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Abstract - This paper compares two shrinkage estimators of rates based on Bayesian methods. We estimate
the mean 0 of the multivariate normal distribution in P, when ¢? is unknown using the chi-square random

variable. The Modified Bayes estimator §zand the Empirical Bayes estimator 65 are considered and the
limits of their risk ratios of the maximum likelihood estimator when n and p tend to infinity are obtained.
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I. INTRODUCTION
Shrinkage estimation is a method to improve a raw estimator in some sense, by combining it
with other information. Although the shrinkage estimator is biased, it is well known that it
has minimum quadratic risk compared to natural estimators (mostly the maximum likelihood
estimator) (Karamikabir, Afshariand Arashi, 2018). The shrinkage estimator, have evolved
over time since their introduction by Stein in 1956, James and Stein in 1961 and Stein in
1981. In these works one estimates the mean @ by shrinking the empirical estimators of the
mean, which are better in quadratic loss than the empirical mean estimator. More precisely, if
X represents an observation of a sample drawn from a multivariate normal distribution, the
aim is to estimate by an estimator & relatively at the quadratic loss function L(§,6) =I|

6—06 IIZZj where |I. I, the usual norm is in R® and the associated risk function given by:
R(6,6) = Eo(L(5,8)).
James and Stein (1961), introduced a class of estimators by improving 8, = X, when
the dimension of the space of the observations p >3, is denoted by :

p—2 S? .
§°F=(1- — )X, j=12...,
J ( n+2||X||2>f J P

where S2~a?y2 is the estimate of 2. Baranchik (1964), proposed the positive-part of
James-Stein estimator dominating the James-Stein estimator when p > 3,

JS+ _ _p=2 S\
51’ —max<(1 n+2||xu2)>X1

Casella and Hwang (1982) studied the case where o2 is known o2 = 1 and showed
that if the limit of the ratio 22— L

, Wwhen p tends to infinity is a constant ¢ > 0, then

: R(é5.8) _ 1. R(5j;s*6) _ ¢
hmp"+°° R(X.8) limy, 1. R(X.0)  1+c
Sun (1995), has considered the following model: (y; /6 a2)~N(8,,02); i

1,2,..,n, j=12,..,mwhere E(y;) = 6 for the group j and var(yl]) 2 is

unknown. The James-Stein estimator is written in §/5 = (6{5, ,],f) , Where
JS _ _ (m- 3)S _ _ _ . _ _ _\2
= o(y, y) yi = L 1y” and y = Liz1%i 1” ,N = (n—1)m

He showed that for any estlmator of the form 815 = (6]5, 5,]5) where

ISSN: 2231-5373 http://www.ijmttjournal.org Page 6




International Journal of Mathematics Trends and Technology (IJIMTT) — Volume 65 Issue 6 - June 2019

8 =(1-wESELT))F —9) +5.) =12 .., m,

5 (0;-0)" RGY.0) _ 4

> — and
R(X,0) q+07
R(875,0) . R(8/5+,0) q
B = lim,,;, , 0 = .
(X.9) R(X,0) g+
n

R(8¥,0)
R(80,0)

if limy,_, e = q exists, thenlim,,_, 1

lim,, 4o

where %z constitutes a lower bound for the ratio lim,y,_, ;.
g+

nR(6]5 0)
R(80.8)

Sun (1995), also showed that this bound is attained for a class of estimators defined by:
& =(1-¥(ES4LT))F —¥)+¥,j =12,..,m where ¥ satisfies certain conditions.
This bound is also attained for any estimator dominating the James-Stein estimator, in
particular the positive-part.

Further, we note that if n tends to infinity then the ratio —— tends to 1, and thus the risk

a

q+
of the James-Stein estimator is that of §, (when n and m tend to infinity).

and is equal to

lim,, 1o

Hamdaoui and Benmansour (2015), considered the following class of shrinkage
estimators &, = &5 + ap(S?, 11 X2 )X, which is introduced in Benmansour and Mourid
2
(2007). The authors showed that if lim,,_ 1 % = c¢(> 0) then the risk ratios RR(Z‘(”':)) :

Js JS + ) e .
REZ9) and BC_"Lattain the lower bound B, = f:when n and p tend to infinity provided

R(X,0) R(X,0)
2
that lir_{l %. Hamdaoui and Mezouar (2017), considered the general class of
m-——+oo

s2

shrinkage estimators §,, = (1 —P(SE N X210 szu) X. The authors showed the same
results given by Hamdaoui and Benmansour (2015), under different conditions from the one
given by Hamdaoui and Benmansour (2015). When the dimension p is finite, Brandwein

and Strawderman (2012) considered the following model (X, U) ~ f(I X — 6 11> +11 U 11?),
where dimX = dim @ = p and dim U = k. The classical example of this model is, of

. 1 \Ptk _“‘_‘"ZE .
course, the ntz)rmal model of density (\/ﬁ) e 202 . They showed that the estimator
=X+ {%}g(X) dominates X , so that § is Minimax, provided the function g satisfies

certain conditions.

Maruyama (2014) has also studied the minimaxity of shrinkage estimator when the
dimension of parameter’s space is moderate. Then he considered the following model

1

Z ~ N(6,1;) and the so called 7 -norm given by: Il Z Il,= {¥7-¢ |z|P}», p > 0. He
studied the minimaxity of shrinkage estimators defined as follows: 85 = (8,4, ..., 845 )
with: 9, = (1 —o(lZ1,)/0( Z 1>~ |Zi|“))where 0<a<(d-2)/(d—-1) and
p > 0. Note that the risk functions of these estimators are calculated relatively to the usual
quadratic loss function defined at above.

In this work we adopt the model X~N, (8, 521,) such that the parameter o2 is
unknown and estimated by the statistic S?: S?~o?y2independent of the observations X .
We give the prior distribution 6~N,, (v,rzlp) where the hyperparameter » is known and

ISSN: 2231-5373 http://www.ijmttjournal.org Page 7




International Journal of Mathematics Trends and Technology (IJIMTT) — Volume 65 Issue 6 - June 2019

the hyperparameter 7% is known or unknown. The aim is estimating the mean 6 by a the
Modified Bayes estimator §; when the hyperparameter 2 is known and by an Empirical
Bayes estimator &;5when the hyperparameter 72 is unknown. Note that R(X; 8) = pa?, is
the risk of the Maximum likelihood estimator.

In section 1, we recall some technical’s Lemmas that we use them for later and we also
recall some results linked with Bayes estimators of the mean of a multidimensional normal
distribution.

In Section 2, we give the main results of this paper. First, we take the prior low of 4
O~N, (v, rzlp) where the hyperparameters v, 72 are known and we construct a Modified
Bayes estimator 65 of the mean 6, then we study the minimaxity of this estimator when n
and p are fixed. In the second part of this section we study the behaviour of the risk ratio of
this estimator to the Maximum likelihood estimator X when n and p tend to infinity.

In the section 3, we take the prior distribution of 8: 6~N, (v, 21, ) where the

hyperparameter v is known and the hyperparameter 72 is unknown and we construct an
Empirical Bayes estimators of the mean 6, then we will follow the same steps as we have
given in section two. In the end we illustrate graphically the risk ratios of the Modified
Bayes estimator 65 to the Maximum likelihood estimator X for divers values of n.

Il. PRELIMINARIES

2
We recall that if X is a multivariate Gaussian random N, (6,a21,) in %P then "f—!~)(§ )

where )(g (1) denotes the non-central chi-square distribution with p degrees of freedom and

2
non-centrality parameter A = % We recall the following Lemmas that we will use often

in our proofs.
Lemma 2.1 (Fourdrinier et. al., 2007)

Let X~N, (8, 02%1,), 6 € RP. Then, for p > 3, we have E (L) = iE(

X2 o2 )’ where

p—2+2k

12 . . . 911
X~P (%), being the Poisson’s distribution of the parameter%.

Lemma 2.2 (Stein 1981)

LetY be a N(0,1) real random variable and let g: R — R be an indefinite integral of the
Leshbegue measurable function g , essentially the derivative of g. Suppose also that

E(g'(Y)) <. Then E(Yg(Y)) = E(g (V).
Lemma 2.3 (Casella and Hwang, 1982)

For any real function h such that E [h ()(3 (A)) )(3 (A)] exists, we have
E{h () 2D} = aF {h (22} + 22E {h (22..D)}
Lemma 2.4 (Benmansour and Hamdaoui, 2011)
Let f isa real function. If for p > 3, E, 2 [f (U)] exists, then

a) If f is monotone non-increasing we have

EX;%HQ) [f(U)] = E)(%(A) [f(U)] (2.1)
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b) If fis monotone non-decreasing we have
E2 o f(D] 2 Epz i [F )], (2.2)
We also recall in what follows a few results of Bayes estimator.

Let X/0~N,(6,021,) and 6~N,(v,7%I,) where a2 known, and hyperparameters is
v, 72 are known. Then from Lindley (1972), we have

0/ X ~ Np(u+ B(X —v),6°BlI p) where B = % then the Bayes estimator of 8 is

83(X) = E(3) = v+ B(X —v) thus
‘L'2
550 = (1-5—) (X —v) +. (2.3)
We deduce that
i) R(65(X);0)=(1—B)?16—vl*+ B?pao?
and
R(BB(X);V,TZ,UZ) 72
i) R(X) - 12402

I11. RESULTS AND DISCUSSION
In this section we are interested in studying the minimaxity, bounds and limits of risk ratios
of the Modified Bayes and the Empirical Bayes estimators, to the Maximum likelihood
estimator X. In the next, we give the following Lemma.

Lemma 3.1
For any ¢ > 0, we have:
1 1 1
n+2+c = EX121+2 (;) S E’ (31)
1 1 1
(n+4+c)? = EX121+4 [(u+c)2] = (n+c)? (32)

Proof
From Jensen’s inequality we have

1 1
EXrZz+2 (u_-l-c) ~ n+2+4c¢’
On the other hand, from lemma 2.3, we have

1=E L E !
B X’Zl(u+c)+c X'%+2<u+c>

1 1
=nkE (—>+CE2< )
n+2 \u + ¢ i\u+c

1 1 1 1
B (o) =21k (50)] <o
The last inequality follows from Jensen’s inequality. The proof of the formula (3.2) is as

follows: from Jensen’s inequality we have

Then

1
EX121+4 [(u+c)2] ~ (n+4+4c)?’
In other hand, we have
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1 u 1
Bt (u + c) = i ((u + c)2> b ((u + c)z)
1 1
=(n+ Z)E 2, (m) + CE)(TZL+2 ((u+c)2) (3.3)
1 1
> (Tl + Z)EX%+4 ((u-l——c)z) + CEX%+2 (m) (34)

2(n+2+0)E;, (ﬁ)

The equality (3.3) follows from Lemma 2.3 and the inequality (3.4) follows to the formula
(2.1) of Lemma 2.4. Hence

1 1 1
E < E
Xn+2 ((u + c)2> SN+ 24c Ane (u + c)
Using the formula (3.1), we obtain
1 1 1

EX%+2 ((u+c)2) = n+2+cntc = (n+c)?’
Modified Bayes Estimator

Let X/0~N,(6,0%1,) and 6~N,(v, 71 )where 2 is unknown, and the
hyperparameters v, 72 are known. We note that

> Is an asymptotically unbiased

52
2 — 2
Bl V= |=nE. [—
§% + nt? S? 72 Xn+2 72
Zztn_z ut+n—z
o o o

The last equality comes from Lemma 2.3. From the previous equality and the formula (3.1)
of Lemma 3.1, we obtain

2
n( 22)4_2 <E (Szj—nrz) = n( nfz)’

1+—2- 1+7

2
It is clear that both the upper and the lower bound converge to —— whenn — oo. Thus
. 52 +02
lim,, 4 E( ) =

.2 SZ4nr2 o 2+1:2
If we replace in formula (2.3) the ratlo by its estlmator , We obtain the
Modified Bayes estimator expressed as
5y =(1- )(X—v)+v (3.5)
Proposition 3.2
Let the Modified Bayes estimator &z given in (3.5), then
i) The risk function of the estimator 8z is
( 72 / 1 \ 1 )
R((SE;V, ‘[2’0'2) = po‘2 + paz n(n+2) (1 + ?) EX1%+4 j - 27’11::/,,(%_'_2 <—T2> }
(u + nﬁ) utnz/)
2
nn+2)(1+ s 2 2
i1 + 5 ;22_ z2 SR(5B,V,T 0 )Sl+ (n+2 _ 2:12 .
Proof
We have
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2

o) o5

(1—23—22j(x ~v)+v-0

From the independence to two variables X and S?, we have

sz \° s2 X—0 X—v
R(63;6) = Eo(I X — 6 I2) + E, (W) E,(I X — v I?) — 202E, <52 - n'[2> E, (( — — ))
2
=po’+E,2 <—u7> {pa2 +1 6 —v I>= 2npa’E,,2 (—u7>} (3.6)
n+2 u+n;—z n u+n;—2-

1 1
=po’+n(n+2)E,z2 —z (po?® +1 X — 6 II°— 2npa?)E, 2 , <_TT>
(v4n22) "

"5z

The equality (3.6) according to the Lemma 2.2 and the last equality follow from Lemma 2.3.

Thus
\ 1
(po? +E, :,(1X —6]*) — 2npo ) s <T2>

R(63;v,72%,0%) = Egg;v’rz’az[R@g; 0)]
u +TL?

=po? + po? !n(n+2)<1+ ) s 1 \ 2nEz2 ;rz 1
k \u+n— / u+n?)

=po +n(n+2) Y24
\ u+n—

From i) we have
R(83;v,1%,0%) T? 1
W 1+n(n+2) 1+ Eyz  —2nEz . —
u+n?

Using formulas (3.1) and (3.2) of Lemma 3.1, we obtain

R(8%:v, 12, 02 72 1 2n
%Sl‘l‘ﬂ(ﬂ‘l‘Z)(l‘I——Z) T 72
o
<1+ (n+2% _ 2n2
n(l+§2> n(l+§2>+2
and
R(8%;v, T2, 02 72 1 2n
%21+n(n+2)(1+—2> —- —
& 7 <n+4+nT—2) n+2+n_;
o o
n(n+21+122> 2
2 1 + % - 7
(n(1+§2)+4) I+
Theorem 3.3
a) Ifp=>3andn > 5 the estimator 65 given in (3.5) is minimax,
. R(8pvt202) 22
b) hmn]p—»oo R(X) T 2462
Proof
a)  From the previous Proposition, we have
2
T
) L , , n(n+2)(1+?> m
R(65;v,1%,0%) < po” + po 5 — >
72 T
(n + n_z) n+2+n—=
o o
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The study of the variation of the real function h(x) = =4~ — —2%_ shows that

x(1+ﬁ) x(1+ﬁ)+2
0'2 0'2

(n+2) 2n

n(1+;—22) B n(1+;—22)+2
Then R(8;;v,12%,0%) < R(X) < pa? for anyn = 5. Thus &5 is minimax for any n > 5.
b)  Immediately from ii) of the Proposition 3.2.

< 0 forany n>5,

Empirical Bayes estimator

Let X/0~N,(6,0%1,) and 6~N,(v,7%I,) where 62 is unknown and the
hyperparameter v is known and the hyperparameter z2is unknown. We note that
p—2
n+2 ||X v||2
from the independence to two variables S?and||X||2, we have

p—2 S? p—2 o? 52 1
E - E(S)E| o
n+ 21X —vl? n+202+12 \o? | X — ]|

(whereS2~a?2y? ) is an asymptotically unbiased estimator of ratlo . Endeed:

0% +1°
As the marginal distribution of X is X~N,, (v, (62 + t2)I,), then *5—+- 'X ”" ~XE.
Using the Lemma 2.1, we obtain E (ﬁ;) =F (Xiz) = E, thus
p
(2 5y i o
n+2 || X—v]||? - n+2 02412 nsoo 02412

2
If we replace in formula (2.3) the ratlo by its estlmatorjﬂ, we obtain the
Empirical Bayes estimator expressed as

« (1 P22 -
Opp = (1 YT v||2) X-v)+v (3.7)

Proposition 3.4
The risk function of the Empirical Bayes estimator §zz given in (3.7) is

- 2
R(8tp;v,7%,0%) = po? [1 _pzn o ]

p n+202+72

Proof
2
R(8;5;v,1%,0° (”( n+2||X Ullz)(X—U)+U—9 )
= BQx -0l + (2= 2)2 AP ol P G
+2/) o%2+12 " \o? IIX —vll?
% +1?
np-2) , (S X-6 1 X-v
V(2 )E ,
nt2z ° o2 o IX-vll*> o
o2

Using Lemma 2.2, we obtain

B ||x_u||2 - Z \ (“X‘“"ZX U)) iE <MX;U>

=
‘ o2

=(- 2)E<||X u||2> —2) z+ zE (nx ;||2>

g
(- E(L) =
p a+1'2 x5 J+1'2
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[1X— v|| 2 R 2} — _p=2n _o?
Because ~—— )(pandE(X5> - - Thus, R(6;5;v,7%,0%) =po [1 . ]

n+2 o242

Theorem 3.5
Let the Empirical Bayes estimator 6z given in (3.7), then
a) Ifp > 3, the estimator 6z IS minimax,
R(8zpv,t 02) 2
R(X) 2402

b)  limy,, e

Proof
Immediately from the Proposition 3.4.

IV. SIMULATION RESULTS

We illustrate graphically the performance of the risk ratios of the Bayes estimator 63 to the

R(6E:v,rz,az)

2
. . . . . T .
Maximum likelihood estimator x expressed as as a function of 1 = = for various
g

R(X)
values of n.
1
0.8 T
06 Maximum likelihood
//
04 ,f\
lr.f
o2l ¢ mModified Bayes estimator
!
0 1 ) 3 4 5

A

R(6§;v,‘rz,az)

Fig. 1. Graph of risk ratio IS

2
as function of 2 = = forn=5.

1
0.8
0.6 Maximum likelihood

n_‘_: -

027

2

R(85:v,1%0° . T
B(0kiv*207) o6 function of A= forn=8.

Fig. 2. Graph of risk ratio RO -

V. CONCLUSIONS

In this paper, we study the asymptotic behaviour of the risk ratios of shrinkage estimators
of the mean 6 of a multivariate Gaussian random variable in RP under a quadratic loss
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function. We take the same model X~N, (6, a21,) with the unknown o estimated by
the statistic S2~a2x2 independent of X, given the prior distribution 8~N, (v,721I,) where
the hyperparameter o is known and the hyperparameter 2 is known or unknown, then we
constructed the Modified Bayes estimator &5 when the hyperparameter 72 is known and the
Empirical Bayes estimator 855 when the hyperparameter 72 is unknown and showed that
the estimators 8z and 655 are Minimax when n and p are finite. When n and p tend
simultaneously to infinity without assuming any order relation or functional relation

* 2 2 * 2 2
between n and p, we showed that the risk ratios R(‘SB}:E;) ") and R(‘s“; (VX; %) tend to the

2
same value Tzif‘zwhich is less than 1. An idea would be to see whether one can obtain

similar results of the asymptotic behaviour of risk ratios in the general case of the
symmetrical spherical models, for general classes of shrinkage estimators.
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