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Abstract :This paper purports to explain an area of planar graphs in topology. This paper highlights the unique 

qualities of wheel in connecting with planar graphs. That is, a vehicle rolls smoothly over a surface when the axle 

is placed at the centre of a circular wheel. This paper is an attempt to study a brief structure in topological wheels. 
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INTRODUCTION 

 In our day to day life, wheels play a very important role. For instance it plays an important role in 

transportation. A wheel is a graph formed by a cycle and a vertex that has atleast three neighbours. Kuratowski, 
Thomassen and Tutte says the characterization of planar wheels in topology. 

 

Wheels 

 Before the invention of the wheel, some cultures used cylindrical rollers when moving heavy loads. 

The load was rolled along over the cylinders, with the disadvantage that they had to be continually replaced 

under the front. 

 About 5500 years ago, an anonymous Sumerian in Mesopotamia invented what must surely be 

mankind’s single greatest technological achievement-the wheel. 

 Nowadays, wheels play a very important role in everyday life. From agriculture to the exploration of 

Mars, from people transportation to massive movement of products; everything is possible due to the existence 

of the wheel.  

 When included as components of a vehicle, wheels allow the vehicle to roll smoothly over a surface. 
The wheel is round because a circle is the geometric locus of points equidistant from a fixed point. An axle 

placed at the centre of the wheel will stay at a constant altitude from the ground as the wheel rotates. 

 Most people think the circle is the only shape wheels can have. 

 Different figures rolling over modified surfaces can be found in science exhibitions around the world. 

If we use rollers, rather than wheels on axles fixed to the vehicle, then any constant-breadth shape will do in 

place of the circle. 

 Obviously a wheel must be made in the form of a circle with the hub at the centre, since any other form 

will produce an up-and-down motion. 

 In mathematical background we must begin with convex sets, their representation by a support 

function, and some special convex sets. 

 A set of points K is convex if it contains every line segment with end-points in K. If in addition, K is 
bounded and has interior points, its boundary (denoted by δK) is called a closed convex curve. 

 A line L is a support line of the convex set K at point aδK if it has the following properties. 

o aL 
o K is contained in the closure of one of the two open half-planes into which L cuts the plane 

 Note that every point on δK lies on a support line and there are exactly two support lines perpendicular 

to each direction. 

 We can represent K by the set of its support lines. A support line L may be parametrized by (q, p) 

where q is the angle between its normal and the x-axis and p is the distance from L to a fixed interior point of K. 

Since p is uniquely determined by q, the set of support lines is {(q, p(q)): q[0, 2π)}. The support function of K 
is p(q). 

 For any convex set K, the union of all closed disks of radius r and centres in K, denoted by Kr, has 

boundary δK and any yδKr. 

 r = min{dist(x, z) : zδKr} 

   = min{dist(y, z) : zδK}. 
 Clearly, if p (q) is the support function of K, then the support function of Kr is p(q)+r. 

 The distance between the two parallel support lines of a convex set K that are perpendicular to the 

direction q is the breadth b(q) of K. We have 

 b(q)=p(q)+p(q+ π) 

 If b(q) is the same for all q, the set K is said to be of constant breadth. 
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 To employ non-circular wheels we need to ensure that when the vehicle moves, it maintains the same 

distance from the ground. 

 Consider the following structure: 

o A square attached rigidly to the vehicle (with two of its sides parallel to the ground). 

o A constant-breadth axle that rotates inside the square, maintaining contact with its sides. 

o A wheel that is attached rigidly to the axle. 

 
The movement of a constant breadth wheel 

 

For triangular-based wheels, consider the following structure: 

o An equilateral triangle rigidly attached to the vehicle (with its upper side parallel to the ground). 

o A triangular set as the axle that rotates inside the triangle, maintaining contact with its sides. 

o A wheel that is attached rigidly to the axle. 

 
A triangular wheel 

 Generalizing, we can attach any convex polygon P to the vehicle, have an axle A that rotates inside 

(touching at all times the sides of the polygon), and seek a wheel such that, when it rotates, the polygon remains 

at constant altitude from the ground. 

 Since every convex polygon possesses at least one of the following properties: 

o it is a parallelogram 

o the extension of three of its sides forms a triangle that contains the polygon, 

we can focus on axles that rotate inside parallelograms and triangles. 

An axle that rotates inside a parallelogram has constant breadth; therefore its support function a() satisfies 

a()+a(+π)=constant. 
 For every triangle there exists at least one figure that can rotate inside. 

 It is clear that at whatever speed a circular wheel moves, it will always look around. For non-circular 

wheels, the path that is traced (relative to the vehicle) by a point on the wheel is no longer a circle. Therefore, 

the wheel while rotating may not look round. 
 Similarly, if the wheels are triangular sets rotating inside a triangle, then the path traced resembles a 

triangle with rounded corners [4]. 

 

Wheel Graph 

 A graph G contains a graph F if an induced subgraph of G is isomorphic to F. An element of a graph is 

a vertex or an edge. When S is a set of elements of G, we denote by G\S the graph obtained from G by deleting 

all edges of S and all vertices of S. 

 A wheel is a graph formed by a chordless cycle C and a vertex u not in C that has at least three 

neighbors in C. Such a wheel is denoted by (u, C); u is the center of the wheel and C the rim. Observe that K4 is 

a wheel. Chudnovsky states that every non-null wheel-free graph contains a vertex whose neighborhood is made 

of disjoint cliques with no edges between them. 

The class of graphs that do not contain a subdivision of a wheel as an induced subgraph is the class of 
graphs that do not contain a wheel or a subdivisions of K4 as induced subgraphs. 

A cycle Cn is a graph of n vertices with V(Cn)={v1, v2, …, vn}such that  

E(Cn)={vivi+1 | 1 ≤ i ≤ n-1}∪ {v1vn}] 

For n ≥ 4, a wheel Wn is defined to be a graph of n vertices with 

V(Wn)=V(Cn-1)∪{uv | u=V(K1)} and vV(Cn-1) 

 
K4 or W4 

Let G be a graph, vV(G) and e = uvE(G). 
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 The subgraph G-v with V(G-v)=V(G)\v and E(G-v)=E(G)\{uvE(G)|uNG(V)}is called the graph 
obtained by deleting vertex v from G. 

 
Vertex deletion at v 

The subgraph G-e with V(G-e)=V(G) and E(G-e)=E(G)\e is called the graph obtained by deleting edge e from 

G. 

 
Edge deletion at e 

 The contraction of an edge e of the graph G, denoted by G/e is the graph obtained from G by the 

following steps: 

1. delete vertices u and v from G. 

2. insert a new vertex u such that uvE(G/e), for all v NG(u) ∪NG(v). 

 
Edge contraction {e} 

Topological Wheel 

 A topological space M is called n-manifold if M is Hausdorff and each point of M has an open 

neighborhood homeomorphic to the n-dimensional open ball or the n-dimensional half-ball. 

 A triangulation of a topological space X is a homeomorphism h from the carrier of some simplical 

complex K to the space X. The image of a simplex of K under h is called a simplex of triangulation. 

 Any graph G can be represented by a topological space in the following sense: 

1. V(G) is represented by a collection of distinct points in ℝ3. 
2. E(G) is represented by a collection of distinct, internally disjoint arcs, homeomorphic to the closed 

interval  

[0, 1] such that boundary points of the arcs represent the endpoints of the corresponding edge. 

 Let G be a graph (topological representation) and Sg, a surface of genus g. A graph embedding is a 

continuous one-to-one function i : GSg such that the function i:Gi(G) obtained by restricting the range of i 
is a homeomorphism. 

 Two graphs are said to be homemorphic if both can be obtained from the same graph by a sequence of 

subdivisions of edges. 

 A graph G is said to be planar if and only if it can be embedded on a sphere S. 

 A graph G is called connected if there exists a path from u to v, for all u, vV(G). 
 If graph G is n-connected, n≥2, then every set of n points of G lie in a cycle. 

 By the definition of n-connected graph, G has no cutpoints and there must be a maximum of atleast n 

number of pairwise internally disjoint paths between any two vertices x, y in V(G). Thus, for any set P={p1, 

p2,…, pn}V(G), we can find two internally disjoint paths between p0 and pn such that all pi(i≠1,n) lie in either 
of the two path. This gives a cycle containing P. 

 Kuratowski’s theorem give the criterion for a graph to be planar. The graphs K3,3 and K5 forms the 
complete set of obstruction in planar embedding. These graphs are called the Kuratowski’s graphs. 

 

Theorem 

 (Kuratowski). A graph G is planar if and only if G has no subgraph homeomorphic to K5 or K3,3. 

 

Proof 

 K5 or K3,3 are non-planar. So any graph containing a homeomorph of K5or K3,3 are non-planar. Thus the 

converse is proved. 

 Now we want to prove that, a graph G is non-planar then G has a subgraph homeomorphic to K5 or 

K3,3. Consider the (edge) minimal counter example H such that H is non-planar and does not contain a 

homeomorph of K5 or K3,3. The minimality ensures that removal of any edge makes H planar. We also assume 
that H does not have any vertex of valence 2, since a valence 2 vertex can be considered as the 1-subdivision of 

some edge and hence, we can smooth out valence 2 vertices to obtain H. First, we claim that H is at least 2-
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connected or in other words, H does not have any cutpoints. To show this, suppose H has a cutpoint v, then 

removal of v disconnects H. Since H is non-planar, some component of H must be non-planar. This contradicts 

the minimality of H, and the claim follows. 

 Next, we claim that there exists edge e such that H-e has no cutpoints. To show this, assume that H has 

no such edge. Then, for any edge eE(H). H - e has a cutpoint. This means that H-e is 1-connected for all e, 
which in turn shows that H is 1-connected.This contradicts the first claim, and hence the claim holds. 

 Now, choose an edge e={u, v} of H whose removal does not affect connectivity. Consider H-e=H 

which is planar and 2-connected. Thus we can find a planar embedding of H with a cycle C such that C contains 
u and v and the number of regions enclosed by C is maximal among other embeddings. Let C=v0, v1, …, vk=v, 

vk+1,…, v1, v0 and consider path P. From the maximality of C we can see that there is no path connecting two 

vertices in the set {v0, v1, …, vk} that lies exterior to C and furthermore, there is no path connecting two vertices 
in the set {vk+1,…, v1, v0} that lies exterior to C. 

 The non-planarity of H implies that there is some structure inside cycle C that restricts the insertion of 

edge e between u and v. 

 A much more efficient planarity testing algorithm can be obtained from the following proof of 

Kuratowski’s theorem due to Thomassen[6]. The idea of Thomassen’s proof relies on the following result by 

Tutte which we state without proof [11]. 

 

Theorem 

 (Tutte).  A graph G is 3-connected then it is a wheel or can be obtained from a wheel by a sequence of 

operations of the following two types. 

1. The addition of new edge 

2. The replacement of a vertex v having valence(≥ 4) by two adjacent points v and v such that each 

point formerly joined to v is joined to exactly one of v and v so that in the resulting graph, valence(v) 

≥ 3 and valence (v) ≥ 3). 
 The above proposition ensures the existence of wheel structure for the 3-connected graph in the 

following proof of Kuratowski’stheorem.  
 

Theorem 

 Let G be a 3-connected graph with five or more vertices. Then there is some edge e of G such that the 

graph G/e is also 3-connected [10]. 

 

Proof 

 (Thomassen). Suppose for every edge e, the contracted graph G/e has a set of two vertices that 

disconnects it. One of those two vertices must be the vertex obtained by identifying the two endpoints of the 

edge e or else the same set of two vertices would also disconnect G, thereby contradicting the 3-connectivity of 

G. Thus for every edge e=uv together with some third vertex w disconnect G. Accordingly, let us choose an 

edge e and a vertex w such that the largest component H of the graph G – {u, v, w} is the largest for any 
disconnecting set consisting of three vertices, two of which are adjacent. 

 Let x be a vertex adjacent to w such that x lies in a component of G-{u, v, w} other than the maximum 

component H. Since vertices w and x are the endpoints of an edge of G, it follows that G has a disconnecting set 

of the form {w, x, y}. Now claim that some component of G – {w, x, y} is larger than H, a contradiction. To see 

this, let H be the subgraph of G induced by the vertices of H together with u and v. Since both u and  v are 

adjacent to vertices of H (otherwise G would not be 3-connected), the subgraph H is connected. On one hand, 

perhaps the vertex y is not in H. Since w and x are not in H either it follows that H is contained in a 

component of G –{w, x, y}, contradicting the maximality of H. On the other hand perhaps y is in H.  If H - y is 

connected, then there is again a contradiction of the maximality of H, since H - y has one more vertex than H.  

 If H - y were not connected, then one component of H - y would contain both the vertices u and v, 

since u is adjacent to v and hence all the other components of H - y are connected to the rest of the graph G 
through the vertices y and w. This would imply that {y, w} disconnects G, contradicting the 3-connectivity of G. 

We conclude that for some edge e, the contracted graph G/e is 3-connected. 

 

Corollary 

 A graph G contains no homeograph of K5 or K3,3 then G is planar. 

 

Proof 

 We prove by induction on the number of vertices. The statement is vacuously true of all graphs with 

four or fewer vertices. We assume that the statement is true for all graphs with fewer than n vertices, for n ≥ 5. 
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 Wheel structure with cycle C     Homeomorphs of K5 and K3,3 

 

 Consider the n+1 case, we can choose an edge e={u, v} such that G/e with the identified vertex v is 

still 3-connected. This means that G-v is 2-connected. Now consider the cycle C containing all the neighbours 

of v. Now expand v back to u and v. By induction hypothesis, G will not contain the graphs. Since those graphs 
are homeomorphic to K5 and K3,3 as noted. Hence, G is planar. 

 

CONCLUSION 

 

 Wheels, moving towards forward, upward, downward, connecting us in all space of life. The 

topological graph connected with wheels, makes us to move forward with new avenues. 
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