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I. INTRODUCTION 
 

      The concept of fuzzy sets was introduced by Zadeh [11] and later Atanassov [1] generalized this idea to 

intuitionistic fuzzy sets using the notion of fuzzy sets. On the other hand Coker [4] introduced intuitionistic fuzzy 

topological spaces using the notion of intuitionistic fuzzy sets.  In this paper, we introduced intuitionistic fuzzy  𝜷    

generalized continuous mappings and studied some of their basic properties. We arrived at some characterizations of 

intuitionistic fuzzy  𝜷    generalized continuous mappings. 
 

II. PRELIMINARIES 
 

Definition 2.1: [1]   Let X be a non empty fixed set. An intuitionistic fuzzy set (IFS in short) A in X is an object 

having the form  

                                 A = { x, μA(x), νA(x)  / x X} 

where the functions μA(x): X  [0, 1] and νA(x): X  [0, 1] denote the degree of membership (namely μA(x)) and 

the degree of non -membership (namely νA(x)) of each element x X to the set A, respectively, and 0 ≤  μA(x) + 

νA(x) ≤ 1 for each x  X. Denote the set of all intuitionistic fuzzy sets in X by IFS (X). 

 

Definition 2.2: [1] Let A and B be IFSs of the form   

A = { x, μA(x), νA(x)  / xX } and B = {  x, μB(x), νB(x)  / x  X }. Then 

(a)  A  B if and only if μA(x) ≤ μB (x) and νA(x) ≥ νB(x) for all x X 

(b)  A = B if and only if A   B and B   A 

(c)  Ac = {  x, νA(x), μA(x)  /  x  X }        

(d)  A  B = {  x, μA(x)  μB (x), νA(x)  νB(x)  / x  X } 

(e)  A  B = {  x, μA(x)  μB (x), νA(x)  νB(x)   / x  X } 

 

For the sake of simplicity, we shall use the notation A =  x, μA, νA instead of  A = {  x, μA(x), νA(x)  / x  X }. 

Also for the sake of simplicity, we shall use the notation A = {  x, (μA, μB ), (νA, νB)  } instead of A =  x, (A/μA, 

B/μB), (A/νA, B/νB) . 

 

The intuitionistic fuzzy sets 0~ = {  x, 0, 1  / x X } and  1~ = { x, 1, 0  / x  X}   are respectively the empty set 

and the whole set of  X. 

 

Definition 2.3: [3] An intuitionistic fuzzy topology (IFT in short) on X is a family τ of IFSs in X satisfying the 

following axioms. 

(i)  0~, 1~  τ  

(ii)  G1   G2  τ for any G1, G2  τ 
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(iii)   Gi  τ for any family { Gi /  i  J }   τ. 

In this case the pair (X, τ) is called an intuitionistic fuzzy topological space (IFTS in short) and any IFS in τ is known as 

an intuitionistic fuzzy open set (IFOS in short) in X.  

The complement Ac of an IFOS A in IFTS (X, τ) is called an intuitionistic fuzzy closed set (IFCS in short) in X. 

 

Definition 2.4:[3] Let ( X, τ) be an IFTS and  A =  x, μA, νA   be an IFS in X. Then the intuitionistic fuzzy interior 

and intuitionistic fuzzy closure are defined by  

int(A) =   { G / G is an IFOS in X and G  A }, 

cl(A)  =   { K / K is an IFCS in X and A  K }. 

 

Note that for any IFS A in (X, τ), we have cl(Ac) = [int(A)]c and int(Ac) = [cl(A)]c. 

 

Definition 2.5: [4] An IFS A = x, μA, νA  in an IFTS (X, τ) is said to be a 

(i) intuitionistic fuzzy semi closed set (IFSCS for short) if int(cl(A))  A, 

(ii) intuitionistic fuzzy pre-closed set (IFPCS for short) if cl(int(A))  A, 

(iii) intuitionistic fuzzy α-closed set (IFαCS for short) if cl(int(cl(A)))  A, 

(iv) intuitionistic fuzzy -closed set (IFCS for short) if cl(int(A)) ∩ int(cl(A)) A  

The respective complements of the above IFCSs are called their respective IFOSs. 

          The family of all IFSCSs, IFPCSs, IFαCSs and IFCSs (respectively IFSOSs, IFPOSs,  IFαOSs and IFOSs) 

of an IFTS (X,τ) are respectively denoted by IFSC(X), IFPC(X), IFαC(X) and IFC(X)  (respectively IFSO(X), 

IFPO(X), IFαO(X) and IFO(X)). 

Definition 2.6:[12] Let A be an IFS in an IFTS (X, τ). Then  

sint(A) =   { G / G is an IFSOS in X and G  A }, 

scl(A)  =   { K / K is an IFSCS in X and A  K }. 

Note that for any IFS A in (X, τ), we have scl(Ac)=(sint(A))c and  sint(Ac) = (scl(A))c . 

 

Definition 2.7:[9] An IFS A in an IFTS (X, τ)  is an  

(i)  intuitionistic fuzzy generalized closed set (IFGCS in short) if  cl(A)  U whenever A  U 

      and U is an IFOS in X. 

 

Definition 2.8:[9] An IFS A in an IFTS (X, τ) is said to be an intuitionistic fuzzy generalized semi closed set (IFGSCS in 

short) if  scl(A)  U whenever A  U and U is an  IFOS in (X, τ). 

 

Definition 2.9:[9] An IFS A is said to be an intuitionistic fuzzy generalized semi open set (IFGSOS in short) in X if the 

complement Ac is an IFGSCS in X. 

The family of all IFGSCSs (IFGSOSs) of an IFTS (X, τ) is denoted by IFGSC(X) (IFGSO(X)). 

 

 

Definition 2.10:[5] Let f be a mapping from an IFTS (X, τ) into an IFTS (Y, ). Then f is said to be intuitionistic 

fuzzy continuous (IF continuous in short) if f -1(B)  IFO(X) for every B  . 

 

Definition 2.11: [5] Let f be a mapping from an IFTS (X, τ) into an IFTS (Y, ). Then   f is said to be an 

(i) intuitionistic fuzzy semi continuous mapping (IFS continuous mapping for short) if f -1(B)  IFSO(X) 

for every B   

(ii) intuitionistic fuzzy α-continuous mapping (IFα continuous mapping for short) if  f -1(B)  IFαO(X) for 

every B   

(iii) intuitionistic fuzzy pre continuous mapping (IFP continuous mapping for short)  if f -1(B)  IFPO(X) 

for every B   

(iv) intuitionistic fuzzy β continuous mapping (IF continuous mapping for short) if f -1(B)  IFO(X) for 

every B  . 
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Definition 2.12: [10] Let f be a mapping from an IFTS (X, τ) into an IFTS (Y, ). Then f is said to be an 

intuitionistic fuzzy generalized continuous mapping (IFG continuous mapping for short) if                                  f -

1(B)IFGC(X) for every IFCS B in Y. 

 

Definition 2.13: [10] Let f be a mapping from an IFTS (X, τ) into an IFTS (Y, ). Then f is said to be an 

intuitionistic fuzzy semi-pre continuous mapping (IFSP continuous mapping for short) if f -1(B)  IFSPO(X) for 

every B. 

 

Result 2.14:[9] Every IF continuous mapping is an IFG continuous mapping.  

 

Definition 2.15:[8] A mapping f: (X, τ)  (Y,) is called an intuitionistic fuzzy generalized semi continuous (IFGS 

continuous in short) if f -1(B) is an IFGSCS in (X, τ) for every IFCS   B of (Y, ). 

 

Definition 2.16: [8]  An IFTS (X, τ) is said to be an intuitionistic fuzzy 𝜷  aT1/2 (IF𝜷  aT1/2  in short) space if every 

IF𝜷  GCS in X is an IFCS in X. 

 

Definition 2.17: [8]  An IFTS (X, τ) is said to be an intuitionistic fuzzy 𝜷  bT1/2 (IF𝜷  bT1/2  in short) space if every 

IF𝜷  GCS in X is an IFGCS in X. 

 

III. INTUITIONISTIC FUZZY 𝜷   GENERALIZED CONTINUOUS MAPPINGS 

 

In this section we have introduced intuitionistic fuzzy 𝜷   generalized continuous mappings and investigated 

some of their properties. 

 
Definition 3.1: A mapping f : (X, τ)  (Y,) is called an intuitionistic fuzzy 𝜷   generalized continuous (IF𝜷  G 

continuous in short) mapping if f -1(B) is an IF𝜷  GCS       in (X, τ) for every IFCS B of (Y, ). 

 

Example 3.2: Let X = { a, b }, Y = { u, v } and G1 =  x, (0.1, 0.1), (0.5, 0.6) ,   G2 =  y, (0.5, 0.6), (0.3, 0.1) . 

Then τ = { 0~, G1, 1~ } and  = { 0~, G2, 1~ } are  IFTs on X and Y respectively. Here 𝜇𝐺1
(a) = 0.1, 𝜇𝐺1

(b) = 0.1, 

𝜗𝐺1
(a) = 0.5,  𝜗𝐺1

(b)= 0.6, 𝜇𝐺2
(u)= 0.5, 𝜇𝐺2

(v)= 0.6, 𝜗𝐺2
(u)= 0.3, and 𝜗𝐺2

(v)= 0.1. Define a mapping f : (X, τ)  (Y, 

) by f(a) = u and f(b) = v. Then clearly for the IFCS 0~, 1~ in Y,  f -1(0~) and f -1(1~) are IF𝜷  GCS in X.  Let us 

consider the IFCS G2
c in Y. Then  f -1(G2

c
 ) =  x, (0.3, 0.1), (0.5, 0.6)  is an IF𝜷  GCS in X.  Hence f is an IF𝜷  G 

continuous mapping. 

 

Theorem 3.3: Every IF continuous mapping is an IF𝜷  G continuous mapping but not conversely. 

Proof: Let f : (X, τ)  (Y, ) be an IF continuous mapping. Let A be an IFCS in Y. Since f is an IF continuous 

mapping, f -1(A) is an IFCS in X. Since every IFCS is an IF𝜷  GCS, f -1(A) is an IF𝜷  GCS in X. Hence f is an IF𝜷  G 

continuous mapping. 

 

Example 3.4: Let X = { a, b }, Y = { u, v } and G1 =  x, (0.2, 0.1), (0.5, 0.6) ,   G2 =  y, (0.4, 0.3), (0.3, 0.1) . 

Then τ = { 0~, G1, 1~ } and  = { 0~, G2, 1~} are IFTs on X and Y respectively. Define a mapping f : (X, τ)  (Y, ) 

by f(a) = u and f(b) = v. Then f  is  an  IF𝜷  G continuous mapping. Now consider the IFCS  G2
c =  y, (0.3, 0.1), 

(0.4, 0.3)  is an IFCS in Y. Then f -1(G2
c) =  x, (0.3, 0.1), (0.4, 0.3)  is not an IFCS  in  X. Hence f is not an IF 

continuous mapping. 

 

Theorem 3.5: Every IF continuous mapping is an IF𝜷  G continuous mapping but not conversely. 

Proof:  Let f : (X, τ)  (Y,) be an IF continuous mapping. Let A be an IFCS in Y. Then by hypothesis f -1(A) is 

an IFCS in X. Since every IFCS is an IF𝜷  GCS, f -1(A) is an IF𝜷  GCS in X. Hence f is an IF𝜷  G continuous 

mapping. 

 

Example 3.6: Let X = { a, b }, Y = { u, v } and  let  the IFS G1 =  x, (0.3, 0.1), (0.5, 0.6) ,  G2 =  x, (0.7, 0.7), (0.1, 

0.1)  and G3 =  y, (0.3, 0.3), (0.4, 0.5) . Then  τ = { 0~, G1, G2,1~ } and  = { 0~, G3, 1~} are IFTs on X and Y 

respectively. Define a mapping f : (X, τ)  (Y, ) by f(a) = u and f(b) = v. Then f is an IF𝜷  G continuous mapping. 
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Let us consider the IFCS G3
c =  y, (0.4, 0.5), (0.3, 0.3)  in Y. Then f -1(G3

c) is not an IFCS in X. Hence f is not an 

IF continuous mapping. 

 

Theorem 3.7: Every IFG continuous mapping is an IF𝜷  G continuous mapping but not conversely. 

Proof: Let f : (X, τ)  (Y, ) be an IFG continuous mapping. Let A be an IFCS in Y. Since f is an IFG continuous 

mapping, f -1(A) is an IFGCS in X. Since every IFGCS    is an IF𝜷  GCS, f -1(A) is an IF𝜷  GCS in X. Hence f is an 

IF𝜷  G continuous mapping. 

 

Example 3.8: Let X = { a, b }, Y = { u, v } and G1 =  x, (0.1, 0.7), (0.2, 0.1) ,   G2 =  y, (0.3, 0.8), (0.1, 0) . Then 

τ = { 0~, G1, 1~ } and  = { 0~, G2, 1~} are IFTs  on X and Y respectively. Define a mapping f : (X, τ)  (Y, ) by 

f(a) = u and f(b) = v. Then f  is an IF𝜷  G continuous mapping. Now consider the IFCS  G2
c =  y, (0.1, 0), (0.3, 0.8)  

in Y. Then f -1(G2
c) =  x, (0.1, 0), (0.3, 0.8)  is not an IFGCS  in  X. Hence f is not an IFG continuous mapping. 

 

Theorem 3.9: Every IF𝜷  G continuous mapping is an IFGS continuous mapping but not conversely. 

Proof:  Let f : (X, τ)  (Y,) be an IF𝜷  G continuous mapping. Let A be an IFCS in Y. Then by hypothesis f -1(A) 

is an IF𝜷  GCS in X. Since every IF𝜷  GCS is an IFGSCS, f -1(A) is an IFGSCS in X. Hence f is an IFGS continuous 

mapping. 

 

Example 3.10: Let X = { a, b }, Y = { u, v } and G1 =  x, (0.1, 0.2), (0.3, 0.4) ,  G2 =  y, (0.4, 0.5), (0.1, 0) . Then 

τ = { 0~, G1, 1~ } and  = { 0~, G2, 1~ } are IFTs on X and Y respectively. Define a mapping f : (X, τ)  (Y, ) by 

f(a) = u and f(b) = v. Then f is an IFGS continuous mapping. Let us consider the IFCS G2
c =  y, (0.1, 0), (0.4, 0.5)  

in Y. Then f -1(G2
c) is not an IF𝜷  GCS in X. Hence f is not an IF𝜷  G continuous mapping. 

 

Remark 3.11: IFP continuous mapping and IF𝜷  G continuous mapping are independent of each other. 

 

Example 3.12: Let X = { a, b }, Y = { u, v } and G1 =  x, (0, 0.9), (0.5, 0.1) , G2 =  y, (0.7, 0.7), (0, 0.3) . Then τ 

= { 0~, G1, 1~ } and  = { 0~, G2, 1~ } are IFTs on X and Y respectively. Define a mapping f : (X, τ)  (Y, ) by f(a) 

= u and f(b) = v. Then f is an IFP continuous mapping. But f is not an IF𝜷  G continuous mapping since  G2
c =  y, 

(0, 0.3), (0.7, 0.7)  is an IFCS in Y but f -1(G2
c) =  x, (0, 0.3), (0.7, 0.7)   is not an IF𝜷  GCS in X. 

 

Example 3.13: Let X = { a, b }, Y = { u, v } and G1 =  x, (0.2, 0.2), (0.5, 0.6) ,  G2 =  y, (0.4, 0.5), (0.3, 0.2) . 

Then τ = { 0~, G1, 1~ } and  = { 0~, G2, 1~ } are IFTs   on X and Y respectively. Define a mapping f : (X, τ)  (Y, ) 

by f(a) = u and f(b) = v. Then f is an IF𝜷  G continuous mapping. But f is not an IFP continuous mapping  since  G2
c 

=  y, (0.3, 0.2), (0.4, 0.5)  is an IFCS in Y but f -1(G2
c) =  x, (0.3, 0.2), (0.4, 0.5)   is not an IFPCS in X. 

 

Remark 3.14: IF continuous mapping and IF𝜷  G continuous mapping are independent of each other. 

 

Example 3.15: Let X = { a, b }, Y = { u, v } and G1 =  x, (0.4, 0.6), (0.2, 0.2)   G2 =  y, (0.6, 0.2), (0.4, 0.3) . 

Then τ = { 0~, G1, 1~ } and  = {0~, G2, 1~} are IFTs     on X and Y respectively. Define a mapping f : (X, τ)  (Y, ) 

by f(a) = u and f(b) = v. Then f is an IF continuous mapping. But f is not an IF𝜷  G continuous mapping   since  G2
c 

=  y, (0.4, 0.3), (0.6, 0.2)  is an IFCS in Y but f -1(G2
c) =  x, (0.4, 0.3), (0.6, 0.2)   is not an IF𝜷  GCS in X. 

 

Example 3.16: Let X = { a, b }, Y = { u, v } and G1 =  x, (0.5, 0.1), (0.5, 0.9) ,  G2 =  y, (0.2, 0.1), (0.7, 0.8) . 

Then τ = { 0~, G1, 1~ } and  = { 0~, G2, 1~ } are IFTs on X and Y respectively. Define a mapping f : (X, τ)  (Y, ) 

by f(a) = u and f(b) = v. Then f is an IF𝜷  G continuous mapping but f is not an IF continuous mapping since   G2
c = 

 y, (0.7, 0.8), (0.2, 0.1)  is an IFCS in Y but f -1(G2
c) =  x, (0.7, 0.8), (0.2, 0.1)  is   not an IFCS in X. 

 

Remark 3.17: IFS continuous mapping and IF𝜷  G continuous mapping are independent of each other. 

 

Example 3.18: Let X = { a, b }, Y = { u, v } and G1 =  x, (0.3, 0.5), (0.1, 0.1) ,   G2 =  y, (0.1, 0), (0.8, 0.8) . 

Then τ = { 0~, G1, 1~ } and  = {0~, G2, 1~} are IFTs on X and Y respectively. Define a mapping f : (X, τ)  (Y, ) 

by f(a) = u and f(b) = v. Then  f is an IF𝜷  G continuous mapping. But f is not an IFS continuous mapping since  G2
c 

=  y, (0.8, 0.8), (0.1, 0)  is an IFCS in Y but f -1(G2
c) =  x, (0.8, 0.8), (0.1, 0)   is not an IFSCS in X. 
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Example 3.19: Let X = { a, b }, Y = { u, v } and  let G1 =  x, (0.1, 0.2), (0.4, 0.5) ,   G2 =  x, (0.3, 0.3), (0.1, 0.2)   

and G3 =  y, (0.4, 0.4), (0.2, 0.3) . Then τ = { 0~, G1, G2, 1~ } and  = { 0~, G3, 1~ } are IFTs on X and Y 

respectively. Define a mapping f : (X, τ)  (Y, ) by f(a) = u and f(b) = v. Then f is an IFS continuous mapping.  

But f is not an IF𝜷  G continuous mapping since G3
c =  y, (0.2, 0.3), (0.4, 0.4)  is an IFCS in Y but f -1(G3

c) =  x, 

(0.2, 0.3), (0.4, 0.4)   is not an IF𝜷  GCS in X. 

 

Theorem 3.20: A mapping f : X  Y is an IF𝜷  G continuous if and only if the inverse image of each IFOS in (Y, 

) is an IF𝜷  GOS in (X, τ). 

Proof: Necessity:  Let A be an IFOS in (Y, ). This implies Ac is an IFCS in Y.Since f is an IF𝜷  G continuous 

mapping, f -1(Ac) is an IF𝜷  GCS in (X, τ). Since   f -1(Ac) = (f -1(A))c, f -1(A) is an IF𝜷  GOS in X. 

Sufficiency: Let A be an IFCS in (Y, ). Then Ac is an IFOS in Y. By hypothesis,   Ac is an IF𝜷  GOS in (X, τ). 

Hence A is an IF𝜷  GCS in X. 

 

Theorem 3.21:  Let f : (X, τ)  (Y,) be a mapping and let f -1(A) be an IFRCS  in X for   every IFCS A in Y. Then 

f is an IF𝜷  G continuous mapping. 

Proof:  Let A be an IFCS in Y. Then f -1(A) is an IFRCS in X. Since every IFRCS is an IF𝜷  GCS, f -1(A) is an 

IF𝜷  GCS in X. Hence f is an IF𝜷  G continuous mapping. 

 

Theorem 3.22: Let f : (X, τ)  (Y, ) be an IF𝜷  G continuous mapping. Then f is an   IF continuous mapping if X 

is an IF𝜷  aT1/2 space. 

Proof: Let A be an IFCS in Y. Then f -1(A) is an IF𝜷  GCS in X by hypothesis. Since X is an IF𝜷  aT1/2    space, f -

1(A) is an IFCS in X. Hence f is an IF continuous mapping. 

 

Theorem 3.23: Let f : (X, τ)  (Y, ) be an IF𝜷  G continuous mapping. Then f is an IFG continuous mapping if X 

is an IF𝜷  bT1/2 space. 

Proof: Let A be an IFCS in Y. Then f -1(A) is an IF𝜷  GCS in X, by hypothesis. Since X is an IF𝜷  bT1/2  space, f -

1(A) is an IFGCS in X. Hence f is an IFG continuous mapping. 

 

Theorem 3.24: Let f : (X, τ)  (Y, ) be an IF𝜷  G continuous mapping and  g : (Y, )  (Z, )  is an IF 

continuous mapping, then  g o f : (X, τ)   (Z, )  is an IF𝜷  G continuous mapping. 

Proof: Let A be an IFCS in Z. Then g -1(A) is an IFCS in Y, by hypothesis. Since f is an IF𝜷  G continuous mapping, 

f -1(g -1(A))   is   an IF𝜷  GCS in X.   That is (g  f) -1(A) is an IF𝜷  GCS in X.  Hence the mapping g  f is an IF𝜷  G 

continuous mapping. 

 

Theorem 3.25: Let f : (X, τ)  (Y, ) be a mapping from an IFTS X into an    IFTS Y. Then the following 

conditions are equivalent if X is an IF𝜷  aT1/2 space: 

(i) f is an IF𝜷  G continuous mapping 

(ii) If B is an IFOS in Y then f -1(B) is an IF𝜷  GOS in X 

(iii) f -1(int(B))  int(cl(int(f -1(B)))) for every IFS B in Y.   

Proof:  (i)  (ii): It is obviously true. 

(ii)  (iii):  Let B be any IFS in Y. Then int(B) is an IFOS in Y. Then f -1(int(B)) is an IF𝜷  GOS in X. Since X is an 

IF𝜷  aT1/2 space, f -1(int(B)) is an IFOS in X. Therefore, f -1(int B) = int(f -1(int(B)))  int(cl(int(f -1(B)))). 

(iii)  (i): Let B be an IFCS in Y. Then Bc is an IFOS in Y. By hypothesis  f -1(int(Bc))   int(cl(int(f -1(Bc)))). This  

implies  f -1(Bc)   int(cl(int(f -1(Bc)))). Hence  f -1(Bc) is an IFOS in X. Since every IFOS is an IF𝜷  GOS, f -1(Bc) 

is an IF𝜷  GOS        in X. Therefore,  f-1(B) is an IF𝜷  GCS in X. Hence f is an IF𝜷  G continuous mapping. 

 

Theorem 3.26: Let f : (X, τ)  (Y, ) be a mapping. Then the following conditions are equivalent if X is an 

IF𝜷  aT1/2 space: 

(i) f is an IF𝜷  G continuous mapping 

(ii) f -1(B) is an IF𝜷  GCS in X for every IFCS B in Y  

(iii) cl(int(cl(f -1(A))))  f -1(cl(A)) for every IFS B in Y. 
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Proof:  (i)  (ii): is obviously true. 

(ii)  (iii): Let A be an IFS in Y. Then cl(A) is an IFCS in Y. By hypothesis,  f 
-1(cl(A)) is an IF𝜷  GCS in X. Since 

X is an IF𝜷  aT1/2 space, f 
-1(cl(A)) is an IFCS in X. Therefore,   cl(f -1(cl(A))) = f -1(cl(A)). Now cl(int(cl(f -1(A))))  

cl(int(cl(f 
-1(cl(A)))))  f -1(cl(A)). 

(iii)  (i): Let A be an IFCS in Y. By hypothesis cl(int(cl(f -1(A))))  f -1(cl(A)) = f -1(A). This implies           f -1(A) 

is an IFCS in X and hence it is an IF𝜷  GCS in X. Therefore,  f is an IF𝜷  G continuous mapping. 
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