A Note on Open Support of a Graph under Addition II

${ }^{1}$ S. Balamurugan , ${ }^{2} \mathrm{M}$. Anitha , ${ }^{3} \mathrm{P}$. Aristotle, ${ }^{4} \mathrm{C}$. Karnan
${ }^{1}$ PG Department of Mathematics, Government Arts College, Melur - 625 106, Tamilnadu, India.
${ }^{2}$ Department of Mathematics
Syed Ammal Arts and Science College, Ramanathapuram, Tamilnadu, India.
${ }^{3}$ Department of Mathematics, SACS MAVMM Engineering College, Madurai, Tamilnadu, India.
${ }^{4}$ Department of Mathematics
The Optimus Public School, Erode - 638455

Abstract

In this paper we defined an open support of a vertex v under addition and open support of a graph G under addition. We calculate the open support for Dutch windmill graph, Butterfly graph and Ladder graph. Also, we generalized the value of open support under addition for any given graph G.

AMS Subject Code: 05C07
Keywords: Vertex Degree, Open Support of a Vertex, Open Support of a Graph

I. INTRODUCTION

In this work we consider finite, undirected, simple graphs $G=(V, E)$ with n vertices and m edges. The neighbourhood of a vertex $v \in V(G)$ is the set $N_{G}(v)$ of all the vertices adjacent to v in G. For a set $X \subseteq V(G)$, the open neighbourhood $N_{G}(X)$ is defined to be $\cup_{v \in X} N_{G}(v)$ and the closed neighbourhood $N_{G}[X]=$ $N_{G}(X) \cup X$. The degree of a vertex $v \in V(G)$ is the number of edges of G incident with v and is denoted by $\operatorname{deg}_{G}(v)$ or $\operatorname{deg}(v)$. The maximum and the minimum degrees of the vertices of G are respectively denoted by $\Delta(G)$ and $\delta(G)$. A vertex of a degree 0 in G is called an isolated vertex and a vertex of degree 1 is called a pendent vertex or an end vertex of G. A vertex of a graph G is said to be a vertex of full degree if it is adjacent to all other vertices in G. A graph G is said to be regular of degree r if every vertex of G has degree r. Such graphs are called r-regular graphs. The Dutch windmill $\operatorname{graph} D_{n}^{(m)}$, is the graph obtained by taking m copies of the cycle graph C_{n} with a vertex in common. The Butterfly graph(also called the bowtie graph and the hourglass graph) is a planar undirected graph with 5 vertices and 6 edges. It can be constructed by joining 2 copies of the cycle graph C_{3} with a common vertex. It is denoted by B_{n}. The ladder graph L_{n} is a planar undirected graph with 2 n vertices and $n+2(n-1)$ edges. The Ladder graph obtained as the cartesian product of two graphs one of which has only one edge: $L_{n, 1}=P_{n} \times P_{1}$.

II. DEFINITIONS

Definition 2.1.Let $G=(V, E)$ be a graph. A open support of a vertex, v under addition is defined by $\sum_{u \in N(v)} \operatorname{deg}(u)$ and it is denoted by $\operatorname{supp}(v)$.

Definition 2.2.Let $G=(V, E)$ be a graph. A open support of a graph, G under addition is defined by $\sum_{v \in V(G)} \operatorname{supp}(v)$ and it is denoted by $\operatorname{supp}(G)$.

III. RESULTS

Theorem 3.1 Let $G=P_{n}^{+}$be a corona graph. Then $\operatorname{supp}(G)=10(n-1)$.
Proof: Let $G=P_{n}^{+}$be a corona graph. Let $V\left(P_{n}^{+}\right)=\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{n}, u_{1}, u_{2}, \ldots, u_{n}\right\}$ such that $\operatorname{deg}\left(v_{1}\right)=$ $\operatorname{deg}\left(v_{n}\right)=2 ; \operatorname{deg}\left(v_{i}\right)=3$ for all $i=2,3, \ldots, n-1 ; \operatorname{deg}\left(u_{j}\right)=1$ for all $j=1,2, \ldots, n$.
Now,

$$
\begin{aligned}
& \operatorname{supp}\left(v_{1}\right)=\sum_{v \in N\left(v_{1}\right)} \operatorname{deg}(v) \\
& =\operatorname{deg}\left(v_{2}\right)+\operatorname{deg}\left(u_{1}\right)
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
& =3+1=4 \\
& \operatorname{supp}\left(v_{n}\right)=4 \\
& \operatorname{supp}\left(v_{2}\right)=\sum_{v \in N\left(v_{2}\right)} \operatorname{deg}(v) \\
& =\operatorname{deg}\left(v_{1}\right)+\operatorname{deg}\left(v_{3}\right)+\operatorname{deg}\left(u_{2}\right) \\
& =2+3+1=6
\end{aligned}
$$

Similarly,

$$
\operatorname{supp}\left(v_{n-1}\right)=6
$$

For $i=3,4, \ldots, n-2$

$$
\begin{aligned}
& \operatorname{supp}\left(v_{i}\right)=\sum_{v \in N\left(v_{i}\right)} \operatorname{deg}(v) \\
& =\operatorname{deg}\left(v_{i-1}\right)+\operatorname{deg}\left(v_{i+1}\right)+\operatorname{deg}\left(u_{i}\right) \\
& =3+3+1=7
\end{aligned}
$$

$$
\operatorname{supp}\left(u_{1}\right)=\sum_{v \in N\left(u_{1}\right)} \operatorname{deg}(v)
$$

$$
=\operatorname{deg}\left(v_{1}\right)
$$

$$
=2
$$

Similarly,

$$
\operatorname{supp}\left(u_{n}\right)=2 ;
$$

Fori $=2,3,4, \ldots, n-1$

$$
\begin{aligned}
& \operatorname{supp}\left(u_{i}\right)=\sum_{v \in N\left(u_{i}\right)} \operatorname{deg}(v) \\
& =\operatorname{deg}\left(v_{i}\right) \\
& =3
\end{aligned}
$$

Now,

$$
\begin{aligned}
& \operatorname{supp}(G)=\sum_{v \in V(G)} \operatorname{supp}(v) \\
& =\sum_{i=1}^{n} \operatorname{supp}\left(v_{i}\right)+\sum_{i=1}^{n} \operatorname{supp}\left(u_{i}\right) \\
& =\operatorname{supp}\left(v_{1}\right)+\operatorname{supp}\left(v_{2}\right)+\sum_{i=3}^{n-2} \operatorname{supp}\left(v_{i}\right)+\operatorname{supp}\left(v_{n-1}\right)+\operatorname{supp}\left(v_{n}\right) \\
& +\operatorname{supp}\left(u_{1}\right)+\operatorname{supp}\left(u_{n}\right)+\sum_{i=2}^{n-1} \operatorname{supp}\left(u_{i}\right) \\
& =4+6+\sum_{i=3}^{n-2} 7+6+4+2+\sum_{i=2}^{n-1} 3+2 \\
& \operatorname{supp}(G)=24+7 n-28+3 n-6 \\
& =10 n-10 \\
& =10(n-1)
\end{aligned}
$$

Theorem 3.2.Let $G=(m, m, \ldots, m)$ be a caterpillar graph. Then $\operatorname{supp}(G)=5 m n+m^{2} n+4 n-4 m-6$ Proof.
Let $\mathrm{G}=(m, m, \ldots, m)$ be a caterpillar graph.
Let $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}, u_{n}, u_{11}, \ldots, u_{1 m}, \ldots, u_{n 1}, \ldots, u_{n m}\right\}$ such that $\operatorname{deg}\left(v_{1}\right)=\operatorname{deg}\left(v_{n}\right)=m+1$;
$\operatorname{deg}\left(v_{i}\right)=m+2$,for all $i=2,3, \ldots, n-1$ and $\operatorname{deg}\left(u_{i j}\right)=1$ for all $i=1,2, \ldots, n$ and $j=1,2, \ldots, m$
$\operatorname{supp}\left(v_{1}\right)=\sum_{i=1}^{n} \operatorname{deg}\left(u_{1 i}\right)+\operatorname{deg}\left(v_{2}\right)$
$=\sum_{i=1}^{m} 1+m+2$
$=2 m+2$
Similarly,

$$
\begin{aligned}
& \operatorname{supp}\left(v_{n}\right)=2 m+2 ; \\
& \operatorname{supp}\left(v_{2}\right)=\sum_{i=1}^{n} \operatorname{deg}\left(u_{2 i}\right)+\operatorname{deg}\left(v_{1}\right)+\operatorname{deg}\left(v_{3}\right) \\
& =\sum_{i=1}^{m} 1+m+1+m+2 \\
& =3 m+3
\end{aligned}
$$

Similarly,
$\operatorname{supp}\left(v_{n-1}\right)=3 m+3 ;$
For $i=3,4, \ldots, n-2$

$$
\begin{aligned}
& \operatorname{supp}\left(v_{i}\right)=\sum_{v \in N\left(v_{i}\right)} \operatorname{deg}(v) \\
& =\operatorname{deg}\left(v_{i-1}\right)+\sum_{j=1}^{n} \operatorname{deg}\left(u_{i j}\right)+\operatorname{deg}\left(v_{i+1}\right) \\
& =m+2+\sum_{j=1}^{n} 1+m+2 \\
& =3 m+4
\end{aligned}
$$

For $j=1,2, \ldots, m$
$\operatorname{supp}\left(u_{1 j}\right)=\operatorname{deg}\left(v_{1}\right)$
$=m+1$
Similarly,

$$
\operatorname{supp}\left(u_{n j}\right)=m+1 ;
$$

For $i=2,3, \ldots, n-1$ and $j=1,2, \ldots, m$

$$
\operatorname{supp}\left(u_{i j}\right)=\operatorname{deg}\left(v_{i}\right)
$$

$$
=m+2
$$

Similarly,

$$
\operatorname{supp}\left(u_{n j}\right)=m+2 ;
$$

Now,

$$
\begin{aligned}
& \operatorname{supp}(G)=\sum_{v \in V(G)} \operatorname{supp}(v) \\
& =\sum_{i=1}^{n} \operatorname{supp}\left(v_{i}\right)+\sum_{i=1}^{n} \sum_{j=1}^{m} \operatorname{supp}\left(u_{i j}\right) \\
& =\operatorname{supp}\left(v_{1}\right)+\operatorname{supp}\left(v_{2}\right)+\sum_{i=3}^{n-2} \operatorname{supp}\left(v_{i}\right)+\operatorname{supp}\left(v_{n-1}\right)+\operatorname{supp}\left(v_{n}\right) \\
& +\sum_{j=1}^{m} \operatorname{supp}\left(u_{1 j}\right)+\sum_{j=1}^{m} \operatorname{supp}\left(u_{n j}\right)+\sum_{i=2}^{n-1} \sum_{j=1}^{m} \operatorname{supp}\left(u_{i j}\right) \\
& =2 m+2+3 m+3+\sum_{i=3}^{n-2} 3 m+4+3 m+3+2 m+2 \\
& +\sum_{j=1}^{m}(m+1)+\sum_{j=1}^{m}(m+1)+\sum_{i=2}^{n-1} \sum_{j=1}^{m}(m+2) \\
& =10 m+10+(3 m+4)(n-4)+m(m+1)+m(m+1) \\
& +(n-2) m(m+2) \\
& =4 n-6+3 m n+2 m^{2}+m^{2} n-2 m^{2}+2 m n-4 m \\
& \operatorname{supp}(G)=5 m n+m^{2} n+4 n-4 m-6 .
\end{aligned}
$$

Theorem 3.3.Let G be a tadpole graph. Then $\operatorname{supp}(G)=4(m+n)+2$
Proof: Let G be a tadpole graph. Let $V(G)=\left\{x, v_{1}, v_{2}, \ldots, v_{m-1}, u_{1}, \ldots, u_{n}\right\}$ such that $\operatorname{deg}(x)=3 ; \operatorname{deg}\left(v_{i}\right)=$ 2 ,for all $i=1,2,3, \ldots, m-1 ; \operatorname{deg}\left(u_{n}\right)=1$ and $\operatorname{deg}\left(u_{i}\right)=2$ for all $i=1,2, \ldots, n-1$

$$
\begin{aligned}
& \operatorname{supp}(x)=\sum_{v \in N(x)} \operatorname{deg}(v) \\
& =\operatorname{deg}\left(v_{1}\right)+\operatorname{deg}\left(v_{m-1}\right)+\operatorname{deg}\left(u_{1}\right) \\
& =2+2+2=6 \\
& \operatorname{supp}\left(v_{1}\right)=\sum_{v \in N\left(v_{1}\right)} \operatorname{deg}(v) \\
& =\operatorname{deg}(x)+\operatorname{deg}\left(v_{2}\right) \\
& =3+2=5
\end{aligned}
$$

Similarly,

$$
\operatorname{supp}\left(v_{m-1}\right)=5 \operatorname{andsupp}\left(u_{1}\right)=5
$$

For $i=2,3, \ldots, m-2$

$$
\begin{aligned}
& \operatorname{supp}\left(v_{i}\right)=\sum_{v \in N\left(v_{i}\right)} \operatorname{deg}(v) \\
& =\operatorname{deg}\left(v_{i-1}\right)+\operatorname{deg}\left(v_{i+1}\right) \\
& =2+2=4
\end{aligned}
$$

For $i=2,3, \ldots, n-2$

$$
\begin{aligned}
& \operatorname{supp}\left(u_{i}\right)=\sum_{v \in N\left(u_{i}\right)} \operatorname{deg}(v) \\
& =\operatorname{deg}\left(u_{i-1}\right)+\operatorname{deg}\left(u_{i+1}\right) \\
& =2+2=4 \\
& \operatorname{supp}\left(u_{n-1}\right)=\sum_{v \in N\left(u_{n-1}\right)} \operatorname{deg}(v) \\
& =\operatorname{deg}\left(u_{n-2}\right)+\operatorname{deg}\left(u_{n}\right) \\
& =2+1=3
\end{aligned}
$$

$$
\operatorname{supp}\left(u_{n}\right)=\sum_{v \in N\left(u_{n}\right)} \operatorname{deg}(v)
$$

Now,

$$
=\operatorname{deg}\left(u_{n-1}\right)=2
$$

$$
\begin{aligned}
& \operatorname{supp}(G)=\sum_{v \in V(G)} \operatorname{supp}(v) \\
& =\sum_{i=1}^{m-1} \operatorname{supp}\left(v_{i}\right)+\operatorname{supp}(x)+\sum_{i=1}^{n} \operatorname{supp}\left(u_{i}\right) \\
& =\operatorname{supp}\left(v_{1}\right)+\operatorname{supp}\left(v_{m-1}\right)+\sum_{i=2}^{m-2} \operatorname{supp}\left(v_{i}\right)+\operatorname{supp}(x) \\
& +\operatorname{supp}\left(u_{1}\right)+\sum_{i=2}^{n-2} \operatorname{supp}\left(u_{i}\right)+\operatorname{supp}\left(u_{n-1}\right)+\operatorname{supp}\left(u_{n}\right) \\
& =5+5+\sum_{i=2}^{m-2} 4+6+5+\sum_{i=2}^{n-2} 4+3+2 \\
& =26+(m-3) 4+4(n-3) \\
& \operatorname{supp}(G)=4 m+4 n+2 .
\end{aligned}
$$

Theorem 3.4. Let G be a butterfly graph. Then $\operatorname{supp}(G)=32$
Proof. Let G be a butterfly graph. Let $V(G)=\left\{x, v_{1}, v_{2}, v_{3}, v_{4}\right\}$ such that $\operatorname{deg}(x)=4 ; \operatorname{deg}\left(v_{i}\right)=2$,for all $i=1,2,3,4$;

$$
\operatorname{supp}(x)=\sum_{v \in N(x)} \operatorname{deg}(v)
$$

$$
\begin{aligned}
& =\operatorname{deg}\left(v_{1}\right)+\operatorname{deg}\left(v_{2}\right)+\operatorname{deg}\left(v_{3}\right)+\operatorname{deg}\left(v_{4}\right) \\
& =8
\end{aligned}
$$

For $i=1,2,3,4$

$$
\begin{aligned}
& \operatorname{supp}\left(v_{i}\right)=\sum_{v \in N\left(v_{i}\right)} \operatorname{deg}(v) \\
& =2+4 \\
& =6
\end{aligned}
$$

Now,

$$
\begin{aligned}
& \operatorname{supp}(G)=\sum_{v \in V(G)} \operatorname{supp}(v) \\
& =\operatorname{supp}\left(v_{1}\right)+\operatorname{supp}\left(v_{2}\right)+\operatorname{supp}\left(v_{3}\right)+\operatorname{supp}\left(v_{4}\right)+\operatorname{supp}(x) \\
& =32
\end{aligned}
$$

Theorem 3.5 Let $G=D_{(n)}^{(m)}$ be a Dutch windmill graph. Then $\operatorname{supp}(G)=4 m(n+m-1)$
Proof. Let $G=D_{(n)}^{(m)}$ be a Dutch windmill graph. Let $V(G)=\left\{x, v_{1}^{i}, v_{2}^{i}, v_{3}^{i}, \ldots, v_{n-1}^{i}\right\}$ for $i=1,2, \ldots, m$ such that $\operatorname{deg}(x)=2 m ; \operatorname{deg}\left(v_{j}^{i}\right)=2$,for all $i=1,2, \ldots, m$ and $j=1,2, \ldots, n-1$;

$$
\begin{aligned}
& \operatorname{supp}(x)=\sum_{v \in N(x)} \operatorname{deg}(v) \\
& =\sum_{i=1}^{m}\left(\operatorname{deg}\left(v_{1}^{i}\right)+\operatorname{deg}\left(v_{n-1}^{i}\right)\right) \\
& =\sum_{i=1}^{m}(4) \\
& =4 m
\end{aligned}
$$

For $i=1,2, \ldots, m$

$$
\operatorname{supp}\left(v_{1}^{i}\right)=\sum_{v \in N\left(v_{1}^{i}\right)} \operatorname{deg}(v)
$$

$$
=2 m+2
$$

Similarly,

$$
\operatorname{supp}\left(v_{n-1}^{i}\right)=2 m+2
$$

For $j=2,3, \ldots, n-2$

$$
\begin{aligned}
& \operatorname{supp}\left(v_{j}^{i}\right)=\sum_{v \in N\left(v_{j}^{i}\right)} \operatorname{deg}(v) \\
& =2+2=4
\end{aligned}
$$

Now,

$$
\begin{aligned}
& \operatorname{supp}(G)=\sum_{v \in V(G)} \operatorname{supp}(v) \\
& =\operatorname{supp}(x)+\sum_{i=1}^{m} \sum_{j=1}^{n-1} \operatorname{supp}\left(v_{j}^{i}\right) \\
& =4 m+2 m(2 m+2)+4 m(n-3) \\
& =4 m^{2}-4 m+4 m n \\
& =4 m(m+n-1)
\end{aligned}
$$

Theorem 3.6.Let $G=L_{2 n}$. Then $\operatorname{supp}(G)=18 n-20$.
Proof. Let $G=L_{2 n}$ be a Ladder graph with $2 n$ vertices. Let $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}, u_{1}, u_{2}, \ldots, u_{n}\right\}$ and $\operatorname{deg}\left(v_{i}\right)=\operatorname{deg}\left(u_{i}\right)=2$ for all $i=1, n ; \operatorname{deg}\left(v_{i}\right)=\operatorname{deg}\left(u_{i}\right)=3$ for all $i=2,3, \ldots, n-1$. Then

$$
\begin{aligned}
& \operatorname{supp}\left(v_{1}\right)=\sum_{v \in N\left(v_{1}\right)} \operatorname{deg}(v) \\
& =\operatorname{deg}\left(u_{1}\right)+\operatorname{deg}\left(v_{2}\right) \\
& \operatorname{supp}\left(v_{1}\right)=5
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
& \operatorname{supp}\left(v_{n}\right)=\operatorname{supp}\left(u_{1}\right)=\operatorname{supp}\left(u_{n}\right)=5 . \\
& \operatorname{supp}\left(v_{2}\right)=\sum_{v \in N\left(v_{2}\right)} \operatorname{deg}(v) \\
& =\operatorname{deg}\left(u_{2}\right)+\operatorname{deg}\left(v_{1}\right)+\operatorname{deg}\left(v_{3}\right) \\
& \operatorname{supp}\left(v_{2}\right)=8
\end{aligned}
$$

Similarly,

$$
\operatorname{supp}\left(u_{2}\right)=\operatorname{supp}\left(u_{n-1}\right)=\operatorname{supp}\left(v_{n-1}\right)=8 .
$$

For each $i=3,4, \ldots, n-2$,

$$
\begin{aligned}
& \operatorname{supp}\left(v_{i}\right)=\sum_{v \in N\left(v_{i}\right)} \operatorname{deg}(v) \\
& =\operatorname{deg}\left(u_{i}\right)+\operatorname{deg}\left(v_{i-1}\right)+\operatorname{deg}\left(v_{i+1}\right) \\
& \operatorname{supp}\left(v_{i}\right)=9, \text { for all } i=3,4, \ldots, n-2
\end{aligned}
$$

Similarly,

$$
\operatorname{supp}\left(u_{i}\right)=9, \text { for alli }=3,4, \ldots, n-2 .
$$

Now,

$$
\begin{aligned}
& \operatorname{supp}(G)=\sum_{v \in V(G)} \operatorname{supp}(v) \\
& =\sum_{i=1, n} \operatorname{supp}\left(v_{i}\right)+\sum_{i=1, n} \operatorname{supp}\left(u_{i}\right)+\sum_{i=2, n-1} \operatorname{supp}\left(v_{i}\right)
\end{aligned}
$$

$$
\begin{aligned}
& +\sum_{i=2, n-1} \operatorname{supp}\left(u_{i}\right)+\sum_{i=3}^{n-2} \operatorname{supp}\left(v_{i}\right)+\sum_{i=3}^{n-2} \operatorname{supp}\left(u_{i}\right) \\
& =\sum_{i=1, n} 5+\sum_{i=1, n} 5+\sum_{i=2, n-1} 8+\sum_{i=2, n-1} 8+\sum_{i=3}^{n-2} 9+\sum_{i=3}^{n-2} 9 \\
& \operatorname{supp}(G)=18 n-20 .
\end{aligned}
$$

Theorem 3.7.For any graph $G, \operatorname{supp}(G)=\sum_{v \in V(G)}(\operatorname{deg}(v))^{2}$.
Proof. Let $v \in V(G)$ be an arbitrary vertex of G such that $\operatorname{deg}(v)=k$ and let $N(v)=\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$. Then $\operatorname{supp}(v)=\sum_{i=1}^{k} \operatorname{deg}\left(v_{i}\right)$. Similarly, $\operatorname{supp}\left(v_{i}\right)$ must contain $\operatorname{deg}(v)$ as its summand, for each $i=1,2, \ldots, k$. Hence, if $\operatorname{deg}(v)=k$, then $\operatorname{supp}(G)$ must contain $\operatorname{deg}(v)$ as its summand at exactly k times, since $\operatorname{supp}(G)=$ $\sum_{v \in V(G)} \operatorname{supp}(v)$. That is, $\operatorname{supp}(G)$ must contain $\operatorname{kdeg}(v)$ as its summand. This implies that $\operatorname{supp}(G)$ must contain $(\operatorname{deg}(v))^{2}$ as its summand. Since v is arbitrary, $\operatorname{supp}(G)$ must contain $(\operatorname{deg}(v))^{2}$ as its summand for all $v \in V(G)$. Hence $\operatorname{supp}(G)=\sum_{v \in V(G)}(\operatorname{deg}(v))^{2}$.

Theorem 3.8 Let $G \circ K_{1}$ be a corona product of G and K_{1}. Then $\operatorname{supp}\left(G \circ K_{1}\right)=\operatorname{supp}(G)+4 m+2 n$, where n and m are the order and size of G respectively.
Proof. Let G be an any graph of order n and size m. Let $G \circ K_{1}$ be a corona product of G and K_{1}. By Theorem (3.7), $\operatorname{supp}\left(G \circ K_{1}\right)=\sum_{v \in V\left(G \circ K_{1}\right)}(\operatorname{deg}(v))^{2}=\sum_{v \in V(G)}(\operatorname{deg}(v)+1)^{2}+n$, Since degree of each vertex, v in $G \circ K_{1}$ increases one from its corresponding vertex in G. Therefore $\operatorname{supp}\left(G \circ K_{1}\right)=\operatorname{supp}(G)+4 m+2 n$.

REFERENCES

[1] M. Anitha, S. Balamurugan: Strong (Weak) Efficient Open Domination on Product Graphs, International Journal of Pure and Applied Mathematics, (J.No. 23425), IISN 1311-8080, communicated.
[2] S. Balamurugan, M. Anitha, C. Karnan and P. Aristotle A Note on Open Support of a Graph under Addition I, Communicated
[3] R. Balakrishnan, K. Ranganathan, A Textbook of Graph Theory, Springer,2011.
[4] S. Balamurugan, A study on chromatic strong domination in graphs, Ph.D Thesis, Madurai Kamaraj University, India 2008.
[5] J.A. Bondy, U.S.R. Murthy, Graph theory with Applications, North-Holland, 1982.
[6] F. Harary : Graph Theory, Addsion Wesley, Reading, Mass, (1972).
[7] T. W. Haynes, S. T. Hedetniemi, P. J. Slater: Fundamentals of Domination in Graphs, Marcel Dekker, New York, (1998).
[8] C. Y. Ponnappan: Studies in Graph Theory Support Strong Domination in Graphs, Ph.D thesis, Madurai Kamaraj University (2008).

