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Abstract :
In the present paper, we derived absolute mean graceful labeling for

some graphs obtained by duplication of graph elements in complete bipartite
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1. Introduction :

All the graphs, going to be discussed in the present paper, are finite,
simple and undirected. Let G be a (p, q) graph. For a graph G = (V,E)
a function having domain V or E or V ∪ E is known as graph labeling
for G. Throughout this paper, complete bipartite graph will be denoted as
Km,n with m part M = { u1, u2, ..., um } and n part N = { v1, v2, ..., vn }.
i.e. V (Km,n) = M ∪ N . Concept of graph labeling was invented by Rosa
[1]. Kaneria and Chudasama [2] gave more freedom to graceful labeling and
introduced absolute mean graceful labeling. Kaneria and Chudasama [3] proved
that graceful labeling is preserved even after duplication by vertex or edge in
Km,n. In this present work, we obtained absolute mean graceful labeling for
various graphs obtained by duplication of same graph elements. We also proved
that Swastik graph is absolute mean graceful which was earlier proved graceful
graph by Kaneria and Makadia [4]. For conceptual study and notations, we
referred Gallian [5] and Harary [6].
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Duplication of a vertex v of a graph G is the graph G ′ by adding a
new vertex v ′ (duplicant of v) such that NG ′(v ′) = NG(v) = NG ′(v). i.e. v′ is
adjacent with all vertices of G which are adjacent to v in G.

Duplication of a vertex v by a new edge e = v ′v ′′ in a graph
G produces a new graph G′ = ( V (G) ∪ {v ′, v ′′} , E(G) ∪ {v ′v ′′, v v ′, v v ′′} ).
Duplication of an edge e = uv by a new vertex w in a graph G produces a
new graph G ′ = ( V (G) ∪ {w}, E(G) ∪ {uw, vw}). i.e. NG′(w) = {u, v}.

Swastik graph is an union of four copies on C4n. If vi,j (∀ i = 1,

2, 3, 4; ∀ j = 1, 2,..., 4n) be vertices of ith copy of C
(i)
4n , the we shall combine

v1,4t and v2,1; v2,4t and v3,1; v3,4t and v4,1; v4,4t and v1,1 by four vertices. So
graph seems like a plus sign. If we bend branches of graph toward clockwise at
the middle, then the graph looks a swastik which is denoted as Swn of n size,
where n ∈ N − {1}. Clearly, | V (Swn) |= 16(n)− 4 and | E(Swn) |= 16(n).

Definition : α - absolute mean graceful graph
A function f is called an absolute mean graceful labeling of a graph

G = (V,E), if f : V (G) → {0,±1,±2, ...,±q} is injective and the induced

function f ∗ : E(G) → {1, 2, ..., q} defined as f ∗(e) =

⌈
| f(u)− f(v) |

2

⌉
is

bijective for every edge e = (u, v) ∈ E(G). A labeling f is said to be
α - labeling, if there exists an integer k such that for each edge uv either
f(u) ≤ k <| f(v) | or f(v) ≤ k <| f(u) | , ∀u, v ∈ V (G). The graph which
holds absolute mean graceful labeling and α - labeling is called α - absolute
mean graceful graph.

2. Main Results :

Theorem 2.1 : Duplication of any vertex in Km,n is α - absolute mean
graceful graph.
Proof : Let G be a graph obtained by duplication of one vertex of Km,n. It
is obvious that G is either Km+1,n or Km,n+1. Since Km,n, ∀ m,n ∈ N is
absolute mean graceful graph proved by Kaneria and Chudasama [2], Km+1,n

and Km,n+1 both are absolute mean graceful graphs. Hence, G is absolute
mean graceful graph. It also satisfies α-labeling. So, G is α - absolute mean
graceful graph. �

Theorem 2.2 : Duplication of all the vertices of m-part or n-part in Km,n is
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α - absolute mean graceful graph.
Proof : Let G be a graph obtained by duplication of all the vertices of
M = {u1, u2, ..., um} in Km,n. Then G = K2m,n.

Since Km,n, ∀ m,n ∈ N is absolute mean graceful graph proved by
Kaneria and Chudasama [2], K2m,n is absolute mean graceful graph. Hence,
G is absolute mean graceful graph. It also satisfies α - labeling. So, G is α -
absolute mean graceful graph. �

Theorem 2.3 : Duplication of any vertex of Km,n by an edge is absolute
mean graceful graph, but not α - absolute mean graceful.
Proof : Let G be a graph obtained by duplication of vertex ut, (1 ≤ t ≤ m)
of m-part of Km,n by an edge u′tu

′′
t .

i.e. V (G) = {u1, u2, ..., um, v1, v2, ..., vn} ∪ {u′t, u′′t } and
E(G) = { uivj / 1 ≤ i ≤ m, 1 ≤ j ≤ n} ∪ { utu′t, utu′′t , u′tu′′t }.

i.e. p = |V (G)| = m+ n+ 2 and q = mn+ 3.

Define f : V (G)→ {0, ±1, ±2, ..., ±q} as follows:

f(ui) =

{
q, i = 1

f(ui−1)− 2n, i = 2, 3, ..., m.

f(vj) =

{
−q, i = 1

f(vj−1) + 2, i = 2, 3, ..., n.

Case I : If f(ut) ≥ 0, then f(u
′
t) = f(ut)− 5 and f(u

′′
t ) = f(ut)− 3.

Case II : If f(ut) < 0, then f(u
′
t) = f(ut) + 5 and f(u

′′
t ) = f(ut) + 3.

Similarly, it can be easily proved for duplication of vertex vt (1 ≤
t ≤ n) of n-part of Km,n by an edge v

′
tv

′′
t by replacing ut, u

′
t, u

′′
t as vt, v

′
t, v

′′
t

respectively. It is clear that edge labeling function f ∗ : E(G) → {1, 2, ..., q}

defined as f ∗(e) =

⌈
| f(u)− f(v) |

2

⌉
is bijective, for every edge e = (u, v) ∈

E(G). Therefore, G is absolute mean graceful graph, but it is not α - absolute
mean graceful graph. �

Theorem 2.4 : Duplication of any edge of Km,n by a new vertex is α -
absolute mean graceful graph.
Proof : Let G be a graph obtained by duplication of an edge ukvl by a
vertex w in Km,n. So that V (G) = V (Km,n) ∪ {w} and E(G) = E(Km,n) ∪
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{ukw,wvl}.i.e. p = |V (G)| = m + n + 1 and q = mn + 2. Define f : V (G)→
{0, ±1, ±2, ..., ±q} as follows:

f(ui) =


q − 2ni, i < k

q, i = k

q − 2n(i− 1), i > k.

f(vj) =


2(i+ 1)− q, j < l

2− q, j = l

2i− q, j > l.

f(w) = 1 − q. It is clear that edge labeling function f ∗ : E(G) → {1, 2, ..., q}

defined as f ∗(e) =

⌈
| f(u)− f(v) |

2

⌉
is bijective, for every edge e = (u, v) ∈

E(G). Therefore, G is absolute mean graceful graph. It also satisfies α -
labeling. So, G is α - absolute mean graceful graph. �

Theorem 2.5 : The graph obtained by duplication of both the vertices u1, u2
from 2-part in K2,n, ∀n ∈ N − {2} by edges is absolute mean graceful, but it
is not α - absolute mean graceful graph.
Proof : Let G be a graph obtained by duplication of both the vertices u1, u2
from 2-part in K2,n, ∀n ∈ N − {2} by edges e1 = u

′
1u

′′
1 and e2 = u

′
2u

′′
2 .

i.e. V (G) = V (K2,n) ∪ {u′
1, u

′′
1 , u

′
2, u

′′
2} and

E(G) = E(K2,n)∪{u1u
′
1, u

′
1u

′′
1 , u

′′
1u1, u2u

′
2, u

′
2u

′′
2 , u

′′
2u2}. i.e. p = |V (G)| =

n+ 6 and q = 2n+ 6.

Define f : V (G)→ {0, ±1, ±2, ..., ±q} as follows:
f(u

′
1) = q − 11, f(u

′′
1) = q − 9, f(u

′
2) = −2, f(u

′′
2) = 1, f(u1) = q,

f(u2) = q − 2n f(vi) = −q + 2(i− 1), ∀ i = 1, 2, ..., n.

It is clear that edge labeling function f ∗ : E(G)→ {1, 2, ..., q} defined

as f ∗(e) =

⌈
| f(u)− f(v) |

2

⌉
is bijective, for every edge e = (u, v) ∈ E(G).

Therefore, G is absolute mean graceful graph. It does not satisfy α-labeling.
So, G is absolute mean graceful graph, but not α - absolute mean graceful
graph. �

Illustration 1: Duplication of both the vertices from 2-part of K2,6 by edges
is absolute mean graceful graph. It is clear that p = 12 and q = 18.
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Theorem 2.6 : Duplication of any vertex in cycle Cn, where n ≡ 0 (mod 2)
is α - absolute mean graceful graph.

Proof : Without loss of generality, let us assume that G is a graph obtained
by duplication of vertex v1 of cycle Cn, where n ≡ 0 (mod 2) by a new
vertex u such that N(v1) = N(u). Assign the other vertices v2, v3,..., vn
of G in anticlockwise direction such that V (G) = V (Cn) ∪ {u} and E(G) =
E(Cn) ∪ {uvn, uv2}. Observe that p = n+ 1 and q = n+ 2

Define f : V (G)→ {0, ±1, ±2, ..., ±q} as follows:

f(vi) =



q, i = 1

(−1)i+1[ | f(vi−1) | −2 ], i = 2, 3, ...,
q

2
+ 1

(−1)i+15, i =
q

2
+ 2

(−1)i+1[ | f(vi−1) | +2 ], i =
q

2
+ 3,

q

2
+ 4, ..., n.

f(u) = 4 − q. It is clear that edge labeling function f ∗ : E(G) → {1, 2, ..., q}

defined as f ∗(e) =

⌈
| f(u)− f(v) |

2

⌉
is bijective, for every edge e = (u, v) ∈

E(G). Therefore, G is absolute mean graceful graph. It also satisfies α-labeling.
So, G is α - absolute mean graceful graph. �
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Illustration 2: Duplication of any vertex of cycle C8 by a new vertex is
α - absolute mean graceful graph. It is clear that p = 9 and q = 10.

10

7

-5

2
-4

6

-9

-8

-6

Theorem 2.7 : Duplication of any vertex in path Pn, ∀ n ∈ N is α - absolute
mean graceful graph.

Proof : Let G be a graph obtained by duplication of any vertex vk (1 ≤

k ≤
⌈
n

2

⌉
) of path Pn by vertex u such that V (G) = V (Pn) ∪ {u} and

E(G) =

{
E(Pn) ∪ {v2u or vn−1u}, if k = 1 or n

E(Pn) ∪ {vk−1u, vk+1u}, otherwise.

So that p = n+ 1 and q = n or n+ 1. Define f : V (G)→ {0, ±1, ±2, ..., ±q}
as follows:

f(vi) =



q, i = 1

(−1)i+1[ | f(vi−1) | −1 ], i = 2, 3, ..., k + 2

−f(vi−1), i = k + 3

(−1)i+1[ | f(vi−1) | −2 ], i = k + 4

(−1)i+1[ | f(vi−1) | −1 ], i = k + 5, k + 6, ..., n.
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f(u) =

 −q, k = 1

(−1)k[ | f(vk+1) | −2 ], k = 2, 3, ...,

⌈
n

2

⌉
.

It is clear that edge labeling function f ∗ : E(G)→ {1, 2, ..., q} defined

as f ∗(e) =

⌈
| f(u)− f(v) |

2

⌉
is bijective, for every edge e = (u, v) ∈ E(G).

Therefore, G is absolute mean graceful graph. It also satisfies α-labeling. So,
G is α - absolute mean graceful graph. �

Theorem 2.8 : Every swastik graph Swn, ∀ n ≥ 4 is α - absolute mean
graceful graph.
Proof : Let vi,j ( ∀ i = 1, 2, 3, 4; ∀ j = 1, 2, ..., 4n) be vertices of ith copy
of Ci

4n. By combining vertices v1,4t and v2,1; v2,4t and v3,1; v3,4t and v4,1; v4,4t
and v1,1 as four vertices, we can get the Swastik graph by bending and shaping.
It is clear that p = 16(n)− 4 and q = 16(n).

Define f : V (Swn)→ {0, ±1, ±2, ..., ±q} as follows:

f(vi,j) =



4, i = 1 and j = 1

−q, i = 1 and j = 2

(−1)j+1[ | f(vi,j−1) | −1 ], i = 1 and j = 3, 4, ..., 4n− 1

−3, i = 1 and j = 4n

−(q − 4n+ 3), i = 2 and j = 2

(−1)j+1[ | f(vi,j−1) | −1 ], i = 2 and j = 3, 4, ..., 4n− 1

0, i = 2 and j = 4n

q

2
+ 4, i = 3 and j = 2

−[ f(vi,j−1) + 4 ], i = 3 and j = 3, 5

| f(vi,j−1) | −6, i = 3 and j = 4, 6

−[ | f(vi,j−1) + 1 ], i = 3 and j = 7

(−1)j[ | f(vi,j−1) | −2 ], i = 3 and j = 8, 2n+ 5, 2n+ 7

(−1)j[ | f(vi,j−1) | −1 ], i = 3 and j = 9, 10, ..., 4n− 1;

j 6= 2n+ 5, 2n+ 7

(−2), i = 3 and j = 4n
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f(vi,j) =



q

4
+ 6, i = 4 and j = 2

(−1)j[ | f(vi,j−1) | −1 ], i = 4 and j = 3, 4, ..., 4n− 1;

j 6= 6, 7, 8, 2n+ 3, 2n+ 4

[ f(vi,j−1)− 4 ], i = 4 and j = 6

−[ | f(vi,j−1) + 1 ], i = 4 and j = 7

[ | f(vi,j−1)− 2 ], i = 4 and j = 8, 2n+ 3, 2n+ 4.

It is clear that induced edge labeling function f ∗ : E(G)→ {1, 2, ..., q}

defined as f ∗(e) =

⌈
| f(u)− f(v) |

2

⌉
is bijective, for every edge e = (u, v) ∈

E(G). Therefore, G is absolute mean graceful graph. It also satisfies α -
labeling. So, G is α - absolute mean graceful graph. �

Illustration 3: α - absolute mean graceful labeling in Sw4. It is clear that
p = 60 and q = 64.
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