Closed Support of a Graph under Addition I
 ${ }^{1}$ S. Balamurugan , ${ }^{2} \mathrm{M}$. Anitha, ${ }^{3} \mathrm{C}$. Karnan
 ${ }^{1}$ PG Department of Mathematics,
 Government Arts College, Melur - 625 106, Tamilnadu, India.
 ${ }^{2}$ Department of Mathematics
 Syed Ammal Arts and Science College, Ramanathapuram, Tamilnadu, India..
 ${ }^{3}$ Department of Mathematics
 The Optimus Public School, Erode - 638455

Abstract

In this paper we defined closed support of a vertex v under addition and closed support of a graph G under addition. We calculate the closed support for some standard graphs.

AMS Subject Code: 05C07

Keywords: Vertex Degree, Closed Support of a Vertex, Closed Support of a Graph.

I. INTRODUCTION

In this work we consider finite, undirected, simple graphs $G=(V, E)$ with n vertices and m edges. The neighbourhood of a vertex $v \in V(G)$ is the set $N_{G}(v)$ of all the vertices adjacent to v in G. For a set $X \subseteq V(G)$, the open neighbourhood $N_{G}(X)$ is defined to be $\mathrm{U}_{v \in X} N_{G}(v)$ and the closed neighbourhood $N_{G}[X]=$ $N_{G}(X) \cup X$. The degree of a vertex $v \in V(G)$ is the number of edges of G incident with v and is denoted by $\operatorname{deg}_{G}(v)$ or $\operatorname{deg}(v)$. The maximum and the minimum degrees of the vertices of G are respectively denoted by $\Delta(G)$ and $\delta(G)$. A vertex of a degree 0 in G is called an isolated vertex and a vertex of degree 1 is called a pendent vertex or an end vertex of G. A vertex of a graph G is said to be a vertex of full degree if it is adjacent to all other vertices in G. A graph G is said to be regular of degree r if every vertex of G has degree r. Such graphs are called r-regular graphs.

A closed support of a vertex, v under addition is defined by $\sum_{u \in N[v]} \operatorname{deg}(u)$ and it is denoted by $\operatorname{supp}[v]$. A closed support of a graph, G under addition is defined by $\sum_{v \in V(G)} \operatorname{supp}[v]$ and it is denoted by $\operatorname{supp}[G]$.

II. DEFINITIONS

Definition 2.1.Let $G=(V, E)$ be a graph. A closed support of a vertex, v under addition is defined by $\sum_{u \in N[v]}$ deg(u) and it is denoted by supp $[v]$.

Definition 2.2.Let $G=(V, E)$ be a graph. A closed support of a graph, G under addition is defined by $\sum_{v \in V(G)} \operatorname{supp}[v]$ and it is denoted by $\operatorname{supp}[G]$.

III. RESULTS

Theorem 3.1.Let $G=P_{n}(n>1)$. Then $\operatorname{supp}\left[P_{n}\right]=6 n-8$.
Proof. Let $G=P_{n}$ be a path with n vertices. Let $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ with $v_{i} v_{i+1} \in E(G)$ for all $i=$ $1,2, \ldots, n-1$. Then $\operatorname{deg}\left(v_{1}\right)=\operatorname{deg}\left(v_{n}\right)=1 ; \operatorname{deg}\left(v_{i}\right)=2$ for all $i=2,3, \ldots, n-1$. Then
$\operatorname{supp}\left[v_{1}\right]=\sum_{v \in N\left[v_{1}\right]} \operatorname{deg}(v)$
$=\operatorname{deg}\left(v_{1}\right)+\operatorname{deg}\left(v_{2}\right)$
$\operatorname{supp}\left[v_{1}\right]=1+2=3$
Similarly,

$$
\operatorname{supp}\left[v_{n}\right]=3
$$

$\operatorname{supp}\left[v_{2}\right]=\sum_{v \in N\left[v_{2}\right]} \operatorname{deg}(v)$
$=\operatorname{deg}\left(v_{1}\right)+\operatorname{deg}\left(v_{2}\right)+\operatorname{deg}\left(v_{3}\right)$
$\operatorname{supp}\left[v_{2}\right]=5$
Similarly,

$$
\operatorname{supp}\left[v_{n-1}\right]=5 .
$$

For each $i=3,4, \ldots, n-2$,

$$
\begin{aligned}
& \operatorname{supp}\left[v_{i}\right]=\sum_{v \in N\left[v_{i}\right]} \operatorname{deg}(v) \\
& =\operatorname{deg}\left(v_{i-1}\right)+\operatorname{deg}\left(v_{i}\right)+\operatorname{deg}\left(v_{i+1}\right) \\
& \operatorname{supp}\left[v_{i}\right]=6 .
\end{aligned}
$$

Now,

$$
\begin{aligned}
& \operatorname{supp}[G]=\sum_{v \in V[G]} \operatorname{supp}[v] \\
& =\operatorname{supp}\left[v_{1}\right]+\operatorname{supp}\left[v_{2}\right]+\sum_{i=3}^{n-2} \operatorname{supp}\left[v_{i}\right]+\operatorname{supp}\left[v_{n-1}\right]+\operatorname{supp}\left[v_{n}\right] \\
& =3+5+\sum_{i=3}^{n-2}(6)+5+3 \\
& =16+6(n-4) \\
& \operatorname{supp}[G]=6 n-8
\end{aligned}
$$

Theorem 3.2.Let $G=C_{n}$. Then $\operatorname{supp}\left[C_{n}\right]=6 n$.
Proof. Let $G=C_{n}$ be a cycle of order n. Let $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and $\operatorname{deg}\left(v_{i}\right)=2$ for all $i=1,2, \ldots, n$. Then

$$
\begin{aligned}
& \operatorname{supp}\left[v_{i}\right]=\sum_{v \in N\left[v_{i}\right]} \operatorname{deg}(v) \\
& \operatorname{supp}\left[v_{i}\right]=6 .
\end{aligned}
$$

Now,

$$
\begin{aligned}
& \operatorname{supp}[G]=\sum_{v \in V(G)} \operatorname{supp}[v] \\
& =6+6+\cdots+6 \quad \text { (ntimes) } \\
& \operatorname{supp}[G]=6 n .
\end{aligned}
$$

Theorem 3.3. Let $G=K_{n}$. Then $\operatorname{supp}[G]=n^{2}(n-1)$.
Proof. Let $G=K_{n}$ be a complete graph with n vertices. Let $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and $\operatorname{deg}\left(v_{i}\right)=n-1$ for all $i=1,2, \ldots, n$. Then

$$
\begin{aligned}
& \operatorname{supp}\left[v_{i}\right]=\sum_{v \in N\left[v_{i}\right]} \operatorname{deg}(v) \\
& =\sum_{v \in N\left[v_{i}\right]}(n-1) \\
& =n(n-1) \\
& \operatorname{supp}\left[v_{i}\right]=(n-1) n
\end{aligned}
$$

Now,

$$
\begin{aligned}
& \operatorname{supp}[G]=\sum_{v \in V(G)} \operatorname{supp}(v) \\
& =\sum_{v \in V(G)}(n-1) n^{2} \\
& \operatorname{supp}[G]=(n-1) n^{2}
\end{aligned}
$$

Theorem 3.4.Let $G=K_{m, n}$. Then $\operatorname{supp}[G]=m n(m+n+2)$.
Proof. Let $G=K_{m, n}$ be a complete bipartite graph with the bipartition (X, Y) where $X=\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}$ and $Y=\left\{y_{1}, y_{2}, \ldots, y_{m}\right\}$. Then $\operatorname{deg}\left(x_{i}\right)=n$ for all $i=1,2, \ldots, m$ and $\operatorname{deg}\left(y_{j}\right)=m$ for all $j=1,2, \ldots, n$.

$$
\begin{aligned}
& \operatorname{supp}\left[x_{i}\right]=\sum_{v \in N\left[x_{i}\right]} \operatorname{deg}(v) \\
& =\sum_{v \in Y} \operatorname{deg}(v)+\operatorname{deg}\left(x_{i}\right) \\
& =\sum_{v \in Y} m n+n \\
& \operatorname{supp}\left[x_{i}\right]=n(m+1), \text { foralli }=1,2, \ldots, m \\
& \operatorname{supp}\left[y_{j}\right]=\sum_{v \in N\left[y_{j}\right]} \operatorname{deg}(v) \\
& =\sum_{v \in X} \operatorname{deg}(v)+\operatorname{deg}\left(y_{i}\right) \\
& =\sum_{v \in X} m n+m \\
& \left.\operatorname{supp}\left[y_{j}\right]\right)=m n+m, \text { forallj }=1,2, \ldots, n .
\end{aligned}
$$

Now,

$$
\begin{aligned}
& \operatorname{supp}[G]=\sum_{v \in V(G)} \operatorname{supp}[v] \\
& =\sum_{x \in X} \operatorname{supp}[x]+\sum_{y \in Y} \operatorname{supp}[y] \\
& =\sum_{x \in X} n(m+1)+\sum_{y \in Y} m(n+1) \\
& \sup [G]=m n(m+1)+n m(n+1) \\
& \operatorname{supp}[G]=m n(m+n+2)
\end{aligned}
$$

Corollary 3.5.Let $G=K_{1, n}$. Then $\operatorname{supp}[G]=n(n+3)$.
Proof.Let $G=K_{1, n}$ be a star graph. Put $m=1$ in theorem 3.4, we get $\operatorname{supp}[G]=n(n+3)$.
Theorem 3.6.Let $G=W_{n}(n \geq 4)$. Then $\operatorname{supp}\left[W_{n}\right]=(n-1)(n+12)$.
Proof. Let $G=W_{n}$ be a wheel of order n. Let $V(G)=\left\{v_{0}, v_{1}, v_{2}, \ldots, v_{n-1}\right\}$ and $\operatorname{deg}\left(v_{0}\right)=n-1 ; \operatorname{deg}\left(v_{i}\right)=3$ for all $i=1,2, \ldots, n-1$. Then

$$
\operatorname{supp}\left[v_{0}\right]=\sum_{v \in N\left[v_{0}\right]} \operatorname{deg}(v)+\operatorname{deg}\left(v_{0}\right)
$$

$$
\begin{aligned}
& =3+3+\cdots+3((n-1) \text { times })+(n-1) \\
& =4(n-1)
\end{aligned}
$$

For each $i=1,2, \ldots, n-1$,

$$
\begin{aligned}
& \operatorname{supp}\left[v_{i}\right]=\sum_{v \in N\left[v_{i}\right]} \operatorname{deg}(v)+\operatorname{deg}\left(v_{i}\right) \\
& =3+3+3+(n-1) \\
& \operatorname{supp}\left[v_{i}\right]=8+n
\end{aligned}
$$

Now,

$$
\begin{aligned}
& \operatorname{supp}[G]=\sum_{v \in V(G)} \operatorname{supp}[v] \\
& =\operatorname{supp}\left[v_{0}\right]+\sum_{i=1}^{n-1} \operatorname{supp}\left[v_{i}\right] \\
& =4(n-1)+(n+8)(n-1) \\
& \operatorname{supp}[G]=(n-1)(n+12) .
\end{aligned}
$$

Theorem 3.7.Let $G=F_{n}(n \geq 4)$. Then $\operatorname{supp}\left[F_{n}\right]=n^{2}+11 n-40$.
Proof. Let $G=F_{n}$ be a fan of order n. Let $V(G)=\left\{v_{0}, v_{1}, v_{2}, \ldots, v_{n-1}\right\}$ and $\operatorname{deg}\left(v_{0}\right)=n-1 ; \operatorname{deg}\left(v_{1}\right)=$ $\operatorname{deg}\left(v_{n-1}\right)=2 ; \operatorname{deg}\left(v_{i}\right)=3$ for all $i=2,3, \ldots, n-2$. Then

$$
\begin{aligned}
& \operatorname{supp}\left[v_{0}\right]=\sum_{v \in N\left[v_{0}\right]} \operatorname{deg}(v) \\
& =\operatorname{deg}\left(v_{1}\right)+\operatorname{deg}\left(v_{n-1}\right)+\sum_{i=2}^{n-2} \operatorname{deg}\left(v_{i}\right)+\operatorname{deg}\left(v_{0}\right) \\
& =2+2+3(n-3)+n-1 \\
& =4 n-6 \\
& \operatorname{supp}\left[v_{1}\right]=\sum_{v \in N\left[v_{1}\right]} \operatorname{deg}(v) \\
& =\operatorname{deg}\left(v_{0}\right)+\operatorname{deg}\left(v_{2}\right)+\operatorname{deg}\left(v_{1}\right) \\
& =n-1+3+2 \\
& =n+4
\end{aligned}
$$

Similarly,
$\operatorname{supp}\left[v_{n-1}\right]=n+4$.

$$
\begin{aligned}
& \operatorname{supp}\left[v_{2}\right]=\sum_{v \in N\left[v_{2}\right]} \operatorname{deg}(v) \\
& =\operatorname{deg}\left(v_{0}\right)+\operatorname{deg}\left(v_{1}\right)+\operatorname{deg}\left(v_{3}\right)+\operatorname{deg}\left(v_{2}\right) \\
& =n-1+2+2+3 \\
& =n+7
\end{aligned}
$$

Similarly,
$\operatorname{supp}\left[v_{n-2}\right]=n+7$.
For each $i=3,4, \ldots, n-3$,

$$
\begin{aligned}
& \operatorname{supp}\left[v_{i}\right]=\sum_{v \in N\left[v_{i}\right]} \operatorname{deg}(v) \\
& =\operatorname{deg}\left(v_{i-1}\right)+\operatorname{deg}\left(v_{i+1}\right)+\operatorname{deg}\left(v_{0}\right)+\operatorname{deg}\left(v_{i}\right) \\
& =3+3+3+(n-1) \\
& \operatorname{supp}\left[v_{i}\right]=n+8
\end{aligned}
$$

Now,

$$
\begin{aligned}
& \operatorname{supp}[G]=\sum_{v \in V(G)} \operatorname{supp}[v] \\
& =\operatorname{supp}\left[v_{0}\right]+\operatorname{supp}\left[v_{1}\right]+\operatorname{supp}\left[v_{n-1}\right]+\operatorname{supp}\left[v_{n-2}\right]+\sum_{i=3}^{n-3} \operatorname{supp}\left[v_{i}\right] \\
& =4 n-6+2 n-8+2 n+14+(n+8)(n-5) \\
& =4 n+2 n+2 n+n^{2}+3 n-40 \\
& \operatorname{supp}[G]=n^{2}+11 n-40 . \\
& \quad \text { REFERENCES }
\end{aligned}
$$

[1] M. Anitha, S. Balamurugan: Strong (Weak) Efficient Open Domination on Product Graphs, International Journal of Pure and Applied Mathematics, (J.No. 23425), IISN 1311-8080, communicated.
[2] S. Balamurugan, M. Anitha, C. Karnan and P. Aristotle: A Note on Open Support of a Graph under Addition I, Communicated
[3] S. Balamurugan, M. Anitha, C. Karnan and P. Aristotle: A Note on Open Support of a Graph under Addition II, Communicated
[4] R. Balakrishnan, K. Ranganathan, A Textbook of Graph Theory, Springer,2011.
[5] S. Balamurugan, A study on chromatic strong domination in graphs, Ph.D Thesis, Madurai Kamaraj University, India 2008.
[6] J.A. Bondy, U.S.R. Murthy, Graph theory with Applications, North-Holland, 1982.
[7] F. Harary : Graph Theory, Addsion Wesley, Reading, Mass, (1972).
[8] T. W. Haynes, S. T. Hedetniemi, P. J. Slater: Fundamentals of Domination in Graphs, Marcel Dekker, New York, (1998).
[9] C. Y. Ponnappan: Studies in Graph Theory Support Strong Domination in Graphs, Ph.D thesis, Madurai Kamaraj University (2008).

