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Abstract : In this paper, we present Einstein’s field equations for perfect fluid within the frame work of hyper 

surface homogeneous space-time. Exact solutions of the field equations are obtained which represent 

cosmological models in the presence of stiff fluid. The physical and kenematical behaviors of the cosmological 

models are discussed. 
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I. INTRODUCTION 

Astronomical observations indicate that on large scales the present day universe is both homogeneous and 

isotropic, the latter having been confirmed by the discovery of 2.7 0K microwave background radiation 

[3,12,13]. The simplest spatially homogeneous space-time is given by Robertson-Walker metric. It is based on 

the following assumptions.  

 

(i) There exists a global time coordinate which serves as the timecoordinate of a Gaussian coordinate 

system.  

(ii) The three dimensional space t = constant are locally isotropic.  

(iii) Any two points in a three-space belonging to a given fixed time are equivalent.  

Homogeneous isotropic models form the simplest class of cosmological models. The observational 
evidence shows that the anisotropy is negligible in the large scale picture of the universe but it is not so at 

smaller scale. The universe in early days did not have the same property of isotropy that is found at present. 

According to the group theoretic criterion the spatially homogeneous space-times are of two types: 

(i) Bianchi space-times, which posses a three-dimensional group of isometriesG3 acting simply transitively 

on the tree-dimensional space like hypersurfaces.  

(ii) Kantowaski-Sachs metric which a four dimensional group of isometriesG4 multiply transitive on these 

space sections.  

Friedmann-Robertson-Walker (FRW) models [6,7,15,16,28,29] which are both spatially homogeneous 

and isotropic admit six-parameter group of isometries. Each of these groups contains a particular three-

parameter group G3 as a subgroup. The spatially homogeneous Bianchi-spaces I – IX are useful tools for 

constructing cosmological models to describe the behaviors of the universe at early stages of its evolution [19]. 
Bianchi – VI0 spaces are of particular interest since they are sufficiently complex, while at the same time, they 

are a simple generalization of Bianchi–I spaces. Since long a great deal of theoretical work has been done to 

build Bianchi-VI0 cosmological models by solving Einstein’s field equations associated with different matter 

distributions. Ellis and MacCallum [5] obtained solutions of Einstein’s field equation in the case of a stiff-fluid. 

Collins [2] and Ruban [18] presented some exact solutions of this type for perfect fluid distribution satisfying 

the specific equations of state. Dunn and Tupper [4] investigated a class of Bianchi type VI0 perfect fluid 

cosmological model associated with electromagnetic fields. Lorentz [10] generalized the dust model given by 

Ellis and MacCallum [5]. Roy and Singh [17] derived some exact solutions of Einstein-Maxwell equations 

representing a free gravitational field of the magnetic type with perfect fluid and incident magnetic field. Ribeiro 

and Sanyal [14] studied spatially homogeneous Bianchi – VI0 models containing a viscous fluid in the presence 

of an axial magnetic field. Following Hajj-Boutrös [8], [9].Shri Ram [20] presented an algorithm for generating 

a new exact perfect fluid solutions of Einstein’s field equations for spatially homogeneous cosmological models 
of Bianchi type VI0 without choosing any equation of state.   

 Stewart and Ellis [25] obtained general solution of Einstein field equation in the case of hypersurface 

orthogonal space-times with metric,  

 

ds2 = -dt2 + A2 (t) dx2 + B2 (t) (dy2 + ∑2 (y, k) dz2)                (1.1) 

where 
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  ∑ (y, k) =  
𝑆𝑖𝑛 𝑦                ; 𝑘 = 1 
𝑦                   ; 𝑘 = 0 

𝑆𝑖𝑛ℎ 𝑦            ; 𝑘 =  −1  

   

The perfect fluid filling the space-time satisfies the equation of state  
   p = (γ – 1) ρ                                                      (1.2) 

where p is the pressure, ρ is the energy density and γ is a parameter satisfying 1 <  γ < 2  

The metric (1.1), admits a group of motion G4 in V3 the isotropy group being spatial rotations. Hajj-

Boutrös [9] presented a method to generate exact solutions of the field equations in the case of hypersurface-

homogeneous space-times filled with a perfect fluid not satisfying the equation of state (1.2). 

Recently,Mazumdar [11] considered LRSBianch–1 space-times filled with a perfect fluid and has shown that the 

field equations are solvable for any arbitrary cosmic scale function.  

Latter onVerma and Shri Ram [27] have investigated some hyersurface-homogeneous cosmological 

models with bulk viscous   fluid and time -dependent cosmological term. In sequel, Shri Ram and Verma [22] 

have obtained a bulk viscous fluid cosmological model with time-varying gravitational constant and 

cosmological term. Within the framework as hypersurface-homogeneous space-time.Chandel et al. [1] have 

studied hypersurface- homogeneous bulk viscous fluid models with decaying cosmological term. In the context 
of present-day accelerating model as the universe, Shri Ram and Chandel [21] have investigated hypersurface-

homogeneous cosmological models with matter and dark energy. Shri Ram et al. [23] have presented 

hypersurface -homogeneous cosmological models with dynamical equation of state parameter in Lyra geometry. 

Further, Shri Ram et al. [24] have invertigated hyper-surface homogeneous cosmological models with 

anisotropic dark energy in Saxz-Ballester theory of gravity. Recently, Tiwari and Mishra [26] have obtained 

hypersurface-homogeneous bulk viscous fluid cosmological models with time-dependent gravitational constant 

and cosmological term following the technique developed by Mazumdar [11]. 

In this paper, we obtain the solutions of Einstein's filed equations in the presence of a stiff-matter which 

represent hypersurface-homogeneous cosmological models. We also discuss the physical and kinematical 

behaviors of the models of the models presented.   

 

II. Field equations 

Einstein’s field equations in the presence of a perfect fluid are  

   Rij -
1

2
Rgij = - Tij      (2.1)  

whereRij is the Ricci tensor, R is scalar curvature and Tij is the energy-momentum tensor of a perfect fluid 

given by  

    Tij  =  (ρ + p) vi.vj = pgij 

ρ being the density, p the pressure and vi is the 4-velocity satisfying  
viv

i = 1 

 For a Ricci-tensor of type [(1,1,1),1] in segre notation, the Einstein field equations (2.1) for a perfect 

fluid distribution are 

  2
B 

B
+

B2 

B2 +
k

B2 = −p      (2.2) 

  
B 

B
+

𝐴 

A
+

𝐴 𝐵 

AB
= −p       (2.3) 

  2
𝐴 𝐵 

AB
+

B2 

B2 +
k

B2 = −ρ      (2.4) 

Where a dot denotes differentiation with respect to 't' 

 

III. Stiff-Matter Case 

 We now assume the case of stiff-matter for which  

  ρ = p        (3.1) 

 The possible relevance of this equation of state as regards the matter content of the universe in its early 

stages has been discussed by a number of authors. 

 For stiff matter, equations (3.1) and (2.4) provide 
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B 

B
+

B2 

B2 +
𝐴 𝐵 

𝐴𝐵
+

k

B2 = 0      (3.2) 

Thus, the independent field equations to be solved are  

  
B2 

B2 + 2
𝐴 𝐵 

𝐴𝐵
+

k

B2 = ρ      (3.3) 

  
B 

B
+  

B 

B
 

2

+
A B 

AB
+

k

B2 = 0      (3.4) 

A 

A
+

2A B 

AB
= 0       (3.5) 

To treat these equations, we introduce the new variable τ by 

  𝑑𝑡 =  𝐴𝐵2𝑑𝜏       (3.6) 

The equation (3.5) reduce to 

  
𝐴"

𝐴
−  

𝐴′

𝐴
 

2

= 0       (3.7) 

where a dash stands for 𝑑/𝑑𝜏. Integrating (3.7) we obtain 

  𝐴 =  𝐾1𝑒
𝑎𝜏        (3.8) 

where a and K1are arbitray constants, without loss of generality, we can take K1=1 Thus. 

  𝐴 =  𝑒𝑎𝜏         (3.9) 

Equation (3.4) can be written as  

 (logB)" + k(AB)2 = 0       (3.10) 

Setting𝐵 = 𝑒𝛼  and using (3.9), equation (3.10) reduces to 

  α" + ke2(aτ+α)= 0      (3.11) 

which can also be written 

  X" + ke2x= 0       (3.12) 

where X = 𝑎 𝜏 +  𝛼 Solving (3.12), we obtain  

  τ + τ0 = ± 
dX

 c2−ke 2X
      (3.13) 

where c and τ0 are integration constants. Again, putting e-X = Z, the equation (3.13) can be written as 

 

  τ + τ0 = ∓
1

𝑐
 

dZ

 Z2−k/c2
      (3.14) 

Considering minus sign before the integral on the right hand side of (3.14), we now present some physically 

meaningful solution for k=0, 1 and -1. 

3.1 when k = 0 

Equation (3.14) yields  

  c τ + τ0 =  −  
dZ

Z
      (3.15) 

Integrating (3.15), we obtain  

  Z−1 = ec(τ+τ0 )       (3.16) 

From equations (3.13) and (3.16), we get 

  X = c(τ + τ0)       (3.17) 

Again form equations (3.12) and (3.17), we obtain 
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  α =  c − a τ + τ0      (3.18) 

Using (3.18) in equation (3.10), we finally obtain 

  (B =  K2e(c−a)τ        (3.19) 

Without loss of generality we can assume K2 = 1, Hence, 

 B =  e(c−a)τ        (3.20) 

 The metric of the solutions can be written in the form 

 ds2 = −dt2 + e2aτdx2 + e2(c−a)τ dy2 + y2dz2     (3.21) 

For the model (3.21) pressure and energy density are given by 

 p =  ρ  c2 − a2 e(a−2c)τ       (3.22) 

The physical and kinematical quantities of the model (3.21) have the following expressions.  

 Spatial Volume (V3): 

 𝑉3 = e(2c−a)τ        (3.23) 

Expansion Scalar (𝜃) : 

 𝜃 =  2𝑐 − 𝑎 𝑒(𝑎−2𝑐)𝜏        (3.24) 

Shear Scalar (𝜎) : 

 𝜎 = −
𝑐

 3
𝑒(𝑎−2𝑐)𝜏         (3.25) 

Deceleration parameter (q): 

 q = -2         (3.26) 

 The energy-density and pressure are positive if c > a. For the physical reality of the model (3.21), we 

also take a > 0. The energy density, expansion scalar and sher scalar are decreasing function of 𝜏which tend to 

zero as 𝜏 →∝. The spatial volume in infinite as 𝜏 →∝. The model starts expanding from finite volume as 𝜏 = 0 

and gives essentially an empty space-time for large 𝜏. The negative value of q = -2 shows super inflation in the 

univers.  

3.2 when  K = 1 

Equation (3.14) becomes  

 𝜏 + 𝜏0 = −
1

𝑐
 

𝑑𝑍

 𝑍2 1

𝑐2

       (3.27) 

Integrating equation (3.27), we obtain  

 𝑍−1 = 𝑐 𝑠𝑒𝑐ℎ 𝑐 𝜏 + 𝜏0         (3.28) 

From equations (3.13) and (3.28), we get 

 X = log [c sech {c 𝜏 + 𝜏0 }]      (3.29) 

Again, from equations (3.12) and (3.29), we obtain 

 𝛼 = log 𝑐 sech 𝑐 𝜏 + 𝜏0   − 𝑎𝜏      (3.30) 

Using (3.30), equation (3.10), yields 

 𝐵 =  𝑐𝑒−𝑎𝜏 sech{𝑐 𝜏 + 𝜏0 }      (3.31) 

Without loss of any generality we can take 𝜏0 = 0 
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 The metric of the solution can be written as  

 ds2 = −dt2 + e2aτdx2 + 𝑐2e2aτ sech(𝑐𝜏) [𝑑𝑦2 + 𝑠𝑖𝑛2𝑦 𝑑𝑧2   (3.32) 

 For the model (3.32), pressure and energy density are given by 

 𝑝 =  𝜌 =  
 𝑐2−𝑎2 

𝑐4 𝑒2𝑎𝜏 𝑐𝑜𝑠ℎ4(𝑐𝜏)      (3.33) 

Without are nonnegative if c > a > 0 

 The physical and kinematical quantities for the model (3.32) have the following expressions.  

Spatial Volume (V3):  

  𝑉3 = 𝑐2𝑒−𝑎𝜏 𝑠𝑒𝑐ℎ2(𝑐𝜏)      (3.34) 

Expansion Scalar (𝜃) : 

  𝜃 =
− 𝑎+2𝑐𝑡𝑎𝑛 ℎ(𝑐𝜏) 

 𝑐2𝑒−𝑎𝜏 𝑠𝑒𝑐 ℎ2(𝑐𝜏) 
      (3.35) 

Shear Scalar (𝜎): 

  𝜎 =  
1

 3

 2𝑎+𝑐 𝑇𝑎𝑛 ℎ (𝑐𝜏) 

𝑐2𝑒−𝑎𝑧 𝑠𝑒𝑐 ℎ2(𝑐𝜏)
      (3.36) 

Deceleration parameter (q):  

  𝑞 =  
6𝑐2 2𝑡𝑎𝑛 ℎ2 𝑐𝜏  −𝑡𝑎𝑛 ℎ 𝑐𝜏  −2 

 𝑎+2𝑐𝑡𝑎𝑛 ℎ(𝑐𝜏) 2
+ 1     (3.37) 

 The model (3.32) has no finite singularity. The spatial volume tends to zero and the energy density tend 

to infinity a 𝜏 →∝.The scalar expansion is always negative. Thus, the space-time (3.32) is a contracting model of 

the universe.  

3.3 when  k = -1 

Equation (3.14) becomes  

  𝜏 + 𝜏0 =  −
1

𝑐
 

𝑑𝑍

 𝑍2+
1

𝑐2

      (3.38) 

Without loss of generality we can assume 𝜏0 = 0.On integration equation (3.38) yields. 

  𝑍−1 = 𝑐 cos𝑒𝑐ℎ(𝑐𝜏)      (3.39) 

From equations (3.31) and (3.39), we obtain  

  𝑋 = log{𝑐 𝑐𝑜𝑠𝑒𝑐ℎ  𝑐𝜏 }      (3.40) 

Again, form equations (3.40) and (3.12), we obtain  

  𝛼 = log 𝑐 𝑐𝑜𝑠𝑒𝑐ℎ  𝑐𝜏  − 𝑎𝜏     (3.41) 

Using (3.41), equation (3.10), becomes 

  𝐵 =  𝑐 𝑒−𝑎𝜏  𝑐𝑜𝑠𝑒𝑐ℎ  𝑐𝜏       (3.42) 

The metric of the solutions can be written as  

ds2 = −dt2 + e2aτdx2 + 𝑐2e−2aτ cosech(𝑐𝜏) [𝑑𝑦2 + 𝑠𝑖𝑛ℎ2𝑦 𝑑𝑧2 

          (3.43) 

Pressure and energy density for the model (3.43) are given by 

 𝜌 = 𝜌 =  
 𝐶2𝑎2 

𝑐4 𝑒2𝑎𝜏 𝑠𝑖𝑛ℎ4  (𝑐𝜏)      (3.44) 

 For the model (3.43), the physical and kinematical quantities have the following expressions.  

Spatial Volume (V3):  

  𝑉3 = 𝑐2𝑒−𝑎𝜏 𝑐𝑜𝑠𝑒𝑐ℎ2(𝑐𝜏)      (3.45) 

Expansion Scalar (𝜃): 
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  𝜃 = −
𝑒𝑎𝜏

𝑐2
 𝑎 + 2𝑐 coth 𝑐𝜏  𝑠𝑖𝑛ℎ2(𝑐𝜏)    (3.46) 

Shear Scalar (𝜎): 

  𝜎 =  
𝑒𝑎𝑡

𝑐2 3
 2𝑎 + 𝑐 coth 𝑐𝜏  𝑠𝑖𝑛ℎ2  (𝑐𝜏)    (3.47) 

Deceleration parameter (p) : 

  𝑞 
3 −2{𝑎+𝑐 coth ⁡(𝑐𝜏) 2+ 𝑎2−2𝑐2]

 𝑎+2𝑐 coth ⁡(𝑐𝜏) 2
+1     (3.48) 

 The model (3.43) has no finite singularity. The spatial volume tends to zero and the energy density tend 

to infinity as 𝜏 →∝. The scalar expansion is always negative. Thus, the space-time (3.43) is also a contracting 

model of the universe filled with stiff matter. 

 

IV. CONCLUSION 

We have investigated hypersurface-homogeneous cosmological models counting stiff -matter. Exact 

solutions of field equations have been obtained which correspond to accelerating / decelerating models of the 

universe. Expressions for some important cosmological parameters have been obtained and physical behaviors 

of the models are discussed in detail. These models are certainly useful in the study of dynamical behaviors of 
homogeneous and anisotropic cosmological models. 
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