Weakly Generalized Star Pre Regular Closed Sets In Topology

¹V.Vijayalaksmi, ²V.Senthilkumaran, ³Y.Palaniappan

¹M. Phil Scholar, Department of Mathematics Arignar Anna govt college, Musiri, Tamilnadu,India ²Associate professor of Mathematics Arignar Anna govt college, Musiri,Tamilnadu India, ³Associate professor of Mathematics (Retd) Arignar Anna govt college, Musiri, Tamilnadu, India

ABSTRACT

In this paper we introduce a new class of sets namely, wg*pr closed sets in topological spaces. For these sets we investigate its properties .

Mathematics subject classification (2010): 54A05, 54B05.

Keywords - wg*pr closed sets, wg*pr closure,,wg*pr interior

1. INTRODUCTION

Levine [7] generalized the concept of closed set to generalized closed sets. Bhattacharya and Lahiri [2] generalized the concept of closed sets to semi-generalized closed sets. In this paper we generalize the concept of closed set via g pr open set and study some of their relationship and properties. Furthermore the notion of wg*pr neighbourhoodwg*pr limit points,wg*pr derived sets,wg*pr closure,wg*pr interior and wg*pr R0 as well as weakly wg*pr R0 spaces are presented.

2. PRELIMINARIES:

Throughout this paper (X, \Box) denote a topological space on which no separation axioms is assumed. It is simply denoted by X. For a subset A of a space (X, \Box) closure of A and interior of A with respect to \Box are denoted by Cl(A) and Int(A) respectively. The complement of A is denoted by X-A.

Definition 2.1:

A subset A of a topological space X is called

- i. pre open [10] if $A \square \square$ intcl (A) and pre closed [] if clint (A) $\square \square$.
- ii. regular open [13] if A= intcl (A) and regular closed [] if A= clint (A).
- iii. semi open [6] if A \square \square \square clint (A) and semi closed [] if intel (A) \square \square \square

Definition 2.2:

A subset A of a topological space X is called

- i. weakly closed [14] (briefly w closed) if cl A \square \square U whenever A \square \square U and U is semi open.
- ii. generalized pre regular closed [4] (briefly g pr closed) if p cl (A) $\Box \Box U$ whenever A $\Box \Box U$ and U is regular open

iii. weakly generalized star pre regular closed (briefly wg*pr closed) if w cl A $\Box \Box$ U whenever A $\Box \Box$ U and U is gpr open.

Hereafter a topological space is simply written as TS.

3.wg*pr Neighbourhoods:

Definition 3.1: A subset P of a TS X is called as semigeneralized star pre regular-neighbourhood (in short wg*pr - nhd) of a point k of X if there arises a wg*pr -open set U so that $k \square U \square P$. The collection of entire wg*pr -nhds of x \in X is termed wg*pr -nhd system of x and is labeled as wg*pr -N(x).

Theorem 3.2: Let p be any arbitrary point of a TS X. Then wg*pr -N(x) satisfies succeeding properties

- \square wg*pr -N(p) \square \square
- □ Whenever $N \in wg^*pr N(p)$ then $p \in N$.
- □ Whenever $N \in wg^*pr N(p)$ and $N \subset M$ at that time $M \in wg^*pr N(p)$.

Proof: (i) By the reason of each $p \in X$, X is a wg*pr -open set. Therefore $x \in X \subset X$, implies X is wg*pr -nhd of p,

hence $X \in wg^*pr-N(p)$. Accordingly, $wg^*pr - N(p) \Box \Box$

- □ Given N ∈ wg*pr -N(p), implies N is a wg*pr -nhd of p, which indicates there is a wg*pr -open set G so as p \in G ⊂ N. This implies p ∈ N.
- □ Given N ∈ wg*pr-N(p) implies there is a wg*pr -open set G in such a manner p ∈ G ⊂ N. And N ⊂ M, which implies p ∈ G ⊂ M. This shows that M ∈ wg*pr -N(p).

Assume, arbitrary intersection of wg*pr closed sets is wg*pr closed ------(R)

Theorem 3.3:Let A be a member of a TS X. Thereupon A is wg*pr-open iff A contains a wg*pr -nhd of each of its points when R holds

Proof:

Allow A be a wg*pr -open set in X. Make $x \square A$, which implies $x \square A \square A$. So A is wg*pr -nhd of x. Hence A contains a wg*pr -nhd of each of its points. Contrarily, A contains a wg*pr -nhd of each of its points. For each $x \square A$ there arises a wg*pr neighbourhood N_x of x such that $x \square N_x \square A$. By the definition of wg*pr -nhd of x, there is a wg*pr -open set G_x such that $x \square G_x \square N_x \square A$. Now we shall prove that $A = \square \{G_x : x \square A\}$. Let $x \square A$. Then there is wg*pr -open set G_x such that $x \square G_x$. Therefore, $x \square \square \{G_x : x \square A\}$ which implies $A \square \square \{G_x : x \square A\}$. Now let $y \square \{G_x : x \square A\}$ so that $y \square$ some G_x for some $x \square A$ and hence $y \square A$. Hence, $\square \{G_x : x \square A\} \square A$. Hence $A = \square \{G_x : x \square A\}$. Also each G_x is a wg*pr -open set. And hence A is a wg*pr-open set.

Theorem 3.4: Whenever A is a wg*pr -closed subset of X and $x \square X - A$, accordingly there is a wg*pr -nhd N of x so that N \square A = \square .

Proof: Assuming that A is a wg*pr -closed set in X, then X – A is a wg*pr -open set. By the Theorem 4.3, X – A contains a wg*pr -nhd of each of its points. This implies that, there is an wg*pr -nhd N of x so as N \square X-A. That is, no point of N belongs to A and hence N \square A = \square .

Definition 3.5: A point $x \square X$ is termed as wg^*pr -limit point of A iff each wg^*pr -nhd of x contains a point of A different from x. That is $(N - \{x\}) \square A \square \square$, for each wg^*pr -nhd N of x. Also equivalently iff each wg^*pr -open

set G comprising x contains a point of A other than x. The collection of entire wg^*pr -limit points of A is named as wg^*pr -derived set of A and is labeled as wg^*pr -d(A).

Theorem3.6:Let A, B be subsets of X then $A \square B$ implies wg*pr -d(A) \square wg*pr -d(B).

Proof:Enable $x \square wg^*pr - d(A)$ implies x is a wg^*pr -limit point of A. That is each wg^*pr -nhd of x contains a point of A other than x. As A \square B, each wg^*pr -nhd of x contains a point of B other than x. Consequently x is a wg^*pr -limit point of B. That is $x \square wg^*pr - d(B)$. Hence $wg^*pr - d(A) \square wg^*pr - d(B)$.

Theorem 3.7: A subset P of X is wg*pr closed iffwg*pr $-d(P) \Box P$ assuming R

Proof:Let P be wg*pr -closed set. That is X-P is wg*pr -open. Now we prove that wg*pr $-d(P) \square A$. Allow $x \square wg*pr -d(P)$ which intend x is a wg*pr -limit point of P, that is each wg*pr -nhd of x contains a point of P different from x. Now think $x \square P$ so that $x \square X$ -P, which is wg*pr -open and by definition of wg*pr -open sets, there is a wg*pr -nhd N of x in such a manner N $\square X$ -P. From this we conclude that N contains no point of P, which is a contradiction. Therefore $x \square P$ and hence wg*pr $-d(P) \square P$. conversely assume that wg*pr $-d(P) \square P$ and we will prove that P is a wg*pr -closed set in X or X-P is wg*pr -open set. Ensure x be an arbitrary point of X-P, so that $x \square$ P which implies that $x \square wg*pr -d(A)$. That is there exists a wg*pr -nbd N of x which consists of only points of X – P. This means that X-P is wg*pr -open. And hence P is wg*pr -closed set in X.

Theorem3.8: Each wg*pr -derived set in X is wg*pr closed, when R holds

Proof: Permit A be a member of X andwg*pr -d(A) is wg*pr -derived set of A. By Theorem 4.7, wg*pr -d(A) is wg*pr -closed iff wg*pr $-d(wg*pr - d(A)) \square wg*pr - d(A)$. That is each wg*pr -limit point of wg*pr -d(A) belongs to wg*pr -d(A).

Now allow x be a wg*pr -limit point of wg*pr -d(A). That is $x \square wg*pr -d(wg*pr -d(A))$. So that there is a wg*pr - open set G containing x such that $\{G - \{x\}\} \square wg*pr -d(A) \square \square$, which implies $\{G - \{x\}\} \square A \square \square$, as each wg*pr -nhd of an element of wg*pr -d(A) has at least one point of A. Hence x is a wg*pr -limit point of A. That is x belongs to wg*pr -d(A). So $x \square wg*pr -d(wg*pr -d(A))$ implicit $x \square wg*pr -d(A)$. Accordingly wg*pr -d(A) is wg*pr -closed set in X.

Theorem 3.9: The following properties are true for A, $B \subset X$

i)wg*pr -d(\Box) = \Box ii)Whenever A \subset B then wg*pr -d(A) \subset wg*pr -d(B). iii)Whenever q \in wg*pr -d(A) then q \in wg*pr -d(A-{q}). iv)wg*pr -d(A) \cup wg*pr -d(B) \subset wg*pr -d(A \cup B). v)wg*pr -d(A \cap B) \subset wg*pr -d(A) \cap wg*pr -d(B). **Proof:** (i) Let q \in X and G be a wg*pr -open involving q.Then (G -{q}) \cap \Box = \Box . This suggest q \Box wg*pr d(\Box).Accordingly for any q \in X, q is not wg*pr -limit point of \Box .Hence wg*pr -d(\Box) = \Box .

ii) Allow $q \in wg^*pr - d(A)$. Afterwards $G \cap (A - \{q\}) \square \square$, for each wg^*pr -open set G involving q. As $A \subset B$, implies $G \cap (B - \{q\}) \square \square$. This impart $q \in wg^*pr - d(B)$. Thereupon, $q \in wg^*pr - d(A)$ implies $q \in wg^*pr - d(B)$. Therefore, $wg^*pr - d(A) \subseteq wg^*pr - d(B)$.

iii)Let $q \in wg^*pr - d(A)$. Then $G \cap (A - \{q\}) \square \square$, for each wg^*pr -open set G containing q. This implies that each wg^*pr -open set G including q, contains at least one point different from q of $A - \{q\}$. Therefore $q \in wg^*pr - d(A - \{q\})$.

iv)Since $A \subseteq A \cup B$ and $B \subseteq A \cup B$ and by (ii), wg*pr -d(A) \subseteq wg*pr -d(A $\cup B$) and wg*pr -d(B) \subseteq wg*pr -d(A $\cup B$). Hence, wg*pr -d(A) \cup wg*pr -d(B) \subseteq wg*pr -d(A $\cup B$).

v)Since $A \cap B \subset A$ and $A \cap B \subset B$ and by (ii), wg*pr -d($A \cap B$) \subset wg*pr -d(A) and wg*pr -d($A \cap B$) \subset wg*pr -d(B). Therefore wg*pr -d($A \cap B$) \subset wg*pr -d(A) \cap wg*pr -d(B).

Theorem 3.10: Whenever A is a member of X, then $A \cup wg^*pr - d(A)$ is wg^*pr -closed set, assuming R.

Proof: To prove AUwg*prd(A) is wg*pr -closed set, it issufficient to prove $X - (A \cup wg*pr - d(A))$ is wg*pr open. Whenever $X - (A \cup wg*pr - d(A)) = \Box$, then it is clearly wg*pr -open set. Enable $X - (A \cup wg*pr - d(A)) \Box \Box$ and $x \in X - (A \cup wg*pr - d(A))$, implies $x \Box A \cup wg*pr - d(A)$. This implies $x \Box A$ and $x \Box wg*pr - d(A)$. Now $x \Box wg*pr - d(A)$, which indicates x is not wg*pr -limit point of A. Therefore, there is a wg*pr -open set G containing x so that $G \cap (A - \{x\}) = \Box$. As $x \Box A$, implies $G \cap A = \Box$. This suggest $x \in G \subset X - A$ —(1). Again G is wg*pr -open set and $G \cap A = \Box$. implies no point of G can be wg*pr-limit point of A. This follows $G \cap wg*pr - d(A) = \Box$, implies $x \in G \subset X - A$ —wg*pr-d(A)—(2). From (1) and (2), $x \in G \subset (X - A) \cap (X - wg*pr - d(A)) = X - (A \cup wg*pr - d(A))$. That is $x \in G \subset X - (A \cup wg*pr - d(A))$. This impart $X - (A \cup wg*pr - d(A))$ contains wg*pr-nhd of each of its points. By theorem 3.4, $X - (A \cup wg*pr - d(A))$ is wg*pr open as well as $A \cup wg*pr - wg-d(A)$ is wg*pr closed set.

4. On wg*pr \square closure and wg*pr-interior operators

Definition 5.1: Consider X be a TS and $Q \square X$. The set of intersection of entire wg*pr-closed sets including Q is named wg*pr-closure of Q and is labeled as wg*prCl(Q).

Theorem 4.2: For members A, B of X, the listed properties hold:

i)wg*pr Cl(X)=X and wg*pr Cl(\Box)= \Box .

ii)Whenever A \square B, then wg*pr Cl(A) \square wg*pr Cl(B)

iii)wg*pr Cl(P)U wg*pr Cl(Q) \Box wg*pr Cl(PUQ)

iv)wg*pr Cl(A \cap B) \Box wg*pr Cl(A) \cap wg*pr Cl(B)

v)wg*pr Cl(wg*pr Cl(A)) = wg*pr Cl(A)

vi) A is wg*pr -closed iff wg*pr Cl(A)=A, when R holds

Theorem 4.3: For $A \square X$, then $x \square wg^*prCl(A)$ iff $G \bigcap A \square \square$ for each wg^*pr -open set G containing x.

Proof: Necessity: Enable $x \square wg^*prCl(A)$ for any $x \square X$.Expect there is a wg^*pr -open set G comprising x so that $G \cap A = \square$. Then $A \square$ X-G. As X-G is wg^*pr -closed set comprising A, we have $wg^*prCl(A) \square$ X-G, which indicates $x \square wg^*prCl(A)$. This is contradiction to hypothesis. Hence $G A \square \square$ Conversely, assume $x \square wg^*prCl(A)$. There exist a wg^*pr -closed set F containing A so that $x \square F$. Then $x \square X$ -F is $wg^* pr \square$ open. Also (X-F) $A = \square$. This is contradiction to the hypothesis. Therefore $x \square wg^*prCl(A)$.

Definition 4.4: For a TS X and $S \square X$ the union of entire wg*pr open sets included in S is termed as wg*pr-interior of S and is labeled as wg*prInt(A).

Theorem 4.5: A and B be members of TS X. Then the listed results hold:

i)wg*pr Int(X)=X and wg*pr Int $\Box \Box \Box \Box$.

ii)Whenever A \square \square B, then wg*pr Int(A) \square wg*pr Int(B)

iii)wg*pr Int(A) wg*pr Int(B) \Box wg*pr Int(A B)

iv)wg*pr Int(A B) □wg*pr Int(A) wg*pr Int(B)

v)wg*pr Int(wg*pr Int(A))= wg*pr Int(A)

vi)A is wg*pr -open iff wg*pr Int(A)=A, assuming R

Theorem 4.6: For a member A of X, the listed results hold:

i)wg*prCl(X-A)= X- wg*prInt(A) ii)wg*prInt(X-A) = X- wg*prCl(A) iii)wg*prInt(A)= X- wg*prCl(X-A) iv)wg*prCl(A)=X- wg*prInt(X-A)

Proof: (i) Allow $x \square X - wg^* prInt(A)$. So $x \square wg^* prInt(A)$, implies for each $wg^* pr$ -open set U comprising x we have U (X-A) $\square \square \square$. Thus, $x \square wg^* prCl(X-A)$. Hence $X - wg^* prInt(A) \square \square wg^* prCl(X-A)$. Conservely, allow $x \square wg^* prCl(X-A)$. So U \square A for each $wg^* pr$ -open set U comprising x. Hence $x \square wg^* prInt(A)$, implies $x \square X - wg^* prInt(A)$. This indicates $wg^* prCl(X-A) \square \square X wg^* prInt(A)$. Therefore, $X - wg^* pr-SgInt(A) = wg^* prCl(X-A)$.

(ii)Enable $x \square X$ - $wg^*prCl(A)$. So $x \square wg^*prCl(A)$, implies for each wg^*pr open set U including x we have $U A = \square$. This impart $x \square \square \square A^c$, so $x \square wg^*prInt(A^c)$ or $x \square wg^*prInt(X-A)$. Therefore we have X- $wg^*prCl(A)$ $\square wg^*prInt(XA)$ Conversely, make $x \square wg^*prInt(X-A)$. Then there is a wg^*pr -open set U including x so that $x \square U \square X$ -A. Hence $U \cap A = \square$, $x \square wg^*prCl(A)$, implies $x \square X$ - $wg^*prCl(A)$. This indicates $wg^*prInt(X-A) \square X$ $wg^*prCl(A)$.Therefore, X- $wg^*prCl(A) = wg^*prInt(X-A)$

(iii)Replacing A by X-A in (ii) we result (iii)(iv)Replacing A by X-A in (i) we result (iv)

5. wg*pr -R_oSPACES

Definition 5.1: Let A be a subset of a TS X. The wg*pr-kernel of A, labeled as wg*pr-ker(A) is defined to be the set wg*pr-ker (A) = \Box {U: A $\Box \Box$ U and U is wg*pr-open in X}

Definition 5.2: Let x be a point of a TS X. The wg*pr-kernel of x , labeled as wg*pr-ker ({x}) is defined to be the set wg*pr-ker ({x}) = \Box {U: x \Box U and U is wg*pr-open in (X, \Box)}

Lemma 5.3: Let X be a TS and $x \square X$. Then wg*pr-ker (A) ={ $x \square X$: wg*prCl ({x}) $\square A \neq \square$ }.

Proof: Let $x \square wg^*pr$ -ker (A) and suppose $wg^*prCl(\{x\}) \square A = \square$. Hence $x \square X - wg^*prCl(\{x\})$ which is a wg^*pr -open set including A. This is absurd, as $x \square wg^*pr$ -ker (A). Hence $wg^*prCl(\{x\}) \square A \neq \square$. Contrarily, let $wg^*prCl(\{x\}) \square A \neq \square$ and assume that $x \square wg^*pr$ -ker (A). Then there is a wg^*pr open set U including A and $x \square \square U$. Let $y \notin wg^*prCl(\{x\}) \square A$. Hence , U is a wg^*pr nhd of y in which $x \square U$. By this contradiction , $x \square wg^*pr$ -ker (A) and the claim.

Definition 5.4: ATS X is named as w generalized star pre **regular** \square -R_o(in short ,wg*prR_o) space iff for each wg*pr open set G and x \square G implies wg*prCl ({x}) \square G.

Lemma 5.5: Let X be a TS and $x \square X$. Then $y \square \square wg^*pr\text{-ker}(\{x\})$ iff $x \square wg^*pr\text{Cl}(\{y\})$.

Proof:Suppose that $y \square wg^*pr$ -ker ({x}). Then there exists a wg^*pr open set V comprising x such that $y \square V$. Therefore we have $x \square wg^*prCl (\{y\})$. The proof of converse can be done similarly.

Lemma 5.6: The following results are similar for any points x and y in a TS X:

i)wg*pr-ker ($\{x\}$) \neq wg*pr-ker($\{y\}$)

ii)wg*prCl ($\{x\}$) \neq wg*prCl ($\{y\}$).

Proof: (i) \Box (ii).Suppose that wg*pr-ker ({x}) \neq wg*pr-ker ({y}) then there exists a point z in X such that z \Box wg*pr-ker ({x}) and z \Box wg*pr-ker ({y}). From z \Box wg*pr-ker ({x}) it follows that {x} \Box wg*prCl ({z}) $\neq \Box$ which implies x \Box wg*prCl ({z}).By z \Box wg*pr-ker ({y}), we have {y} \cap wg*pr Cl ({z}) = \Box . Since x \Box wg*prCl ({z}), wg*prCl ({x}) \Box wg*prCl ({z}) and {y} \Box wg*prCl ({x}) = \Box . Therefore it follows that wg*prCl ({x}) \neq wg*prCl ({y}). (ii) \Box (i). Suppose that wg*prCl ({x}) \neq wg*prCl ({y}). There exists a point z in X such that z \Box wg*prCl ({x}) and z \Box wg*prCl ({y}). Then there exists a wg*pr-open set containing z and therefore x but not y, namely, y \Box wg*pr-ker ({x}). Hence wg*pr-ker ({x}) \neq wg*pr-ker ({y}).

Theorem5.7: A TS X is wg*pr-R_ospace iff for any x , y in X ,wg*prCl ($\{x\}$) \neq wg*prCl ($\{y\}$) implies wg*prCl ($\{x\}$) \square wg*prCl ($\{y\}$) = \square .

Proof: Consider X is wg*pr-R_ospace and x, $y \square X$ in that casewg*prCl ({x}) \neq wg*prCl ({y}). Then there exists a point z \square wg*pr-ker ({x}) so that z \square wg*prCl ({y}) (or z \square wg*pr-ker({y}) such that z \in wg*prCl ({x})). There exists a wg*pr-open set V such that y \square V and z \square V; hence x \square V. Therefore, we have x \square wg*prCl ({y}). Thus x \square X – wg*prCl ({y}) a wg*pr-open set, which implies wg*prCl ({x}) \square X –wg*prCl ({y}) and wg*prCl ({x}) \square W = \square .

Contrarily, let V be a wg*pr-open set in X and let $x \Box V$. Now we have claim that wg*prCl ({x}) $\Box V$. Make $y \Box V$, that is, $y \in X - V$. Then $x \neq y$ as well as $x \Box wg*prCl (\{y\})$. This implies $wg*prCl (\{x\}) \neq wg*prCl (\{y\})$. By assumption $wg*prCl(x) \Box wg*prCl (\{y\}) = \Box$. Hence $y \Box wg*prCl (\{x\})$ and therefore $wg*prCl (\{x\}) \Box V$.

Theorem5.8: If a TS X is wg*pr-R_ospace, then for any x , y in X wg*pr-ker ({x}) \neq wg*pr-ker ({y}) implies wg*pr-ker ({x}) \square wg*pr-ker ({y}) = \square .

Proof: Suppose X is wg*pr-R_ospace. Thus by Lemma 6.6 forany points x , $y \square X$ whenever wg*pr-ker ({x}) \neq wg*pr-ker ({y}) then wg*prCl ({x}) \neq wg*prCl ({y}). Now we prove that wg*pr-ker ({x}) \square wg*pr-ker ({y}) $= \square$. Suppose that z \square wg*pr-ker ({x}) \square wg*pr-ker ({y}). By Lemma 6.5 and z \square wg*pr-ker ({x}) implies x \square wg*pr-ker ({z}). Since x \square wg*prCl ({x}) , by Theorem 6.7, wg*prCl ({x}) = wg*prCl ({z}). Similarly , we have wg*prCl ({y}) = wg*prCl ({x}) a contradiction. Hence wg*pr-ker ({x}) \square wg*pr-ker ({y}) = \square .

Theorem 5.9: For a TS X the following properties are equivalent:

i)X is a wg*pr-R_o space.

ii) $x \square wg^{*}prCl({y})$ if and only if $y \square wg^{*}prCl{x})$ for any points x and y in X.

Proof: (i) \Box (ii). Assume that X is a wg*pr-R_ospace. Let $x \Box wg*prCl(\{y\})$ and U be any wg*pr-open set such that $y \Box U$. Now by hypothesis $x \Box U$. Therefore, every wg*pr-open set containing y contains x. Hence $y \Box wg*prCl(\{x\})$.

(ii) \Box (i). Let V be a wg*pr-open set and x \Box V. If y \Box V then x \Box wg*prCl ({y}) and hence y \Box wg*prCl ({x}). This implies that wg*prCl ({x}) \Box V. Hence X is a wg*pr-R_o space.

Theorem 5.10: For a topological space X the following properties are equivalent, when R holds

i)X is a wg*pr-R_o space.

ii)Whenever A is a wg*pr-closed , then A = wg*pr-ker(A). iii)Whenever A is a wg*pr-closed as well as $x \square A$, thereupon wg*pr-ker ({x}) $\square A$

iv)Whenever $x \Box X$, then wg*pr-ker ({x}) \Box wg*prCl ({x}).

Proof: (i) \Box (ii). Let A be wg*pr-closed and x \Box A. Thus X –A is a wg*pr-open and x \Box X –A. Since X is a wg*pr-R_ospacewg*prCl ({x}) \Box X – A. Thus wg*prCl({x}) \Box A = \Box and by the Lemma 5.3, x \Box wg*pr-ker (A). Therefore wg*pr-ker (A) = A.

(ii) \Box (iii). In general U \Box V implies wg*pr-ker (U) \Box wg*pr-ker(V)

. Therefore wg*pr-ker ($\{x\}$) \Box wg*pr-ker (A) = A by (ii).

(iii) \Box (iv). Since x \Box wg*prCl ({x}) and wg*prCl ({x}) is wg*pr-closed by

(iii) wg*pr-ker ({x}) \Box wg*prCl ({x}).

(iv) \Box (i). Let $x \Box wg^*prCl(\{y\})$ then by the Lemma 5.5, $y \Box wg^*pr$ -ker ({x}). Since $x \Box wg^*prCl(\{x\})$ and $wg^*prCl(\{x\})$ is $wg^*pr-closed$, by (iv) we obtain $y \Box wg^*pr$ -ker ({x}) $\Box wg^*prCl(\{x\})$. Therefore $x \Box wg^*prCl(\{y\})$ implies $y \Box wg^*prCl(\{x\})$. The converse is obvious and X is a wg^*pr-R_o space.

Definition 5.11: A TS X is termed as

- \square wg*pr-C_o whenever for x , y \square X with x \neq y , there exists a wg*pr-open set G such that wg*prCl (G) contains one of x and y but not other.
- \square wg*prC1 whenever x,y \in X with x \neq y,there exist wg*pr open sets G and H such that x \in wg*prCl(G),
- \Box wg*prC1 whenever for x , y \Box X with $x \neq y$, there exist wg*pr-open sets G and H such that x \Box wg*prCl(G)

 $y \Box wg^*prCl (H)$ but $x \Box wg^*prCl (H)$, $y \Box wg^*prCl (G)$.

- \Box weakly wg*pr-C_o whenever $\Box \Box$ wg*pr-ker ({x}/x ϵ X} = \Box .
- $\square \quad \text{weakly wg*pr-}R_0 \text{ whenever} \square \square \{ \text{ wg*prCl}(\{x\}) / x \square X \} = \square$

Theorem 5.12: A topological space X is weakly wg*pr-R_oif and only if wg*pr-ker ($\{x\}$) \neq X for x \Box X

Proof: Necessity: Assume that there is a point x_o in X with wg^*pr -ker $(\{x_o\}) = X$. Then X is the only wg^*pr -open set containing x_o . This implies that $x_o \square wg^*pr$ Cl $(\{x\})$ for every $x \square X$. Hence $x_o \square \square \{ wg^*pr$ Cl $(\{x\}) / x \square X \} \neq \square$, a contradiction.

Sufficiency: If X is not weakly wg*pr-R₀, then choose some x_0 in X such that $x_0 \square \{ wg*prCl(\{x\}) / x \square X \}$. This implies that every wg*pr-open set containing x_0 must contain every point of X. Thus the space X is the unique wg*pr-open set containing x_0 . Hence wg*pr-ker ($\{x_0\}$) = X, which is a contradiction. Therefore X is weakly wg*pr - R₀.

Theorem 5.13: A space X is weakly wg*pr-C_oif and only if for each $x \Box X$, there exists a proper wg*pr-closed set containing y.

Proof: Suppose there is some $y \square X$ such that X is the onlywg*pr-closed set containing y .Let U be any proper wg*pr-open subset of X containing a point of x_0 of X. This implies that $X - U \neq X$. Since X - U is wg*pr-closed set, we have $y \square X - U$. So, $y \square U$. Thus $y \square \square \{ wg*pker(\{x\}) / x \square X \}$ for any point x of X, a contradiction. Conversely, suppose X is not weakly wg*pr-Co, then choose $y \square \square \{ wg*pker(\{x\}) / x \square X \}$. So y belongs to wg*pr-ker ($\{x\}$) for any $x \square X$. This implies that X is the only wg*pr-open set which contains the point y, a contradiction.

Theorem 5.14: Every wg*pr-Co space is weakly wg*pr-Co

Proof: Whenever p, $q \square X$ such that $p \neq q$, where X is a wg^*pr-C_o space, then without loss of generality, we can assume that there exists a wg^*pr -open set G such that $p \square wg^*prCl(G)$ but $q \square wg^*prCl(G)$. This implies that $G \neq \square$. Hence we can choose some z in G. Now wg^*pr -ker (z) $\square wg^*pr$ -ker (q) $\square G \square (wg^*prCl (G))^C \square wg^*prCl (G) \square (wg^*prCl (G))^C = \square$. Therefore $\square \{wg^*pr$ -ker ($\{p\} / p \square X\} = \square$. Hence the space X is weakly wg^*pr-C_o .

REFERENCES

- [1]. Arya S.P. and Nour, T.M. 1990. Characterizations of S-normal spaces, Indian J. Pure. Appl. Math., 21(8), 717-719.
- [2]. Bhattacharya, P. and Lahiri, B.K. 1987. Semi-generalized closed sets in topology, Indian J. Math., 29(3), 375-382.
- [3]. Crossley, S. G. and Hildebrand, S. K. 1972. Semi-Topological properties, Fund. Math. 74, 233-254.
- [4]. Gnanambal, Y. 1997, On generalized pre regular closed sets in topological spaces, Indian J Pure. Appl. Math. 28(3), 351-360.
- [5]. Govidappa Navalagi and Sujata S.Tallur 2018.Properties of sg*α closed sets in topology.Int J Current Research Vol10,Issue8,72218-72223
- [6]. Levine, N. 1963. Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70 36-41.
- [7]. Levine, N. 1970. Generalized closed sets in topology, Rend.Circ. Math. Palermo, 19, (2), 89-96.
- [8]. Maki, H., Devi R. and Balachandran, K. 1993. Generalized 🗆 🗆 closed sets in topology, Bull. Fukuoka Univ. Ed. Part III, 42, 13-21.
- [9]. Maki, H., Devi R. and Balachandran, K. 1994. Associated topologies of generalized
 closed sets and generalized closed sets, Mem. Fac. Sci. Kochi Univ. Ser.A. Math., 1, 51-63.
- [10]. Mashhour,A.S, Abd Monsef,M.E and El Deeb,S.N,1982.On pre continuous and weak pre continuous mapping.Proc.Math.Phys.Soc.Egypt 53,47-53
- [11]. Njåstad, O. 1965. On some classes of nearly open sets, Pacific J. Math., 15, 961-970.
- [12]. Rayangoudar, T. D. Ph.D. Thesis, 2007. Karnatak Univ , Dharwad-580003, Karnataka