Closed Support of a Graph under Multiplication

${ }^{1}$ S. Balamurugan , ${ }^{2} \mathrm{M}$. Anitha, ${ }^{3} \mathrm{C}$. Karnan, , ${ }^{4} \mathrm{P}$. Palanikumar
${ }^{1}$ PG Department of Mathematics,
Government Arts College, Melur - 625 106, Tamilnadu, India.
${ }^{2}$ Department of Mathematics
Syed Ammal Arts and Science College, Ramanathapuram, Tamilnadu, India.
${ }^{3}$ Department of Mathematics
The Optimus Public School, Erode - 638455
${ }^{4}$ Department of Mathematics
Mannar Thirumalai Naicker College, Madurai 625 004, Tamilnadu, India.

Abstract

In this paper, the Closed support of a vertex v under multiplication and Closed support of a graph G under multiplication is defined and studied. Also, we find the value of Closed support of some namely graphs like Dutch windmill graph, Butterfly graph and Ladder graph.

AMS Subject Code: 05C07
Key words: Vertex Degree, Closed Support under multiplication of a Vertex, Closed Support under multiplication of a Graph.

I. INTRODUCTION

In this work we consider finite, undirected, simple graphs $G=(V, E)$ with n vertices and m edges. The neighbourhood of a vertex $v \in V(G)$ is the set $N_{G}(v)$ of all the vertices adjacent to v in G. For a set $X \subseteq V(G)$, the open neighbourhood $N_{G}(X)$ is defined to be $\cup_{v \in X} N_{G}(v)$ and the closed neighbourhood $N_{G}[X]=N_{G}(X) \cup X$. The degree of a vertex $v \in V(G)$ is the number of edges of G incident with v and is denoted by $\operatorname{deg}_{G}(v)$ or $\operatorname{deg}(v)$. The maximum and the minimum degrees of the vertices of G are respectively denoted by $\Delta(G)$ and $\delta(G)$. A vertex of a degree 0 in G is called an isolated vertex and a vertex of degree 1 is called a pendent vertex or an end vertex of G. A vertex of a graph G is said to be a vertex of full degree if it is adjacent to all other vertices in G. A graph G is said to be regular of degree r if every vertex of G has degree r. Such graphs are called r-regular graphs.

The Dutch windmill $\operatorname{graph} D_{n}^{(m)}$, is the graph obtained by taking m copies of the cycle graph C_{n} with a vertex in common. The Butterfly graph (also called the bowtie graph and the hourglass graph) is a planar undirected graph with 5 vertices and 6 edges. It can be constructed by joining 2 copies of the cycle graph C_{3} with a common vertex. It is denoted by B_{n}. The ladder graph L_{n} is a planar undirected graph with 2 n vertices and $\mathrm{n}+2(\mathrm{n}-1)$ edges. The Ladder graph obtained as the cartesian product of two graphs one of which has only one edge: $L_{n, 1}=P_{n} \times P_{1}$.

A closed support of a vertex v under multiplication is defined by $\prod_{u \in N[v]} \operatorname{deg}(u)$ and is denoted by $m u l t[v]$. A closed support of a graph G under multiplication is defined by $\prod_{u \in V(G)} m u l t[u]$ and it is denoted by mult [G].

II. DEFINITIONS

Definition 2.1.A closed support of a vertex v under multiplication is defined by $\prod_{u \in N[v]} \operatorname{deg}(u)$ and is denoted by mult[v].

Definition 2.2.A closed support of a graph G under multiplication is defined by $\prod_{u \in V(G)}$ mult $[u]$ and it is denoted by mult [G].

III. RESULTS

Proposition 3.1. For a Path $P_{n},(n \geq 2)$, $\operatorname{mult}\left[P_{n}\right]=8^{n-2}$.
Proof: Let G be a path on n vertices and let $V(G)=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ where $\operatorname{deg}\left(u_{1}\right)=\operatorname{deg}\left(u_{n}\right)=1$ and $\operatorname{deg}\left(u_{i}\right)=$

2 for $i=2,3, \ldots, n-1$.
If $n=2,3$, or 4 , then clearly mult $[G]=1,8$ and 64 respectively.
Let $n \geq 5$. Then

$$
\begin{aligned}
& \operatorname{mult}\left[u_{1}\right]=\operatorname{mult}\left[u_{n}\right]=2, \\
& \operatorname{mult}\left[u_{2}\right]=\operatorname{mult}\left[u_{n-1}\right]=4
\end{aligned}
$$

and

$$
\operatorname{mult}\left[u_{i}\right]=\Pi_{v \in N\left[u_{i}\right]} \operatorname{deg}(v)=8 .
$$

Therefore

$$
\begin{aligned}
\operatorname{mult}[G] & =\Pi_{u \in V(G)}\left(2^{2}\right) \times\left(4^{2}\right) \times\left(8^{(n-4)}\right) \\
& =8^{n-2}
\end{aligned}
$$

Theorem 3.2. For any r-regular connected graph G of order $n \geq 2, \operatorname{mult}[G]=r^{n(r+1)}$.
Proof. Let G be a r-regular connected graph on n vertices and let $V(G)=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ where $\operatorname{deg}\left(u_{i}\right)=r$ for all i.

Let $n \geq 2$. Then

$$
\begin{aligned}
\operatorname{mult}\left[u_{i}\right] & =\Pi_{v \in N\left[u_{i}\right]} \operatorname{deg}(v) \\
& =r \times r \times \ldots \times r \quad(\mathrm{r}+1-\text { times })
\end{aligned}
$$

Thus
and hence

$$
\operatorname{mult}\left[u_{i}\right]=r^{r+1}
$$

$$
\begin{aligned}
\operatorname{mult}[G] & =r^{r+1} \times r^{r+1} \times \ldots \times r^{r+1} \\
& =r^{n(r+1)}
\end{aligned}
$$

Corollary 3.3. For a Cycle $C_{n},(n \geq 3)$, mult $\left[C_{n}\right]=8^{n}$.
Corollary 3.4.For a complete graph $K_{n},(n \geq 2)$, $\operatorname{mult}\left[K_{n}\right]=(n-1)^{n^{2}}$.
Corollary 3.5.For a Petersen graph P, mult $[P]=3^{40}$.
Proposition 3.6.For a complete bipartite graph $K_{m, n},(m, n \geq 1)$, $\operatorname{mult}\left[K_{m, n}\right]=(m n)^{m n} \times n^{m} \times m^{n}$.
Proof. Let $G=K_{m, n}$ be a complete bipartite graph with bipartition $\left(V_{1}, V_{2}\right)$ where $V_{1}=\left\{u_{1}, u_{2}, \ldots, u_{m}\right\}$ and $V_{2}=$ $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$.

Then $\operatorname{deg}\left(u_{i}\right)=n$ and $\operatorname{deg}\left(v_{j}\right)=m$ for all i, j.
Thus

$$
\operatorname{mult}\left[u_{i}\right]=\Pi_{v \in N\left[u_{i}\right]} \operatorname{deg}(v)=n \times m^{n}
$$

for $i=1,2, \ldots, m$.
Similarly,

$$
\operatorname{mult}\left[v_{j}\right]=m \times n^{m}
$$

for $j=1,2, \ldots, n$.
Therefore

$$
\begin{aligned}
\operatorname{mult}[G] & =n^{m} \times m^{n m} \times m^{n} \times n^{m n} \\
& =(m n)^{m n} \times n^{m} \times m^{n}
\end{aligned}
$$

Proposition 3.7.Let $G=L_{2 n},(n \geq 4)$, be a Ladder graph. Then mult $[G]=2^{1} 2 \times 3^{8(n-2)}$.
Proof. Let $G=L_{2 n}, n \geq 4$. Let $V(G)=\left\{u_{1}, u_{2}, \ldots, u_{n}, v_{1}, v_{2}, \ldots, v_{n}\right\}$ where $\operatorname{deg}\left(u_{1}\right)=\operatorname{deg}\left(u_{n}\right)=\operatorname{deg}\left(v_{1}\right)=$ $\operatorname{deg}\left(v_{n}\right)=2$ and $\operatorname{deg}\left(u_{i}\right)=\operatorname{deg}\left(v_{i}\right)=3$ for $i=2,3, \ldots, n-1$.

Then

$$
\begin{gathered}
\operatorname{mult}\left[u_{1}\right]=\operatorname{mult}\left[v_{1}\right]=\operatorname{mult}\left[u_{n}\right]=\operatorname{mult}\left[v_{n}\right]=12, \\
\operatorname{mult}\left[u_{2}\right]=\operatorname{mult}\left[v_{2}\right]=\operatorname{mult}\left[u_{n-1}\right]=\operatorname{mult}\left[v_{n-1}\right]=54
\end{gathered}
$$

and

$$
\operatorname{mult}\left[u_{i}\right]=\Pi_{v \in N\left[u_{i}\right]} \operatorname{deg}(v)=81
$$

Similarly,

$$
\operatorname{mult}\left[v_{i}\right]=81
$$

Therefore,

$$
\begin{aligned}
\operatorname{mult}[G] & =\Pi_{u \in V(G)} \operatorname{mult}[u] \\
& =(12)^{4} \times(54)^{4} \times(81)^{2 n-8} \\
& =2^{8} \times 3^{4} \times 3^{8} \times 3^{4} \times 2^{4} \times 3^{(4 n-16)} \times 3^{(4 n-16)} \\
& =2^{12} \times 3^{(8 n-16)} \\
& =2^{12} \times 3^{8(n-2)} .
\end{aligned}
$$

Proposition 3.8.For a Fan F_{n}, $(n \geq 4)$, $\operatorname{mult}\left[F_{n}\right]=2^{6} \times 3^{4(n-3)} \times(n-1)^{n}$.
Proof: Let $G=F_{n}(n \geq 4)$. Let $V(G)=\left\{u, u_{1}, u_{2}, \ldots, u_{n-1}\right\}$ where $\operatorname{deg}(u)=n-1, \operatorname{deg}\left(u_{1}\right)=\operatorname{deg}\left(u_{n-1}\right)=2$ and $\operatorname{deg}\left(u_{i}\right)=3$ for $i=2,3, \ldots, n-2$.

Then

$$
\begin{gathered}
\operatorname{mult}[u]=(n-1) \times 2^{2} \times 3^{n-3}, \\
\operatorname{mult}\left[u_{1}\right]=\operatorname{mult}\left[u_{n-1}\right]=6 \times(n-1), \\
\operatorname{mult}\left[u_{2}\right]=\operatorname{mult}\left[u_{n-2}\right]=18 \times(n-1)
\end{gathered}
$$

and

$$
\operatorname{mult}\left[u_{i}\right]=\Pi_{v \in N\left[u_{i}\right]} \operatorname{deg}(v)=27 \times(n-1)
$$

for $i=2,3, \ldots, n-3$.Therefore

$$
\begin{aligned}
\operatorname{mult}[G] & =\Pi_{v \in V(G)} \text { mult }[v] \\
& =2^{2} \times(n-1) \times 3^{n-3} \times 6^{2} \times(n-1)^{2} \times(18)^{2} \times(n-1)^{2} \times(27)^{n-5} \times(n-1)^{n-5} \\
& =2^{2} \times(n-1) \times 3^{n-3} \times 2^{2} \times 3^{2} \times(n-1)^{2} \times 2^{2} \times 3^{4} \times(n-1)^{2} \times 3^{3 n-15} \times(n-1)^{n-5} \\
& =2^{6} \times 3^{4(n-3)} \times(n-1)^{n} .
\end{aligned}
$$

Theorem 3.9 Let $G=L_{2 n}$. Then mult $[G]=12^{4} \times 54^{4} \times 81^{2(n-4)}$.
Proof: Let $G=L_{2 n}$ be a Ladder graph with $2 n$ vertices.
Let $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}, u_{1}, u_{2}, \ldots, u_{n}\right\}$ and $\operatorname{deg}\left(v_{i}\right)=\operatorname{deg}\left(u_{i}\right)=2$ for all $i=1, n ; \operatorname{deg}\left(v_{i}\right)=$ $\operatorname{deg}\left(u_{i}\right)=3$ for all $i=2,3, \ldots, n-1$. Then

$$
\begin{aligned}
& \operatorname{mult}\left[v_{1}\right]=\Pi_{v \in N\left[v_{1}\right]} \operatorname{deg}(v) \\
& =\operatorname{deg}\left(u_{1}\right) \times \operatorname{deg}\left(v_{2}\right) \times \operatorname{deg}\left(v_{1}\right) \\
& \operatorname{mult}\left[v_{1}\right]=2 \times 2 \times 3=12
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
& \operatorname{mult}\left[v_{n}\right]=\operatorname{mult}\left[u_{1}\right]=\operatorname{mult}\left[u_{n}\right]=12 . \\
& \operatorname{mult}\left[v_{2}\right]=\Pi_{v \in N\left[v_{2}\right]^{2}} \operatorname{deg}(v) \\
& =\operatorname{deg}\left[u_{2}\right] \times \operatorname{deg}\left[v_{1}\right] \times \operatorname{deg}\left[v_{3}\right] \times \operatorname{deg}\left[v_{2}\right] \\
& \operatorname{mult}\left[v_{1}\right]=3 \times 2 \times 3 \times 3 \\
& \operatorname{mult}\left[v_{2}\right]=54
\end{aligned}
$$

Similarly,
$\operatorname{mult}\left[u_{2}\right]=\operatorname{mult}\left[u_{n-1}\right]=\operatorname{mult}\left[v_{n-1}\right]=54$.
Foreach $i=3,4, \ldots, n-2$,
$\operatorname{mult}\left[v_{i}\right]=\Pi_{v \in N\left[v_{i}\right]} \operatorname{deg}(v)$
$=\operatorname{deg}\left(u_{i}\right)+\operatorname{deg}\left(v_{i-1}\right)+\operatorname{deg}\left(v_{i+1}\right)+\operatorname{deg}\left(v_{i}\right)$
$\operatorname{mult}\left[v_{1}\right]=3 \times 3 \times 3 \times 3$
$\operatorname{mult}\left[v_{i}\right]=81$, foralli $=3,4, \ldots, n-2$.
Similarly,

$$
\operatorname{mult}\left[u_{i}\right]=81, \text { forall } i=3,4, \ldots, n-2 .
$$

Now,
$\operatorname{mult}[G]=\Pi_{v \in V(G)} \operatorname{mult}[v]$
$=\Pi_{i=1, n} \operatorname{mult}\left[v_{i}\right] \times \Pi_{i=1, n} \operatorname{mult}\left[u_{i}\right] \times \Pi_{i=2, n-1} \operatorname{mult}\left[v_{i}\right] \times \Pi_{i=2, n-1} \operatorname{mult}\left[u_{i}\right]$
$\times \prod_{i=3}^{n-2}$ mult $\left[v_{i}\right] \times \prod_{i=3}^{n-2}$ mult $\left[u_{i}\right]$
$=\Pi_{i=1, n} 12 \times \Pi_{i=1, n} 12 \times \Pi_{i=2, n-1} 54 \times \Pi_{i=2, n-1} 54 \times \Pi_{i=3}^{n-2} 81 \times \Pi_{i=3}^{n-2} 81$
mult $[G]=12^{4} \times 54^{4} \times 81^{2(n-4)}$.

Theorem 3.10.Let $G=K_{m}\left(a_{1}, a_{2}, \ldots, a_{m}\right)$.Then $\operatorname{mult}[G]=n^{n(n+1)}$.
Proof. Let $G=K_{m}\left(a_{1}, a_{2}, \ldots, a_{m}\right)$ be a multistar graph of order $m+a_{1}+a_{2}+\cdots+a_{m}$. Let $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}, u_{1}, u_{2}, \ldots, u_{n}\right\}$ such that $\operatorname{deg}\left(v_{i}\right)=n$ and $\operatorname{deg}\left(u_{i}\right)=1$ for all $i=1,2, \ldots, n$.
mult $\left[u_{i}\right]=\Pi_{v \in N\left[u_{i}\right]} \operatorname{deg}(v)$
$\operatorname{mult}\left[u_{i}\right]=n$
$\operatorname{mult}\left[v_{i}\right]=\Pi_{v \in N\left[v_{i}\right]} \operatorname{deg}(v)$
$\operatorname{mult}\left[v_{i}\right]=n^{n}$
Now,
$\operatorname{mult}[G]=\Pi_{v \in V(G)} \operatorname{mult}[v]$
$=\prod_{i=1}^{n} \operatorname{mult}\left[v_{i}\right] \times \prod_{i=1}^{n} \operatorname{mult}\left[u_{i}\right]$
$\operatorname{mult}[G]=n^{n(n+1)}$.
Theorem 3.11. Let G be a butterfly graph. Then mult $[G]=2^{22}$
Proof. Let G be a butterfly graph. Let $V(G)=\left\{x, v_{1}, v_{2}, v_{3}, v_{4}\right\}$ such that $\operatorname{deg}(x)=4 ; \operatorname{deg}\left(v_{i}\right)=2$,for all $i=$ 1,2,3,4;

```
\(\operatorname{mult}[x]=\prod_{v \in N[x]} \operatorname{deg}(v)\)
\(=\operatorname{deg}\left(v_{1}\right) \times \operatorname{deg}\left(v_{2}\right) \times \operatorname{deg}\left(v_{3}\right) \times \operatorname{deg}\left(v_{4}\right) \times \operatorname{deg}(x)\)
\(=2 \times 2 \times 2 \times 2 \times 4=64\)
```

For $i=1,2,3,4$

$$
\begin{aligned}
& \operatorname{mult}\left[v_{i}\right]=\Pi_{v \in N\left[v_{i}\right]} \operatorname{deg}(v) \\
& =2 \times 4 \times 2 \\
& =16
\end{aligned}
$$

Now,

$$
\begin{aligned}
& \operatorname{mult}[G]=\Pi_{v \in V(G)} \text { mult }[v] \\
& =\operatorname{mult}\left[v_{1}\right] \times \operatorname{mult}\left[v_{2}\right] \times \text { mult }\left[v_{3}\right] \times \operatorname{mult}\left[v_{4}\right] \times \operatorname{mult}[x] \\
& =2^{22}
\end{aligned}
$$

Theorem 3.12 Let $G=D_{(n)}^{(m)}$ be a Dutch windmill graph. Then mult $[G]=2 m^{m+1} 2^{3 m(n-1)}$
Proof: Let $G=D_{(n)}^{(m)}$ be a Dutch windmill graph. Let $V(G)=\left\{x, v_{1}^{i}, v_{2}^{i}, v_{3}^{i}, \ldots, v_{n-1}^{i}\right\}$ for $i=1,2, \ldots, m$ such that $\operatorname{deg}(x)=2 m ; \operatorname{deg}\left(v_{j}^{i}\right)=2$,for all $i=1,2, \ldots, m$ and $j=1,2, \ldots, n-1$;

$$
\operatorname{mult}[x]=\Pi_{v \in N[x]} \operatorname{deg}(v)
$$

$=\operatorname{deg}(x) \times \prod_{i=1}^{m}\left(\operatorname{deg}\left(v_{1}^{i}\right) \times \operatorname{deg}\left(v_{n-1}^{i}\right)\right)$
$=4^{m} \times 2 m$
For $i=1,2, \ldots, m$

$$
\operatorname{mult}\left[v_{1}^{i}\right]=\Pi_{v \in N\left[v_{1}^{i}\right]} \operatorname{deg}(v)
$$

$$
=8 m
$$

Similarly,
$\operatorname{mult}\left[v_{n-1}^{i}\right]=8 m$.
For $j=2,3, \ldots, n-2$,

$$
\operatorname{mult}\left[v_{j}^{i}\right]=\Pi_{v \in N\left[v_{j}^{i}\right]} \operatorname{deg}(v)
$$

$$
=2 \times 2 \times 2=8
$$

Now,

$$
\begin{aligned}
& \operatorname{mult}[G]=\Pi_{v \in V(G)} \text { mult }[v] \\
& =\operatorname{mult}[x] \times \prod_{i=1}^{m} \prod_{j=1}^{n-1} \text { mult }\left[v_{j}^{i}\right] \\
& =2 m^{(m+1)} 2^{3 m(n-1)}
\end{aligned}
$$

REFERENCES

[1] M. Anitha, S. Balamurugan: Strong (Weak) Efficient Open Domination on Product Graphs, International Journal of Pure and Applied Mathematics, (J.No. 23425), ISSN 1311-8080, communicated.
[2] S. Balamurugan, M. Anitha, C. Karnan and P. Aristotle: A Note on Open Support of a Graph under Addition I, Communicated
[3] S. Balamurugan, M. Anitha, C. Karnan and P. Aristotle: A Note on Open Support of a Graph under Addition II, Communicated
[4] S. Balamurugan, M. Anitha, C. Karnan and P. Palanikumar: Closed Support of a Graph Under Addition I, Communicated
[5] S. Balamurugan, M. Anitha, C. Karnan and P. Palanikumar: Closed Support of a Graph Under Addition II, Communicated
[6] S. Balamurugan, M. Anitha, C. Karnan and P. Palanikumar: Open Support of a Graph Under Multiplication, Communicated
[7] R. Balakrishnan, K. Ranganathan, A Textbook of Graph Theory, Springer,2011.
[8] S. Balamurugan, A study on chromatic strong domination in graphs, Ph.D Thesis, Madurai Kamaraj University, India 2008.
[9] J.A. Bondy, U.S.R. Murthy, Graph theory with Applications, North-Holland, 1982.
[10] F. Harary : Graph Theory, Addsion Wesley, Reading, Mass, (1972).
[11] T. W. Haynes, S. T. Hedetniemi, P. J. Slater: Fundamentals of Domination in Graphs, Marcel Dekker, New York, (1998).
[12] C. Y. Ponnappan: Studies in Graph Theory Support Strong Domination in Graphs, Ph.D thesis, Madurai Kamaraj University (2008).

