets, Information and control, 8 (1965) 338-353.