Existence of unique integrable solution for a fractional nonlinear Volterra integral equation

Faez N. Ghaffoori
Department of Mathematics, College of Basic Education, University of Mustansirya Baghdad - Iraq

Abstract

We study the existence and uniqueness theorem of a fractional nonlinear Volterra integral equation in the space of Lebesgue integrable on bounded interval $[0, T]$ by using the Banach fixed point theorem.

Keywords : Superposition Operator-Nonlinear Fractional Volterra Integral Equation-Banach Fixed Point Theorem- Lipschitz Condition.

Mathematics Subject Classification : 45M27, 16A05.

I. INTRODUCTION

The subject of nonlinearfractional integral equation considered as an important branch of mathematics because it is used for solving of many problems such as physics, engineering and economics [1,2,3,].
In this paper, we will prove the existence and uniqueness theorem of a fractional Volterra integral equation in the space of Lebesgue integrable $L_{1}\left(R^{+}\right)$on bounded interval [0,T] of the kind :
$x(t)=g(t) f(t, x(t))+h(t)+$
$+\int_{0}^{t} \frac{(t-s)^{\alpha-1}}{\Gamma(\alpha)} f(s, x(s)) d s, 0<\alpha<1, \quad t \in[0, T](1.1)$

II. PRELIMINARIES

Let R be the field of real number, R^{+}be the interval [$0, \infty$]. If A is a Lebesgue measurable subset of R,then the symbol $\operatorname{mas}(A)$ stands for theLebesgue measure of A.
Further, denoted by $L_{1}(A)$ the space of all real function, defined and Lebesgue measurable on the set A. The norm of a function $x \varepsilon L_{1}(A)$ is define in the standard way by the formula,

$$
\|x\|=\left\|L_{1}(A)\right\|=\int_{A}|x(t)| d t
$$

Obviously $L_{1}(A)$ forms a Banach space under this norm, the space $L_{1}(A)$ will be called the Lebesgue space. In the case when $A=R^{+}$we will write L_{1} instead of $L_{1}\left(R^{+}\right)$.
One of the most important operator studied in nonlinear functional analysis is the so called the superposition operator [4]. Now, let us assume that $A \subset R$ is a given interval bounded.

Definition 2.1[4]: Assume that a function $f(t, x)=f: I \times R \rightarrow R$ satisfies the so-called Carathéodory condition, i. e. it is measurable in t for any $x \in R$ and continuous in x for almost all $t \in I$. Then to every function $x=x(t)$ which is measurable on I we may assign the function $(F x)(t)=f(t, x(t)), t \in I$. The operator F defined in such a way is said to be the superpositionoperator generated by the function f.
Theorem 2.1 [5].
The superposition operator F generated by a function f maps continuously the space $L^{1}(I)$ into itself if and only if $|f(t, x)| \leq a(t)+b|x|$ for all $t \in I$ and $x \in R$, where $a(t)$ is a function the from $L^{1}(I)$ and b is a nonnegative constant.

This theorem was proved by Krasnoselskii in the case when I is bounded interval. The generalization to the case of an unbounded interval I was given by Appell and Zabrejko[4].

Definition 2.2 [6]:A function $f: A \rightarrow R^{m}, A \subset R^{n}$, is said to be Lipschitz continuous if there exists a constant $\mathrm{L}, \mathrm{L}>0$ (is called the Lipschitz constant of f on A) such that

$$
|f(x)-f(y)| \leq \mathrm{L}|x-y|, \text { for all } x, y \in A
$$

Definition 2.3 [7]Let (X, d) be a metric space and $T: X \rightarrow X$ is called contraction mapping, if there exist a number $\gamma<1$, such that : $d(T x, T y) \leq \gamma d(x, y), \quad \forall x, y \in X$.
Theorem 2.2 [8]: Let X be a closed subset of a Banach space E and $T: X \rightarrow X$ be a cont-raction, then T has a unique fixed point.
Definition 2.4[9]:Let $[a, b](-\infty<a<b<\infty)$ be a finite interval on the real axis R , the Riemann-Liouville fractional integral $I_{a^{+}}^{\alpha} f$ of order $\alpha \in C(\mathcal{R}(\alpha)>0)$ is define by :
$I_{a^{+}}^{\alpha} f(t)=\frac{1}{\Gamma(\alpha)} \int_{a}^{t} \frac{f(s) d s}{(t-s)^{1-\alpha}} \quad(t>a ; \mathcal{R}(\alpha)>0)$.
Definition 2.5[10] :Let $[a, b](-\infty<a<b<\infty)$ be a finite interval on the real axis R, the Riemann-Liouville fractional integral $I_{a}^{\alpha} f$ of order $\alpha \in C(\mathcal{R}(\alpha) \geq 0)$ is define by :

$$
D_{a^{+}}^{\alpha} f(t)=\frac{1}{\Gamma(\mathrm{n}-\alpha)}\left(\frac{d}{d t}\right)^{n} \int_{a}^{t} \frac{f(s) d s}{(t-s)^{1-n+\alpha}} \quad(t>a ; n=[\mathcal{R}(\alpha)]+1)
$$

Where $[\mathcal{R}(\alpha)]$ denotes the integral part of $\mathcal{R}(\alpha)$. " i.e. $[\mathcal{R}(\alpha)]$ satisfies
$[\mathcal{R}(\alpha)] \leq \mathcal{R}(\alpha) \leq[\mathcal{R}(\alpha)]+1 . "$

III. EXISTENCE THEOREM

Define the operator H associated with integral equation (1.1) take the following form.
$H x=A x+B x$.
Where
$(A x)(\mathrm{t})=g(t) f(t, x(t))$,
$(B x)(\mathrm{t})=h(t)+\int_{0}^{t} \frac{(t-s)^{\alpha-1}}{\Gamma(\alpha)} f(s, x(s)) d s$
$=h(t)+K F x(\mathrm{t})$,
Where, $(K x)(\mathrm{t})=\int_{0}^{t} \frac{(t-s)^{\alpha-1}}{\Gamma(\alpha)} x(s) d s$,
$F x=f(t, x)$, are linear operator at superposition respectively.
We shall treat the equation (3.1) under the following assumptions listed below.
Assume that :
i) $\mathrm{g}:[0, T] \rightarrow R$ is bounded function such that : $M=\sup _{t \in[0, T]}|g(t)|$,
and $h: R^{+} \rightarrow R$, such that $h \in L_{1}[0, T]$.
ii) $f:[0, T] \times R \rightarrow R$ satisfiesLipschitz condition with positive constant L such that ;
$|f(t, x(t))-f(t, y(t))| \leq L|x(t)-y(t)|, \quad$ for all $t \in[0, T]$.
iii) $L M+\frac{L T^{\alpha}}{\Gamma(\alpha+1)}<1$.

Now, for the existence of a unique solution of our equation, we can see the following theorem .
Theorem 3.1: If the assumptions (i)-(iii) are satisfied, then the equation (1.1) has a unique solution, where $x \in L_{1}[0, T]$.
Proof : first we will prove that $H: L_{1}[0, T] \rightarrow L_{1}[0, T]$,
second will prove that H is contraction .
Consider the operator H as :
$H x(t)=g(t) f(t, x(t))+h(t)+\int_{0}^{t} \frac{(t-s)^{\alpha-1}}{\Gamma(\alpha)} f(s, x(s)) d s$
Then our equation (1.1) becomes
$x(t)=H x(t)$.
We notice that by assumption (ii), we have

$$
\begin{aligned}
& |f(t, x)|=|f(t, x)-f(t, 0)+f(t, 0)| \\
& \leq|f(t, x)-f(t, 0)|+|f(t, 0)| \\
& \leq L|x-0|+|f(t, 0)| \\
& \leq L|x|+a(t)
\end{aligned}
$$

Where

$$
|f(t, 0)|=a(t)
$$

To prove that $H: L_{1}[0, T] \rightarrow L_{1}[0, T]$,

$$
\text { let } x \in L_{1}[0, T],
$$

then we have
$\|H x(t)\|=\int_{0}^{T}|(H x)(\mathrm{t})| d t$

$$
\leq \int_{0}^{T}\left|g(t) f(t, x(t))+h(t)+\int_{0}^{t} \frac{(t-s)^{\alpha-1}}{\Gamma(\alpha)} f(s, x(s)) d s\right| d t
$$

$\leq \int_{0}^{T}|g(t)||f(t, x(t))| d t+\int_{0}^{T}\left|h(t)+\int_{0}^{t} \frac{(t-s)^{\alpha-1}}{\Gamma(\alpha)} f(s, x(s)) d s\right| d t$
$\leq M \int_{0}^{T}[a(t)+L|x(t)|] d t+\int_{0}^{T}|h(t)| d t+\int_{0}^{T}\left|\int_{0}^{t} \frac{(t-s)^{\alpha-1}}{\Gamma(\alpha)} f(s, x(s)) d s\right| d t$
$\leq M\|a\|+M L \int_{0}^{T}|x(t)| d t+\int_{0}^{T}|h(t)| d t+\int_{0}^{T} \int_{s}^{T} \frac{(t-s)^{\alpha-1}}{\Gamma(\alpha)}|f(s, x(s)) d t| d s$
$\leq M\|a\|+M L \int_{0}^{T}|x(t)| d t+\|h\|+\left.\frac{(t-s)^{\alpha}}{\alpha \Gamma(\alpha)}\right|_{s} ^{T} \int_{0}^{T}|f(s, x(s))| d s$
$\leq M\|a\|+M L \int_{0}^{T}|x(t)| d t+\|h\|+\frac{(T-s)^{\alpha}}{\Gamma(\alpha+1)} \int_{0}^{T}[a(s)+|x(s)|] d s$
$\leq M\|a\|+M L \int_{0}^{T}|x(t)| d t+\|h\|+\frac{T^{\alpha}}{\Gamma(\alpha+1)}\|a\|+\frac{T^{\alpha}}{\Gamma(\alpha+1)}\|x\|$
$\leq\left[M+\frac{T^{\alpha}}{\Gamma(\alpha+1)}\right]\|a\|+\|h\|+\left[M L+L \frac{T^{\alpha}}{\Gamma(\alpha+1)}\right] \int_{0}^{T}|x(t)| d t<\infty$
Then
$H: L_{1}[0, T] \rightarrow L_{1}[0, T]$
second to prove that H is contraction,
let $x, y \in L_{1}[0, T]$, then
$\int_{0}^{T}|H x(t)-H y(t)| d t=\int_{0}^{T} \left\lvert\, g(t) f(t, x(t))+h(t)+\int_{0}^{t} \frac{(t-s)^{\alpha-1}}{\Gamma(\alpha)} f(s, x(s)) d s\right.$

$$
\begin{gathered}
\left.-g(t) f(t, y(t))-h(t)-\int_{0}^{t} \frac{(t-s)^{\alpha-1}}{\Gamma(\alpha)} f(s, y(s)) d s \right\rvert\, d t \\
\quad \leq \int_{0}^{T}|g(t)||f(t, x(t))-f(t, y(t))| d t
\end{gathered}
$$

$$
\begin{gathered}
+\int_{0}^{T} \int_{0}^{t} \frac{(t-s)^{\alpha-1}}{\Gamma(\alpha)}|f(s, x(s)) d s-f(s, y(s))| d s d t \\
\leq M \int_{0}^{T} L|x(t)-y(t)| d t \\
+\int_{0}^{T} \int_{s}^{T} \frac{(t-s)^{\alpha-1}}{\Gamma(\alpha)}|f(s, x(s)) d s-f(s, y(s))| d t d s \\
\leq L M\|x-y\|+\left.\frac{(t-s)^{\alpha}}{\alpha \Gamma(\alpha)}\right|_{s} ^{T} \int_{0}^{T}|f(s, x(s)) d s-f(s, y(s))| d s \\
\leq L M\|x-y\|+\frac{(T-s)^{\alpha}}{\Gamma(\alpha+1)} \int_{0}^{T} L|x(s)-y(s)| d s \\
\leq L M\|x-y\|+\frac{L T^{\alpha}}{\Gamma(\alpha+1)} \int_{0}^{T}|x(s)-y(s)| d s \\
\leq L M\|x-y\|+\frac{L T^{\alpha}}{\Gamma(\alpha+1)}\|x-y\| \\
\leq\left[L M+\frac{L T^{\alpha}}{\Gamma(\alpha+1)}\right]\|x-y\|
\end{gathered}
$$

Hence, by using Banach fixed point theorem,
H has a unique point, which is the solution of the equation (2.2), where $x \in L_{1}[0, T]$.

CONCLUSION

in this paper, by using Banach fixed point theorem we proved the existence and uniqueness theoremof a fractional nonlinear Volterra integral equation in the space of Lebesgue integrable on bounded interval $[0, \mathrm{~T}]$ of the kind :
$x(t)=g(t) f(t, x(t))+h(t)+\int_{0}^{t} \frac{(t-s)^{\alpha-1}}{\Gamma(\alpha)} f(s, x(s)) d s, 0<\alpha<1, \quad t \in[0, T]$ under \quad the following assumptions:
i) $\mathrm{g}:[0, T] \rightarrow R$ is bounded function such that : $M=\sup _{t \in[0, T]}|g(t)|$,
and $h: R^{+} \rightarrow R$, such that $h \in L_{1}[0, T]$.
ii) $f:[0, T] \times R \rightarrow R$ satisfiesLipschitz condition with positive constant L such that ;
$|f(t, x(t))-f(t, y(t))| \leq L|x(t)-y(t)|, \quad$ for all $t \in[0, T]$.
iii) $L M+\frac{L T^{\alpha}}{\Gamma(\alpha+1)}<1$.

REFERENCES

[1] Faez N. Ghaffoori " Existence and uniqueness for Volterra nonlinear integral equation" V46 No. 4 June 2017.
[2] M. M. El-Borai, Wagdy G. El-Sayed and Faez N. Ghaffoori, On The Solvability of Nonlinear Integral Functional Equation, (IJMTT) Vo 34, No. 1, June 2016.
[3] M. M. El-borai, W. G. El-sayed, andFaez N. Ghaffoori" Existence Solution For a Fractional Nonlinear Integral Equation of Volterra Type" Aryabhatta Journal of Mathematics \& Informatics (AJMI), Vol.08, Iss. 02 (July-December, 2016), 1-15.
[4] M. M. A. Metwali, On solutions of quadratic integral equations, Adam Mickiewicz University (2013).
[5] J. Bana's and W. G. El-Sayed, Solvability of functional and Integral Equations in some classes of integrable functions, 1993.
[6] R. R. Van Hassel, Functional Analysis, December 16, (2004).
[7] M. M. A. Metwali, Solvability of functional quadratic integral equations with perturbation, Opercula Math. 33, No. 4 (2013), 725-739.
[8] Ravi P. Agarwal, Maria Meehan and DonalO'regan, Fixed Point Theoryand Applications Cambridge University Press, 2004.
[9] podlubny, Fractional Differential Equations, Academic press, New York, 1999.
[10] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, 2006.

