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Abstract 

         In this paper, a theorem on  degree  of  approximation  of  function   in the  Holder metric  by  (N,Pn) 

(E,q) means  has been established. 
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                              I. INTRODUCTION        

         The degree of approximation of a function  𝑓 belonging to various classes using different Summability 
method has been determined by many Mathematician ,Chandra[1] find the degree of approximation of function 

by Norlund transform .Later on Mahapatra and Chandra[2]obtain the degree of approximation in Holder  metric 

using matrix transform .I n sequal singh et.al. [ 8 ] obtain the error bound of periodic function  in Holder metric  

again Mishra et.al. gave the generalization of result of Singh et.al. In this paper we find the degree of 

approximation of function  in Holder metric   by   (N,Pn)  (E,q) means.  

                                                                       II. DEFINITION 

Let  f  be a periodic function of period   2𝜋  integrable in the sense of Lebesgue  over[π, - π]. Let  the  Fourier 

series of  𝑓 given by  

  𝑓 𝑡 ≈  
𝑎𝑜

2
+  (𝑎𝑛𝑐𝑜𝑠𝑛𝑥 + 𝑏𝑛𝑠𝑖𝑛𝑛𝑥)∞

𝑛=1       …….(2.1) 

Let   𝑐2𝜋  denote the Banach Space  of all  2𝜋 - periodic continuous function  defined on [𝜋, −𝜋] under  sub-

norm.  For  0 ≤ α ≤1  and  some positive constant  k  the function space 𝐻𝛼  is given  by the following  

  𝐻𝛼 =  𝑓 ∈  𝑐2𝜋 ∶  𝑓 𝑥 − 𝑓(𝑦) ≤ 𝑘 𝑥 − 𝑦 𝛼     .   …….(2.2)

       

The space 𝐻𝛼  is  a Banach space with the norm   .  α   defined by  

      𝑓 α   =   𝑓 𝑐   +   
𝑠𝑢𝑝
𝑥, 𝑦 [∆𝛼𝑓(𝑥, 𝑦)]                                                    ……….(2.3) 

 

Where     𝑓 𝑐   =      
𝑠𝑢𝑝

−𝜋 ≤ 𝑥 ≤ 𝜋  𝑓(𝑥)    and         ∆𝛼𝑓 𝑥, 𝑦 =  
 𝑓 𝑥 −𝑓(𝑦) 

 𝑥−𝑦 𝛼    
     x ≠ 𝑦 .   We shall use the 

connection that      ∆0𝑓 𝑥, 𝑦 = 0. 

The metric   induced  by  norm in (2.3) on  𝐻𝛼   is called the  Holder metric. We write 𝑡𝑕𝑟𝑜𝑢𝑔𝑕 𝑡𝑕𝑒 𝑝𝑎𝑝𝑒𝑟  

 ∅𝑥 (t) = 𝑓 𝑥 + 𝑡 − 2𝑓 𝑥 + 𝑓(𝑥 − 𝑡)                                                                       …….(2.4) 

                  𝐾𝑛  𝑡 =
1

2𝜋𝑃𝑛
 

𝑝𝑛

(1+𝑞)𝑘
   𝑘

𝑣
 𝑞𝑘−𝑣

sin ⁡(𝑣+
1

2
)𝑡

sin ⁡(
𝑡

2
)

𝑘
𝑣=0  𝑛

𝑘=𝑜          ……….(2.5) 

III. KNOWN RESULTS 

       In 1982 Mahapatra and Chandra [1] considered the 𝐸𝑛
𝑞

(𝑓, 𝑥)  for the holder   continuous function f to obtain 

error bounds in Holder norm. They proved the following  
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          Theorem – Let      0 ≤ 𝛽 < 𝛼 ≤ 1  and let 𝑓 ∈ 𝐻𝛼   then for   𝑛 > 1 

                  𝑓 − 𝐸𝑛
𝑞

(𝑓) 
𝛽

= 𝑜   𝑛 
− 𝛼−𝛽 

2     log 𝑛 
𝛽

𝛼  .                                                               …..(3.1) 

Above theorem improved  by Chandra [ 5] in 1988 and proved  

          Theorem – Let      0 ≤ 𝛽 < 𝛼 ≤ 1  and let 𝑓 ∈ 𝐻𝛼   then for   𝑛 > 1 

                  𝑓 − 𝐸𝑛
𝑞

(𝑓) 
𝛽

= 𝑜   𝑛 𝛽−𝛼     log 𝑛 
𝛽

𝛼  .                                                                  …..(3.2) 

Singh and Mahajan [8  ]  established the following theorem to error bound of signal passing through (C,1)(E,1) 
transform. 

Theorem 1 – Let  𝑤(𝑡)  defined (2.4) be  such that 

  
𝑤(𝑢)

𝑢2

𝜋

𝑡
𝑑𝑢 = 𝑜 𝐻(𝑡)   𝐻(𝑡 ) ≥ 0                                           …….(3.3) 

 

  𝐻 𝑢 𝑑𝑢 = 𝑜 𝑡𝐻(𝑡) 
𝑡

0
           𝑎𝑠  𝑡 → 0+                                   ………(3.4) 

Then for    0 ≤ 𝛽 < 𝛼 ≤ 1  and    𝑓 ∈ 𝐻𝑤     we have 

 𝑡𝑛
(𝐶𝐸)1

 𝑆; 𝑓 − 𝑓(𝑥) 
𝑤 ∗

= 𝑜    𝑛 + 1 −1𝐻(
𝜋

𝑛+1
) 

1−
𝛽

𝛼
                                     ……..(3.5) 

Theorem 2 – Consider w(t) defined (2.4) and for 0 ≤ 𝛽 ≤ 𝛼 ≤ 1  and    𝑓 ∈ 𝐻𝑤     we have 

 𝑡𝑛
(𝐶𝐸)1

 𝑓 − 𝑓(𝑥) 
𝑤 ∗

= 𝑜   𝑤(
𝜋

𝑛+1
) 

1−
𝛽

𝛼
+ ( 𝑛 + 1 −1  𝑤  

1

𝑘+1
 𝑛+1

𝑘=1 )1−
𝛽

𝛼      

           ………(3.6) 

In sequal Mishra and Khatri  [10 ] gave the generalized  result of above  theorem . They proved the following. 

Theorem 3 – Let  𝑤(𝑡)  defined (2.4) be  such that 

  
𝑤(𝑢)

𝑢2

𝜋

𝑡
𝑑𝑢 = 𝑜 𝐻(𝑡)   𝐻(𝑡 ) ≥ 0                                          

 

  𝐻 𝑢 𝑑𝑢 = 𝑜 𝑡𝐻(𝑡) 
𝑡

0
           𝑎𝑠  𝑡 → 0+    

 

Let  Np  be  the  Norlund    summability   matrix   generated  by  the  non –negative  {Pn}  such  that   

    (n+1) pn = o(Pn)   ∀𝑛 ≥ 0.      

Then for  𝑓     ∈ 𝐻𝑤    0 ≤ 𝛽 < 𝛼 ≤ 1        we have  

 𝑡𝑛
−𝑁𝐸 𝑓 − 𝑓 (𝑥) 𝑤∗ = 𝑜  

𝑤( 𝑥−𝑦 )
𝛽
𝛼

𝜔 ∗( 𝑥−𝑦 )
 log⁡(𝑛 + 1) 

𝛽

𝛼   𝑛 + 1 −1𝐻  
𝜋

𝑛+1
  

1−
𝛽

𝜎
          ……..(3.7) 

And  if  w(t) satisfies (3.1)  then for    𝑓     ∈ 𝐻𝑤     0 ≤ 𝛽 < 𝛼 ≤ 1   we have 

 𝑡𝑛
−𝑁𝐸 𝑓 − 𝑓 (𝑥) 𝑤∗ = 𝑜  

𝑤( 𝑥−𝑦 )
𝛽
𝛼

𝜔 ∗( 𝑥−𝑦 )
 log 𝑛 + 1 𝑤(

𝜋

𝑛+1
) 

1−
𝛽

𝛼
+   

1

𝑛+1
  𝑤𝑛

𝑘=0  
𝜋

𝑛+1
  

1−
𝛽

𝜎
   

                                                                                                                                                       …….(3.8) 
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IV. MAIN RESULT 

In this paper we prove the following theorem   

Theorem –    For    0≤ 𝛽 <∝≤ 1 𝑎𝑛𝑑 𝑓 ∈ 𝐻𝛼    then  let 𝑓 ∈ 𝐻𝛼   then for   𝑛 > 1 

   𝑡𝑛  𝑓 −  𝑓 𝛽 = 𝑜  𝑛𝛽−𝛼 𝑙𝑜𝑔 𝑛
 
𝛽

𝛼
 
                ………(4.1) 

V.  LEMMA 

Lemma 5(a) -  If   ∅𝑥(𝑡) defined in (2.5) then for  𝑓 ∈ 𝐻𝛼  𝑎𝑛𝑑 0 < 𝛼 ≤ 1 we have 

                             ∅𝑥 𝑡 − ∅𝑦 (𝑡) = 𝑀  𝑥 − 𝑦 𝛼               

                                                                         ……..(5.1) 

                             ∅𝑥 𝑡 − ∅𝑦 (𝑡) = 𝑀  𝑡 𝛼                                                                                 ……(5.2) 

Lemma 5(b) -  For    0 ≤ 𝑡 ≤
𝜋

𝑛
   we have  sin 𝑛𝑡 = 𝑛 𝑠𝑖𝑛𝑡   

                             𝐾𝑛 (𝑡) = 𝑜(𝑛)                                                                                                   ….…(5.3)                                                                               

                     

Proof -    For   0 ≤ 𝑡 ≤
𝜋

𝑛
              and       sin 𝑛𝑡 = 𝑛 𝑠𝑖𝑛𝑡  then 

                    𝐾𝑛  𝑡  =  
1

2𝜋𝑃𝑛
 

𝑝𝑛−𝑘

(1+𝑞)𝑘
   𝑘

𝑣
 𝑞𝑘−𝑣

sin ⁡(𝑣+
1

2
)𝑡

sin ⁡(
𝑡

2
)

𝑘
𝑣=0  𝑛

𝑘=𝑜    

                                                                                                              

        ≤  
1

2𝜋𝑃𝑛
  

𝑝𝑛−𝑘

(1+𝑞)𝑘
   𝑘

𝑣
 𝑞𝑘−𝑣

(2v+1)sin ⁡(
𝑡

2
)

sin ⁡(
𝑡

2
)

𝑘
𝑣=0  𝑛

𝑘=𝑜   

        ≤  
1

2𝜋𝑃𝑛
  

𝑝𝑛−𝑘

 1+𝑞 𝑘   2𝑘 + 1    𝑘
𝑣
 𝑞𝑘−𝑣𝑘

𝑣=0  𝑛
𝑘=𝑜   

        ≤  
1

2𝜋𝑃𝑛
  𝑝𝑛−𝑘 (2𝑘 + 1)𝑛

𝑘=𝑜   

        =   
(2𝑛+1)

2𝜋𝑃𝑛
  𝑝𝑛−𝑘 

𝑛
𝑘=𝑜   

                                   =  𝑜(𝑛) 

Lemma 5(c)  -  For  
𝜋

𝑛
≤ 𝑡 ≤ 𝜋 ,     𝑠𝑖𝑛

𝑡

2
≥

𝑡

𝜋
    𝑎𝑛𝑑   𝑠𝑖𝑛 𝑛𝑡 ≤ 1   we have  

     𝐾𝑛  𝑡  = 𝑜  
1

𝑡
                                                                          ………….(5.4)                                                                

    

Proof  -   For  
𝜋

𝑛
≤ 𝑡 ≤ 𝜋 ,     𝑠𝑖𝑛

𝑡

2
≥

𝑡

𝜋
    𝑎𝑛𝑑   𝑠𝑖𝑛 𝑛𝑡 ≤ 1 

        

  𝐾𝑛  𝑡  =  
1

2𝜋𝑃𝑛
 

𝑝𝑛−𝑘

(1+𝑞)𝑘
   𝑘

𝑣
 𝑞𝑘−𝑣

sin ⁡(𝑣+
1

2
)𝑡

sin ⁡(
𝑡

2
)

𝑘
𝑣=0  𝑛

𝑘=𝑜    

                                                                                                              

        ≤  
1

2𝜋𝑃𝑛
  

𝑝𝑛−𝑘

(1+𝑞)𝑘
   𝑘

𝑣
 𝑞𝑘−𝑣 𝜋

𝑡
𝑘
𝑣=0  𝑛

𝑘=𝑜   

       ≤  
1

2𝑡𝑃𝑛
  𝑝𝑛−𝑘 

𝑛
𝑘=𝑜   
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       = 𝑜  
1

𝑡
  

VI. PROOF OF THEOREM 4 

Let   𝑆𝑛 (𝑥)  denotes the partial sum of fourier series given in  (2.1) then we have 

 𝑆𝑛  𝑥 − 𝑓 𝑥 =
1

2𝜋
 ∅(𝑡)

sin ⁡(𝑛+
1

2
)𝑡

𝑠𝑖𝑛
𝑡

2

𝑑𝑡
𝜋

0
       ….(6.1) 

The (E,q) transform 𝐸𝑛
𝑞
  of 𝑆𝑛  is given by  

              𝐸𝑛
𝑞

− 𝑓 𝑥 =
1

2𝜋(1+𝑞)𝑛  ∅(𝑡)    𝑛
𝑘
 𝑞𝑛−𝑘

𝑠𝑖𝑛  𝑘+
1

2
 𝑡

sin ⁡ 
𝑡

2
 

𝑛
𝑘=0  𝑑𝑡

𝜋

0
                               ……(6.2) 

The (N,Pn) (E,q) transform of   𝑆𝑛 (𝑥) is given by 

 𝑡𝑛
𝑁𝐸 (𝑓) − 𝑓 𝑥 =

1

2𝜋𝑃𝑛
  

𝑝𝑛−𝑘

 1+𝑞 𝑘
 ∅(𝑡)    𝑘

𝑣
 𝑞𝑘−𝑣

𝑠𝑖𝑛  𝑣+
1

2
 𝑡

sin ⁡ 
𝑡

2
 

𝑘
𝑣=0  𝑑𝑡

𝜋

0
 𝑛

𝑘=0     ……(6.3)

  

          =  ∅ 𝑡   𝑘𝑛 (𝑡)
𝜋

0
  

          =   .
𝜋

𝑛
0

+  .
𝜋

𝜋

𝑛

 ∅ 𝑡 𝑘𝑛 (𝑡)      …..(6.4) 

 

Now   𝐸𝑛  𝑥 =   𝑡𝑛
𝑁𝐸 𝑓 − 𝑓 𝑥     𝑎𝑛𝑑  𝐸𝑛  𝑥, 𝑦 =  𝐸𝑛  𝑥 − 𝐸𝑛 (𝑦)   

 𝐸𝑛  𝑥, 𝑦 =  𝐸𝑛  𝑥 − 𝐸𝑛 (𝑦)  

 

                              =   .
𝜋

𝑛
0

+  .
𝜋

𝜋

𝑛

  ∅𝑥 𝑡 − ∅𝑦 (𝑡)  𝑘𝑛 (𝑡) 𝑑𝑡 

                             =   𝐼1 + 𝐼2                                                                                                      ….(6.5) 

                       

Again       𝐼1 =  .
𝜋

𝑛
0

 ∅𝑥 𝑡 − ∅𝑦 (𝑡)  𝑘𝑛 (𝑡)  𝑑𝑡 

           Using lemma (3.2) and (3.2)  we get  

 = 𝑜 𝑛  .
𝜋

𝑛
0

𝑡∝ 𝑑𝑡 

 

              = 𝑜(𝑛)   
𝜋

𝑛
 

𝛼+1

  

              = 𝑜 𝑛 −∝                                                                                                                       …..(6.6) 

          Now    𝐼2 =  .
𝑛

𝜋

𝑛

 ∅𝑥 𝑡 − ∅𝑦 (𝑡)  𝑘𝑛 (𝑡)  𝑑𝑡 

               =  .
𝑛

𝜋

𝑛

𝑡𝛼  
1

𝑡
  𝑑𝑡 

  = 𝑜 𝑛 −𝛼                                                                                                                     ……(6.7)  
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     Again       𝐼1 =  .
𝜋

𝑛
0

 ∅𝑥 𝑡 − ∅𝑦 (𝑡)  𝑘𝑛 (𝑡)  𝑑𝑡 

              = 𝑜  𝑥 − 𝑦 𝛼𝑛                                                                                                             ……(6.8) 

        𝐼2 =  .
𝑛

𝜋

𝑛

 ∅𝑥 𝑡 − ∅𝑦 (𝑡)  𝑘𝑛 (𝑡)  𝑑𝑡 

           = 𝑜 𝑥 − 𝑦 𝛼  .
𝑛

𝜋

𝑛

 𝑘𝑛 (𝑡)  𝑑𝑡 

           = 𝑜 𝑥 − 𝑦 𝛼  .
𝑛

𝜋

𝑛

 
1

𝑡
  𝑑𝑡  

           =𝑜  𝑥 − 𝑦 𝛼  log 𝑛                                                                                                      …….(6.9) 

    Now  𝐼𝑟 = 𝐼𝑟
1− 

𝛽

𝛼
       𝐼𝑟

𝛽

𝛼       r  =  1,2,3, ………. 

    From (6.6) and  (6.8)    we get 

    𝐼1   = 𝑜   (𝑛)−𝛼 1−  
𝛽

𝛼  
       𝑥 − 𝑦 𝛼  (𝑛) 

𝛽

𝛼   

           =𝑜   𝑛 𝛽−𝛼   𝑥 − 𝑦 𝛽    𝑛 
𝛽

𝛼    

            =𝑜   𝑛 𝛽−𝛼+
𝛽

𝛼      𝑥 − 𝑦 𝛽                                                                                             …….(6.10) 

From (6.7) and (6.9) we get 

      𝐼2    = 𝑜    𝑛 −𝛼 1− 
𝛽

𝛼     𝑥 − 𝑦 𝛼  (log 𝑛) 
𝛽

𝛼   

            =𝑜   𝑛 𝛽−𝛼   𝑥 − 𝑦 𝛽  log 𝑛 
𝛽

𝛼                                                                                   ……..(6.11) 

Now  from  (6.10) and (6.11)   we get 

        𝑓 𝑥 − 𝑓(𝑦) = 𝑜  (𝑛)𝛽−𝛼+
𝛽

𝛼      𝑥 − 𝑦 𝛽  + 𝑜   𝑛 𝛽−𝛼   𝑥 − 𝑦 𝛽  log 𝑛 
𝛽

𝛼    

   =𝑜   𝑛 𝛽−𝛼   𝑥 − 𝑦 𝛽  log 𝑛 
𝛽

𝛼   

And  ∆𝛽  𝑓(𝑥, 𝑦) =
 𝑓 𝑥 −𝑓(𝑦) 

 𝑥−𝑦 𝛽
            (𝑥 ≠ 𝑦) 

                 =𝑜   𝑛 𝛽−𝛼     log 𝑛 
𝛽

𝛼                                                                                            …….(6.12) 

Now     𝑓 𝑐 = 𝑜 (𝑛)−𝛼                                                                                                            ……(6.13) 

Combining   (6.12) and (6.13)  we get  

          𝑡𝑛  𝑓 − 𝑓 𝛽 = 𝑜   𝑛 𝛽−𝛼     log 𝑛 
𝛽

𝛼  . 

This complete the proof of  theorem. 
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