Open Support of a Graph under Multiplication

${ }^{1}$ S. Balamurugan, ${ }^{2} \mathrm{M}$. Anitha, ${ }^{3} \mathrm{C}$. Karnan, ${ }^{4} \mathrm{P}$. Palanikumar
${ }^{1}$ PG Department of Mathematics,
Government Arts College, Melur - 625 106, Tamilnadu, India.
${ }^{2}$ Department of Mathematics
Syed Ammal Arts and Science College, Ramanathapuram, Tamilnadu, India.
${ }^{3}$ Department of Mathematics
The Optimus Public School, Erode - 638455
${ }^{4}$ Department of Mathematics
Mannar Thirumalai Naicker College, Madurai 625 004, Tamilnadu, India.

Abstract

In this paper, the open support of a vertex v under multiplication and open support of a graph G under multiplication is defined and studied. Also, we find the value of open support of some namely graphs like Dutch windmill graph, Butterfly graph and Ladder graph. Moreover, we generalized the value of open support under multiplication for any given graph G.

AMS Subject Code: 05C07
Keywords: Vertex Degree, Open Support under multiplication of a Vertex, Open Support under multiplication of a Graph.

I. INTRODUCTION

In this work we consider finite, undirected, simple graphs $G=(V, E)$ with n vertices and m edges. The neighbourhood of a vertex $v \in V(G)$ is the set $N_{G}(v)$ of all the vertices adjacent to v in G. For a set $X \subseteq V(G)$, the open neighbourhood $N_{G}(X)$ is defined to be $U_{v \in X} N_{G}(v)$ and the closed neighbourhood $N_{G}[X]=$ $N_{G}(X) \cup X$. The degree of a vertex $v \in V(G)$ is the number of edges of G incident with v and is denoted by $\operatorname{deg}_{G}(v)$ or $\operatorname{deg}(v)$. The maximum and the minimum degrees of the vertices of G are respectively denoted by $\Delta(G)$ and $\delta(G)$. A vertex of a degree 0 in G is called an isolated vertex and a vertex of degree 1 is called a pendent vertex or an end vertex of G. A vertex of a graph G is said to be a vertex of full degree if it is adjacent to all other vertices in G. A graph G is said to be regular of degree r if every vertex of G has degree r. Such graphs are called r-regular graphs.

The Dutch windmill $\operatorname{graph} D_{n}^{(m)}$, is the graph obtained by taking m copies of the cycle graph C_{n} with a vertex in common. The Butterfly graph (also called the bowtie graph and the hourglass graph) is a planar undirected graph with 5 vertices and 6 edges. It can be constructed by joining 2 copies of the cycle graph C_{3} with a common vertex. It is denoted by B_{n}. The ladder graph L_{n} is a planar undirected graph with 2 n vertices and $n+2(n-1)$ edges. The Ladder graph obtained as the cartesian product of two graphs one of which has only one edge: $L_{n, 1}=P_{n} \times P_{1}$.

An open support of a vertex v under multiplication is defined by $\prod_{u \in N(v)} \operatorname{deg}(u)$ and is denoted by $\operatorname{mult}(v)$. An open support of a graph G under multiplication is defined by $\prod_{u \in V(G)} \operatorname{mult}(u)$ and it is denoted by mult(G).

II. DEFINITIONS

Definition 2.1.Let $G=(V, E)$ be a graph. An open support of a vertex v under multiplication is defined by $\prod_{u \in N(v)} \operatorname{deg}(u)$ and is denoted by mult (v).

Definition 2.2.Let $G=(V, E)$ be a graph. An open support of a graph G under multiplication is defined by $\prod_{u \in V(G)} \operatorname{mult}(u)$ and it is denoted by mult (G).

III. RESULTS

Proposition 3.1.For a Path $P_{n},(n \geq 2)$, $\operatorname{mult}\left(P_{n}\right)=4^{n-2}$.
Proof: Let G be a path on n vertices and let $V(G)=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ where $\operatorname{deg}\left(u_{1}\right)=\operatorname{deg}\left(u_{n}\right)=1$ and $\operatorname{deg}\left(u_{i}\right)=2$ for $i=2,3, \ldots, n-1$.

If $n=2,3$, or 4 , then clearly $\operatorname{mult}(G)=1,4$ and 16 respectively.
Let $n \geq 5$. Then

$$
\begin{aligned}
& \operatorname{mult}\left(u_{1}\right)=\operatorname{mult}\left(u_{n}\right)=2, \\
& \operatorname{mult}\left(u_{2}\right)=\operatorname{mult}\left(u_{n-1}\right)=2
\end{aligned}
$$

and

$$
\operatorname{mult}\left(u_{i}\right)=\Pi_{v \in N\left(u_{i}\right)} \operatorname{deg}(v)=4
$$

Therefore

$$
\operatorname{mult}(G)=\Pi_{u \in V(G)}\left(2^{2}\right) \times\left(2^{2}\right) \times\left(4^{(n-4)}\right)=4^{n-2}
$$

Theorem 3.2 For any r-regular connected graph G of order $n \geq 2$, $\operatorname{mult}(G)=r^{r n}$.
Proof: Let G be a r-regular connected graph on n vertices and let $V(G)=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ where $\operatorname{deg}\left(u_{i}\right)=r$ for all i. Let $n \geq 2$. Then

$$
\operatorname{mult}\left(u_{i}\right)=\Pi_{v \in N\left(u_{i}\right)} \operatorname{deg}(v)=r \times r \times \ldots \times r \quad(\mathrm{r}-\mathrm{times})=r^{r} .
$$

Thus, mult $\left(u_{i}\right)=r^{r}$ and hence

$$
\operatorname{mult}(G)=r^{r} \times r^{r} \times \ldots \times r^{r}=r^{r n}
$$

Corollary 3.3 For a Cycle $C_{n},(n \geq 3)$, $\operatorname{mult}\left(C_{n}\right)=4^{n}$.
Corollary 3.4 For a complete graph $K_{n},(n \geq 2)$, $\operatorname{mult}\left(K_{n}\right)=(n-1)^{n(n-1)}$.
Corollary 3.5 For a Petersen graph P, $\operatorname{mult}(P)=3^{30}$.
Proposition 3.6.For a complete bipartite graph $K_{m, n},(m, n \geq 1), \operatorname{mult}\left(K_{m, n}\right)=(m n)^{m n}$.
Proof: Let $G=K_{m, n}$ be a complete bipartite graph with bipartition $\left(V_{1}, V_{2}\right)$ where $V_{1}=\left\{u_{1}, u_{2}, \ldots, u_{m}\right\}$ and $V_{2}=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. Then $\operatorname{deg}\left(u_{i}\right)=n$ and $\operatorname{deg}\left(v_{j}\right)=m$ for all i, j. Thus

$$
\operatorname{mult}\left(u_{i}\right)=\Pi_{v \in N\left(u_{i}\right)} \operatorname{deg}(v)=\Pi_{v \in V_{2}} m=m^{n} \quad \text { fori }=1,2, \ldots, \mathrm{~m} .
$$

Similarly,

$$
\operatorname{mult}\left(v_{j}\right)=n^{m} \text { for } j=1,2, \ldots, n
$$

Therefore

$$
\operatorname{mult}(G)=m^{n m} \times n^{m n}=(m n)^{m n}
$$

Proposition 3.7.Let $G=L_{2 n},(n \geq 4)$, be a Ladder graph. Then mult $(G)=2^{8} \times 3^{6(n-2)}$.
Proof: Let $G=L_{2 n}, n \geq 4$. Let $V(G)=\left\{u_{1}, u_{2}, \ldots, u_{n}, v_{1}, v_{2}, \ldots, v_{n}\right\}$ where $\operatorname{deg}\left(u_{1}\right)=\operatorname{deg}\left(u_{n}\right)=\operatorname{deg}\left(v_{1}\right)=$ $\operatorname{deg}\left(v_{n}\right)=2$ and $\operatorname{deg}\left(u_{i}\right)=\operatorname{deg}\left(v_{i}\right)=3$ for $i=2,3, \ldots, n-1$. Then

$$
\operatorname{mult}\left(u_{1}\right)=\operatorname{mult}\left(v_{1}\right)=\operatorname{mult}\left(u_{n}\right)=\operatorname{mult}\left(v_{n}\right)=6
$$

$$
\operatorname{mult}\left(u_{2}\right)=\operatorname{mult}\left(v_{2}\right)=\operatorname{mult}\left(u_{n-1}\right)=\operatorname{mult}\left(v_{n-1}\right)=18
$$

and

$$
\operatorname{mult}\left(u_{i}\right)=\Pi_{v \in N\left(u_{i}\right)} \operatorname{deg}(v)=3 \times 3 \times 3=27
$$

Similarly,

$$
\operatorname{mult}\left(v_{i}\right)=27
$$

Therefore,

$$
\begin{aligned}
\operatorname{mult}(G) & =\Pi_{u \in V(G)} \operatorname{mult}(u) \\
& =6^{4} \times(18)^{4} \times(27)^{2 n-8} \\
& =2^{4} \times 3^{4} \times 2^{4} \times 3^{8} \times 3^{6(n-4)} \\
& =2^{8} \times 3^{12+6(n-4)} \\
& =2^{8} \times 3^{6(n-2)}
\end{aligned}
$$

Proposition 3.8.For a Fan F_{n}, $(n \geq 4)$, mult $\left(F_{n}\right)=2^{4} \times 3^{3(n-3)} \times(n-1)^{n-1}$.
Proof: Let $G=F_{n}(n \geq 4)$. Let $V(G)=\left\{u, u_{1}, u_{2}, \ldots, u_{n-1}\right\}$ where $\operatorname{deg}(u)=n-1, \operatorname{deg}\left(u_{1}\right)=\operatorname{deg}\left(u_{n-1}\right)=$ 2 and $\operatorname{deg}\left(u_{i}\right)=3$ for $i=2,3, \ldots, n-2$.

Then

$$
\begin{gathered}
\operatorname{mult}(u)=2^{2} \times 3^{n-3}, \\
\operatorname{mult}\left(u_{1}\right)=\operatorname{mult}\left(u_{n-1}\right)=3 \times(n-1), \\
\operatorname{mult}\left(u_{2}\right)=\operatorname{mult}\left(u_{n-2}\right)=6 \times(n-1)
\end{gathered}
$$

and

$$
\operatorname{mult}\left(u_{i}\right)=\Pi_{v \in N\left(u_{i}\right)} \operatorname{deg}(v)=9 \times(n-1)
$$

for $i=2,3, \ldots, n-3$.
Therefore

$$
\begin{aligned}
\operatorname{mult}(G) & =\Pi_{v \in V(G)} \operatorname{mult}(v) \\
& =2^{2} \times 3^{n-3} \times 3^{2} \times(n-1)^{2} \times 6^{2} \times(n-1)^{2} \times 9^{n-5} \times(n-1)^{n-5} \\
& =2^{4} \times 3^{n+1} \times(n-1)^{4} \times 3^{2 n-10} \times(n-1)^{n-5} \\
& =\operatorname{mult}(G)=2^{4} \times 3^{3(n-3)} \times(n-1)^{n-1} .
\end{aligned}
$$

Theorem 3.9.Let $G=L_{2 n}$. Then $\operatorname{mult}(G)=6^{4} \times 18^{4} \times 27^{2(n-4)}$.
Proof. Let $G=L_{2 n}$ be a Ladder graph with $2 n$ vertices. Let $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}, u_{1}, u_{2}, \ldots, u_{n}\right\}$ and $\operatorname{deg}\left(v_{i}\right)=\operatorname{deg}\left(u_{i}\right)=2$ for all $i=1, n ; \operatorname{deg}\left(v_{i}\right)=\operatorname{deg}\left(u_{i}\right)=3$ for all $i=2,3, \ldots, n-1$. Then

$$
\begin{aligned}
& \operatorname{mult}\left(v_{1}\right)=\Pi_{v \in N\left(v_{1}\right)} \operatorname{deg}(v) \\
& =\operatorname{deg}\left(u_{1}\right) \times \operatorname{deg}\left(v_{2}\right) \\
& \operatorname{mult}\left(v_{1}\right)=6
\end{aligned}
$$

Similarly,

$$
\operatorname{mult}\left(v_{n}\right)=\operatorname{mult}\left(u_{1}\right)=\operatorname{mult}\left(u_{n}\right)=6 .
$$

$\operatorname{mult}\left(v_{2}\right)=\Pi_{v \in N\left(v_{2}\right)} \operatorname{deg}(v)$
$=\operatorname{deg}\left(u_{2}\right) \times \operatorname{deg}\left(v_{1}\right) \times \operatorname{deg}\left(v_{3}\right)$
$\operatorname{mult}\left(v_{2}\right)=18$
Similarly,

$$
\operatorname{mult}\left(u_{2}\right)=\operatorname{mult}\left(u_{n-1}\right)=\operatorname{mult}\left(v_{n-1}\right)=18
$$

For each $i=3,4, \ldots, n-2$,
$\operatorname{mult}\left(v_{i}\right)=\Pi_{v \in N\left(v_{i}\right)} \operatorname{deg}(v)$
$=\operatorname{deg}\left(u_{i}\right) \times \operatorname{deg}\left(v_{i-1}\right) \times \operatorname{deg}\left(v_{i+1}\right)$
$\operatorname{mult}\left(v_{i}\right)=27$, foralli $=3,4, \ldots, n-2$.
Similarly,

$$
\operatorname{mult}\left(u_{i}\right)=27, \text { foralli }=3,4, \ldots, n-2 .
$$

Now,

$$
\begin{aligned}
& \operatorname{mult}(G)=\Pi_{v \in V(G)} \operatorname{mult}(v) \\
& =\Pi_{i=1, n} \operatorname{mult}\left(v_{i}\right) \times \Pi_{i=1, n} \operatorname{mult}\left(u_{i}\right) \times \Pi_{i=2, n-1} \operatorname{mult}\left(v_{i}\right) \times \Pi_{i=2, n-1} \operatorname{mult}\left(u_{i}\right) \\
& \times \Pi_{i=3}^{n-2} \operatorname{mult}\left(v_{i}\right) \times \Pi_{i=3}^{n-2} \operatorname{mult}\left(u_{i}\right) \\
& =\sum_{i=1, n} 6 \times \Pi_{i=1, n} 6 \times \Pi_{i=2, n-1} 18 \times \Pi_{i=2, n-1} 18 \times \Pi_{i=3}^{n-2} 27 \times \Pi_{i=3}^{n-2} 27 \\
& \operatorname{mult}(G)=6^{4} \times 18^{4} \times 27^{2(n-4)} .
\end{aligned}
$$

Theorem 3.10.Let $G=(m, m, \ldots, m)$ be a caterpillar graph.Then

$$
\operatorname{mult}(G)=(m+1)^{2(m+1)}(m+2)^{m n+2(m+n-2)}
$$

Proof. Let $\mathrm{G}=(m, m, \ldots, m)$ be a caterpillar graph.
Let $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}, u_{n}, u_{11}, \ldots, u_{1 m}, \ldots, u_{n 1}, \ldots, u_{n m}\right\}$ such that $\operatorname{deg}\left(v_{1}\right)=\operatorname{deg}\left(v_{n}\right)=m+1$;
$\operatorname{deg}\left(v_{i}\right)=m+2$,for all $i=2,3, \ldots, n-1$ and $\operatorname{deg}\left(u_{i j}\right)=1$ for all $i=1,2, \ldots, n$ and $j=1,2, \ldots, m$
$\operatorname{mult}\left(v_{1}\right)=\Pi_{i=1}^{n} \operatorname{deg}\left(u_{1 i}\right) \times \operatorname{deg}\left(v_{2}\right)$
$=\prod_{i=1}^{m} 1(m+2)$
$=m+2$
Similarly,
$\operatorname{mult}\left(v_{n}\right)=m+2 ;$
$\operatorname{mult}\left(v_{2}\right)=\Pi_{i=1}^{n} \operatorname{deg}\left(u_{2 i}\right) \times \operatorname{deg}\left(v_{1}\right) \times \operatorname{deg}\left(v_{3}\right)$
$=\prod_{i=1}^{m} 1(m+1)(m+2)$
$=(m+1)(m+2)$
Similarly,
$\operatorname{mult}\left(v_{n-1}\right)=(m+1)(m+2) ;$

For $i=3,4, \ldots, n-2$

$$
\begin{aligned}
& \operatorname{mult}\left(v_{i}\right)=\Pi_{v \in N\left(v_{i}\right)} \operatorname{deg}(v) \\
& =\operatorname{deg}\left(v_{i-1}\right) \times \Pi_{j=1}^{n_{i}} \operatorname{deg}\left(u_{i j}\right) \times \operatorname{deg}\left(v_{i+1}\right) \\
& =(m+2) \Pi_{j=1}^{n} 1 \times(m+2) \\
& =(m+2)^{2}
\end{aligned}
$$

For $j=1,2, \ldots, m$

$$
\operatorname{mult}\left(u_{1 j}\right)=\operatorname{deg}\left(v_{1}\right)
$$

$$
=m+1
$$

Similarly,

$$
\operatorname{mult}\left(u_{n j}\right)=m+1 ;
$$

For $i=2,3, \ldots, n-1$ and $j=1,2, \ldots, m$

$$
\operatorname{supp}\left(u_{i j}\right)=\operatorname{deg}\left(v_{i}\right)
$$

$$
=m+2
$$

Now,

$$
\begin{aligned}
& \operatorname{mult}(G)=\Pi_{v \in V(G)} \operatorname{mult}(v) \\
& =\Pi_{i=1}^{n} \operatorname{mult}\left(v_{i}\right) \times \Pi_{i=1}^{n} \Pi_{j=1}^{m} \operatorname{mult}\left(u_{i j}\right) \\
& =\operatorname{mult}\left(v_{1}\right) \times \operatorname{mult}\left(v_{2}\right) \times \Pi_{i=3}^{n-2} \operatorname{mult}\left(v_{i}\right) \times \operatorname{mult}\left(v_{n-1}\right) \times \operatorname{mult}\left(v_{n}\right) \\
& \times \Pi_{j=1}^{m} \operatorname{mult}\left(u_{1 j}\right) \times \Pi_{j=1}^{m} \operatorname{mult}\left(u_{n j}\right) \times \Pi_{i=2}^{n-1} \Pi_{j=1}^{m} \operatorname{mult}\left(u_{i j}\right) \\
& =(m+2)^{2}(m+1)^{2}(m+2)^{2} \Pi_{i=3}^{n-2}(m+2)^{2} \\
& \left(\Pi_{j=1}^{m}(m+1)\right)^{2} \Pi_{i=2}^{n-1} \Pi_{j=1}^{m}(m+2) \\
& =(m+1)^{2}(m+2)^{4}\left[(m+2)^{2}\right]^{(n-4)}(m+1)^{2 m}(m+2)^{m(n-2)} \\
& =(m+1)^{2(m+1)}(m+2)^{4+2 n-8+m n-2 m} \\
& \operatorname{mult}(G)=(m+1)^{2(m+1)}(m+2)^{m n+2(m+n-2)} .
\end{aligned}
$$

Theorem 3.11 Let G be a butterfly graph. Then $\operatorname{mult}(G)=2^{16}$
Proof.Let G be a butterfly graph. Let $V(G)=\left\{x, v_{1}, v_{2}, v_{3}, v_{4}\right\}$ such that $\operatorname{deg}(x)=4 ; \operatorname{deg}\left(v_{i}\right)=2$,for all $i=1,2,3,4$;

$$
\begin{aligned}
& \operatorname{mult}(x)=\Pi_{v \in N(x)} \operatorname{deg}(v) \\
& =\operatorname{deg}\left(v_{1}\right) \times \operatorname{deg}\left(v_{2}\right) \times \operatorname{deg}\left(v_{3}\right) \times \operatorname{deg}\left(v_{4}\right) \\
& =16
\end{aligned}
$$

For $i=1,2,3,4$

$$
\begin{aligned}
& \operatorname{mult}\left(v_{i}\right)=\Pi_{v \in N\left(v_{i}\right)} \operatorname{deg}(v) \\
& =2 \times 4 \\
& =8
\end{aligned}
$$

Now,

$$
\begin{aligned}
& \operatorname{mult}(G)=\Pi_{v \in V(G)} \operatorname{mult}(v) \\
& =\operatorname{mult}\left(v_{1}\right) \times \operatorname{mult}\left(v_{2}\right) \times \operatorname{mult}\left(v_{3}\right) \times \operatorname{mult}\left(v_{4}\right) \times \operatorname{mult}(x) \\
& =2^{16}
\end{aligned}
$$

Theorem 3.12.Let $G=D_{(n)}^{(m)}$ be a Dutch windmill graph. Then mult $(G)=\left[m 2^{(2 n-1)}\right]^{m}$
Proof. Let $G=D_{(n)}^{(m)}$ be a Dutch windmill graph. Let $V(G)=\left\{x, v_{1}^{i}, v_{2}^{i}, v_{3}^{i}, \ldots, v_{n-1}^{i}\right\}$ for $i=1,2, \ldots, m$ such that $\operatorname{deg}(x)=2 m ; \operatorname{deg}\left(v_{j}^{i}\right)=2$,for all $i=1,2, \ldots, m$ and $j=1,2, \ldots, n-1$;

$$
\begin{aligned}
& \operatorname{mult}(x)=\Pi_{v \in N(x)} \operatorname{deg}(v) \\
& =\Pi_{i=1}^{m}\left(\operatorname{deg}\left(v_{1}^{i}\right) \times \operatorname{deg}\left(v_{n-1}^{i}\right)\right) \\
& =\prod_{i=1}^{m}(4) \\
& =4^{m}
\end{aligned}
$$

For $i=1,2, \ldots, m$,

$$
\begin{aligned}
\operatorname{mult}\left(v_{1}^{i}\right) & =\Pi_{v \in N\left(v_{1}^{i}\right)} \operatorname{deg}(v) \\
& =2 m \times 2
\end{aligned}
$$

Similarly,
For $j=2,3, \ldots, n-2$,

$$
\operatorname{mult}\left(v_{n-1}^{i}\right)=4 m
$$

$$
\begin{gathered}
\operatorname{mult}\left(v_{j}^{i}\right)=\Pi_{v \in N\left(v_{j}^{i}\right)} \operatorname{deg}(v) \\
=2 \times 2=4
\end{gathered}
$$

Now,
mult $(G)=\Pi_{v \in V(G)}$ mult (v).

$$
\begin{gathered}
=\operatorname{mult}(x) \times \prod_{i=1}^{m}\left\{\prod_{j=2}^{n-2} \operatorname{mult}\left(v_{j}^{i}\right) \times \operatorname{mult}\left(v_{1}^{i}\right) \times \operatorname{mult}\left(v_{n-1}^{i}\right)\right\} \\
=4^{m} \times \prod_{i=1}^{m}\left\{\prod_{j=2}^{n-2} 4 \times 8 m\right\} \\
=4^{m} \times \prod_{i=1}^{m}\left\{4^{n-3} \times 8 m\right\} \\
=4^{m} \times\left[4^{n-3} \times 8 m\right]^{m} \\
=\left[8 m \times 4^{n-2}\right]^{m} \\
=\left[m \times 2^{3} \times 2^{2 n-4}\right]^{m} \\
=\left[m \times 2^{2 n-1}\right]^{m}
\end{gathered}
$$

Theorem 3.13.Let $G=K_{m}\left(a_{1}, a_{2}, \ldots, a_{m}\right)$.Then $\operatorname{mult}(G)=n^{n^{2}}$.
Proof. Let $G=K_{m}\left(a_{1}, a_{2}, \ldots, a_{m}\right)$ be a multistar graph of order $m+a_{1}+a_{2}+\cdots+a_{m}$. Let $V(G)=$ $\left\{v_{1}, v_{2}, \ldots, v_{n}, u_{1}, u_{2}, \ldots, u_{n}\right\}$ such that $\operatorname{deg}\left(v_{i}\right)=n$ and $\operatorname{deg}\left(u_{i}\right)=1$ for all $i=1,2, \ldots, n$.

$$
\begin{aligned}
& \operatorname{mult}\left(u_{i}\right)=\Pi_{v \in N\left(u_{i}\right)} \operatorname{deg}(v) \\
& \operatorname{mult}\left(u_{i}\right)=n \\
& \operatorname{mult}\left(v_{i}\right)=\Pi_{v \in N\left(v_{i}\right)} \operatorname{deg}(v) \\
& \operatorname{mult}\left(v_{i}\right)=n \times n \times \ldots \times n[(n-1) \operatorname{times}] \\
& \operatorname{mult}\left(v_{i}\right)=n^{n-1}
\end{aligned}
$$

Now,

$$
\begin{aligned}
& \operatorname{mult}(G)=\Pi_{v \in V(G)} \operatorname{mult}(v) \\
& =\Pi_{i=1}^{n} \operatorname{mult}\left(v_{i}\right) \times \Pi_{i=1}^{n} \operatorname{mult}\left(u_{i}\right) \\
& =\Pi_{i=1}^{n} n^{n-1} \times \prod_{i=1}^{n} n \\
& =n^{n(n-1)} \times n^{n} \\
& \operatorname{mult}(G)=n^{n^{2}} .
\end{aligned}
$$

REFERENCES

[1] M. Anitha, S. Balamurugan: Strong (Weak) Efficient Open Domination on Product Graphs, International Journal of Pure and Applied Mathematics, (J.No. 23425), IISN 1311-8080, communicated.
[2] S. Balamurugan, M. Anitha, C. Karnan and P. Aristotle A Note on Open Support of a Graph under Addition I, Communicated
[3] S. Balamurugan, M. Anitha, C. Karnan and P. Aristotle: A Note on Open Support of a Graph under Addition II, Communicated
[4] S. Balamurugan, M. Anitha, C. Karnan and P. Palanikumar: Closed Support of a Graph Under Addition I , Communicated
[5] S. Balamurugan, M. Anitha, C. Karnan and P. Palanikumar: Closed Support of a Graph Under Addition II, Communicated
[6] R. Balakrishnan, K. Ranganathan, A Textbook of Graph Theory, Springer,2011.
[7] S. Balamurugan, A study on chromatic strong domination in graphs, Ph.D Thesis, Madurai Kamaraj University, India 2008.
[8] J.A. Bondy, U.S.R. Murthy, Graph theory with Applications, North-Holland, 1982.
[9] F. Harary : Graph Theory, Addsion Wesley, Reading, Mass, (1972).
[10] T. W. Haynes, S. T. Hedetniemi, P. J. Slater: Fundamentals of Domination in Graphs, Marcel Dekker, New York, (1998).
[11] C. Y. Ponnappan: Studies in Graph Theory Support Strong Domination in Graphs, Ph.D thesis, Madurai Kamaraj University (2008).

