Some Properties of the F-Structure Satisfy

$$F^{2k-F} = 0$$

Sandeep Kuamr Mogha¹ and Alok Kumar²

Abstract

The purpose of this paper is to study various properties of F - structure satisfying $F^{2k} - F = 0$, where $k \ge 2$ is a positive integer. The metric F - structure, the kernel and tangent vector have also been discussed.

Keywords - Differentiable manifold, complementary projections operator, metric kernel and tangent vector.

I. INTRODUCTION

Let V_n be a C^{∞} differentiable manifold and $F \neq 0$ be a $C^{\infty}(1, 1)$ tensor defined on V_n , such that

$$F^{2k} - F = 0 ag{1.1}$$

We define the projection operator l and m on V_n by

$$l = F^{2k-1}, m = I - F^{2k-1}$$
(1.2)

where I is the identity operator [1]

From (1.1) and (1.2) we have

$$l+m=I, l^2=l, m^2=m, lm=ml=0, lF=Fl=F, mF=Fm=0$$
 (1.3)

THEOREM 1.1

Let rank
$$((F)) = n = \dim V_n$$
, then $l = I$, $m = 0$. (1.4)

Proof: From the fact
$$\operatorname{rank}((F)) + \operatorname{nulity}((F)) = \dim V_n = n$$
 (1.5)

We have, nulity $((F)) = 0 \Rightarrow Ker(F) = \{0\} \text{ or } X = 0 \Rightarrow X = 0$

Let

$$FX_1 = FX_2$$

$$\Rightarrow F(X_1 - X_2) = 0$$

$$\Rightarrow X_1 = X_2$$

 \Rightarrow *F* is one-one.

Also, V_n being finite dimensional F is onto and thus F^{-1} exists.

Operating F^{-1} on Fl = F and mF = 0 we get the result (1.4).

THEOREM 1.2:

Let M and F satisfy $m^2 = m$, mF = Fm = 0, $(m + F^k)(m + F^{k-1}) = I$ then F satisfies (1.1).

Proof: We have

$$(m+F^{k})(m+F^{k-1})=I$$

$$m^2 + mF^{k-1} + F^k m + F^{2k-1} = I$$

$$m+0+0+F^{2k-1}=I$$

$$mF + F^{2k} = F$$

$$0 + F^{2k} = F$$

$$\Rightarrow F^{2k} - F = 0$$

DEFINITION 1.1: $Ker(F) = \{X : FX = 0\}, Tan F = \{X : FX || X\} [2].$

¹ Department of Mathematics, Faculty of Sciences, SGT University Gurugram – 122505, India

²Department of Mathematics, Swami Vivekanand Subharti University Meerut, 250005, India

THEOREM 1.3:

For the F - structure satisfying (1.1) we have

$$Ker(F) = Ker(F^2) = \dots = Ker(F^{2k})$$
 (1.7)

$$Tan(F) = Tan(F^2) = \dots = Tan(F^{2k})$$
 (1.8)

Proof: Let $X \in Kar(F) \Rightarrow FX = 0$,

$$\Rightarrow F^2X = 0, \Rightarrow X \in Kar(F^2)$$

Thus,
$$Kar F \subseteq Kar F^2$$
 (1.9)

Let $X \in Kar F^2 \Rightarrow F^2 X = 0$,

$$\Rightarrow F^3X = 0, \Rightarrow X \in Kar F^3$$

Thus, $Kar F^2 \subseteq Kar F^3$

Let
$$X \in Kar F^{2k-1} \Rightarrow F^{2k-1}X = 0$$
,

$$\Rightarrow F^{2k}X = 0, \Rightarrow X \in Kar F^{2k}$$

Thus,
$$Kar F^{2k-1} \subset Kar F^{2k}$$
 (1.10)

Let $X \in Kar F^{2k} \Rightarrow F^{2k} X = 0$,

$$\Rightarrow FX = 0, \Rightarrow X \in Kar F$$

Thus,
$$Kar F^{2k} \subseteq Kar F$$
 (1.11)

In all, $Ker F \subseteq Ker F^2 \subseteq \dots \subseteq Ker F^{2k} \subseteq Ker F$

Thus we get (1.7).

Following the same we get (1.8).

1. Metric F - Structure:

Let us define
$$F(X, Y) = g(FX, Y)$$
 (2.1)

is skew symmetric then
$$g(FX, Y) = -g(X, FY)$$
 (2.2)

 $\{F, g\}$ is called metric F - structure [3,4].

THEOREM 2.1: g satisfying (2.2) and (1.1), (1.2), (1.3), we have

$$g(F^{k}X, F^{k-1}Y) = (-1)^{k}[g(X, Y) - m(X, Y)]$$
(2.3)

Where,
$$m(X, Y) = g(mX, Y) = f(X, mY)$$
 (2.4)

Proof: We have

$$g(F^{k}X, F^{k-1}Y) = (-1)^{k} g(X, F^{2k-1}Y)$$

$$= (-1)^{k} (g, lY)$$

$$= (-1)^{k} [g, (I - m)Y]$$

$$= (-1)^{k} [g(X, Y) - g(X, mY)]$$

$$= (-1)^{k} [g(X, Y) - m(X, Y)]$$

THEOREM 2.2: $\{F, g\}$ is not unique [5].

Proof: Let μ be a non – singular one-one tensor such that

$$\mu F' = F \mu, \ g'(X, Y) = g(\mu X, \mu Y)$$
Then
$$\mu F'^{2k} = F^{2k} \mu$$

$$= F \mu$$

$$= \mu F'$$

Thus

$$F^{'2k} = F' \text{ or } F^{'2k} = F^{'2k} - F' = 0$$

Also.

$$g'(F'X,F'^{k-1}Y) = g(\mu F'^{k}X, \mu F'^{k-1}Y)$$

$$= g(F^{k} \mu X, F \mu Y)$$

$$= (-1)^{k} g(\mu X, F^{2k-1} \mu Y)$$

$$= (-1)^{k} g(\mu X, l \mu Y)$$

$$= (-1)^{k} g[\mu X, (I - m) \mu Y]$$

$$= (-1)^{k} [g(\mu X, \mu Y) - g(\mu X - m \mu Y)]$$

$$= (-1)^{k} [g'(X, Y) - m(X, Y)]$$

THEOREM 2.3: With the notations (2.5), we have $\mu l' = l \mu$, $\mu m' = m \mu$. (2.6)

Proof: We have

$$\mu l' = \mu F^{'2k-1}$$

$$= F^{2k-1} \mu$$

$$= l \mu$$

$$\mu m' = \mu (I - F^{'2k-1})$$

$$= \mu - \mu F^{'2k-1}$$

$$= \mu - F^{2k-1} \mu$$

$$= (I - F^{2k-1}) \mu$$

$$= m \mu$$

REFERENCES

- [1]. Bejancu, "CR Submanifolds of a Kaeher Manifold, Proceedings of the American Mathematical Society, Vol. 69, No. 1, pp. 135-142, 1978.
- [2]. Prasad, "Semi-invariant submanifolds of a Lorentzian Para-sasakian manifold, Bull Malaysian Math. Soc. (Second Series) Vol. 21, pp. 21-26, 1988.
- [3]. K. Yano, "On a structure defined by a tensor field f of the type (1,1) satisfying $F^3 + f = 0$, Tensor N.S.", 14, pp. 99-109, 1963
- [4]. E. Hiroshi, "On invariant submanifolds of connect metric manifolds", Indian J. Pure Applied Math 22, 6, pp. 449-453, 1991.
- [5]. F. Careres, "Linear Invairant of Riemannian product manifold", Math Proc. Cambridge Phil. Soc. 91, pp. 99-106, 1982.
- [6]. Rakesh Yadav & Sandeep Mogha, "A Mathematical Model Related to a Family Growth" IJMTT, Vol. 50, No. 03, pp. 186-193, 2017