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Abstract 

 Thamarai Selvi and Vaidyanathan [1] introduced the concept of Maximum distance (M – distance) in a 

graph.  They claimed a few relations between the (usual) metric distance and M – distance related to a graph.  

Further, they defined M – Eccentricity, M – Radius, M – Diameter and M – Denter related to a graph and obtained 

them for a few standard graphs. 

In this paper, we made improvements for a considerable number of results of the above mentioned paper.  

Our paper is divided into three sections. The first one deals with introduction and basic results; the middle one for 

the calculation of dM(u, v) (M-distance) for all pairs of vertices u, v of the graphs Kn, Sn and Km,n for suitable m, n 

and to P2 , P3 . The last section is devoted with the calculations of M-Eccentricity etc. of  the  above mentioned 

graphs. 

Keywords: M-distance, Maximum radius, Maximum diameter 

I. Introduction and Basic Results:  

 ThamaraiSelvi and Vaidyanathan [1] introduced the concept of Maximum distance (M-distance) in a graph 

by considering the length of any shortest path between any two vertices, the sum of the degrees of all the vertices in 

the path in addition to the total number of vertices in the path. 

 Mathematically, if u and v are any two vertices of a graph G, then the M-distance between u and v in G, 

denoted by dM(u, v) is defined to be  

Min.{lM(P) : P is any u-v path in G},   

where, 

( ) ( )

( ) ( , ) deg ( ) deg | |M

G G

x V P w P G

l P d u v x w
 

   
,

 

„d‟  denotes the usual metric distance function on the set vertex V(G) of G, V(P) denotes the set of all vertices of G 

that are in the path P between u and v, including  u  as well as v and the last sum denotes the number of vertices of G 

that are in P (Observe that the last sum in the above expression is confusive, a better way is to denote it by O(P), the 

number of elements in P ). 

 Clearly, it follows that dM(u, v) ≥ d(u, v) for all pairs of vertices u, v in G. 

Remark (1.1) They claimed that the above inequality is an equality iff (if and only if) u and v are the same. 

But, if v = u, then P consisting of the single vertex u, i.e., P = {u} is the shortest  

u – u path in G. So 
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dM (u, u) = eM (P) = d(u, u) + 

( )

deg ( )G

x V P

x


 +

( )

degG

w P G

w


  

                               = 0 + deg u + 1 (there is only vertex u in P) 

                              ≥ 1 

dM (u, u)  0 = d(u, u). 

So dM is not a metric on V(G). 

Their Theorem 1 is the following:  If G is a connected graph, then the M – distance is a metric on V(G).  

 Now, we redefine M – distance on V(G) as follows: 

Definition (1.2): G is a non-empty, finite, simple and connected graph; M is a positive integer.  The M-distance 
function dM on V(G) is a mapping V(G) x V(G) → R+ (the set of all non-negative reals)  

where, for all u, v V(G), 

 
( )

0 if v = u

( , ) min {l ( ),  P being any u - v path in G and l ( ) deg ( ) ( ) if u,  v  
M

M M

G

x V P

d u ud u u P P x O P





   


 




 

Now, by definition, the new dM is such that dM(u, u) = 0 and u, v V(G) with v ≠ u implies that 

dM (u, v) = d (u, v) + … > 0. 

Thus, dM (u, v) ≥ 0 and = 0 iff v = u. 

Clearly dM (u, v) = dM(v, u) for all u, v in V(G). 

Now, we show that the triangular inequality holds. (The argument given in their Theorem needs modification). 

Let u, w, v be in V(G) and P, Q be shortest u – w and w – v paths respectively in G.  So follows that  dM (u, w)  = lM 

(P) and dM(w, v) = lM(Q).  Observe that P U Q need not be a u – v path in G. It is a trail. Let R be  a u – v path in P U 
Q.   Since the set R is a subset of the set P U Q, it follows that 

dM (u, v)  =eM (R) ≤ lM(P) + lM(Q) 

                = dM(u, w) + dM(w, v). 

Thus, dM is a metric on V(P). 

Remark 1.3. In their proposition (1.2), they claimed the following.  In a connected graph G, two distinct vertices u, 

v are adjacent  dM (u, v) = deg u + deg v + 3. 

Their argument for the first part is alright.  u and v are adjacent in G P= {u, v} (u→v) is the shortest  u – v path 

in G   
( )

( ) deg (,  ) ( )M

G

x V P

d u Oul P x P


    

                                                                = 1 + deg u + deg v + 2 = degu + degv + 3. 

The proof of the second part needs a little bit modification. 

Let u, v V(G) be such that dM(u, v) = degu + degv + 3. 
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We claim that u and v are adjacent in G.  Suppose not;  any shortest u – v path P in G contains atleast three  vertices, 

the end vertices being u and v.  Now  
( )

d ( , ) deg ( ),  ( )M

G

x W P

u d u Ovv x P


      ≥ 2 + {degu + deg v} + 3 

                                                              = deg u + deg v + 5 

which is a contradiction. 

Hence, the conclusion follows. 

2. Calculation of d
M

 (u, v) for all ordered  pairs(u, v) of vertices u, v of a  graph. 

Observation (2.1):  Let G be a non-empty, finite, simple and connected graph. (Here under, we consider only such 
graphs). So the number of vertices „n‟ of G              is atleast 2. 

If u, v ε V(G) and v = u then dM (u, v) = dM(u, u) = 0. This happens for all u ε V(G). Thus dm takes the value „0‟ at 

all the n pairs (u, u) of G. 

 Now, let V(G) = { v1, v2, …, vn }. Now we have to calculate dM(vi, vj) for 

 1 ≤ i < j ≤ n, since dM is symmetric. So the number of distinct positive values  we get for  dM (u, v)  is given by 

dM(vi, vj) for i ε {1, …, n-1} and j ε {(i+1), …, n}. Thus, the number is  

1 1

1 1 1

1

1

1 1 { ( 1) 1}

( 1)
( ) ( 1)

2

( 1)

2

n n n

i j i i

n

i

n i

n n
n i n n

n n

 

   





 
    

 


    




  

  

So, the number of distinct values that dM(vi, vj) (1≤ i≤ j ≤ n) takes is 1+
( 1)

2

n n 
=

2( 2)

2

n n 
, one value being 

„o‟. 

Remark (2.2):  For any graph G, dM(u, u) = 0 for all vertices u of G. 

Theorem 2.3. For the complete graph Kn (n ≥ 2) dM(u, v) = (2n+1) for any (distinct) pair of vertices u, v of Kn. 

Proof.  Let u, v  be distinct vertices of Kn. Clearly  u and v re adjacent in Kn and deg u = deg v = (n – 1).  Now, by 

Remark (1.3)  dM(u, v) = degu + degv + 3 = (n – 1) + (n – 1) + 3 = (2n + 1). 

Remark (2.4): The path P2 = K2 and it is a special case of Theorem(2.3). 

Theorem (2.5): For the path P3 

dM (u, v) =  

Proof. Let  V(P3) = {v1, v2, v3}.    Now deg(v1) = deg(v3) = 1 and deg(v2) = 2. 

If u = v1 and v = v2 or u = v2 and v = v3, then u and v are adjacent in P3.  So by Remark(1.3)  

dM (v1, v2) = degv1 + degv2 +  3 = 1 + 2 + 3 = 6 
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dM (v2, v3) =  degv2 +   degv3  + 3 = 2 + 1 +  3 = 6 

Let  u = v1 and v = v3. Now P= {v1, v2, v3} is the only shortest  path in P3.   

So, by definition  

dM(v1, v3) = d(v1, v3) +  

                   = 2 + deg v1 + deg v2 + deg v3 + 3 

                  = 2 + (1+2+1) + 3 = 9. 

Remark (2.6): The star graph S1 = K2 and S2 = P3 and these are already discussed (Remark (2.4) and Theorem (2.5)). 

Theorem (2.7).  For the star graph Sn (n ≥ 3) with vertex set V(Sn) = {u0, v1, v2, …, vn}, where u0 is the centre (adjacent 

with all v‟s) and vi (i = 1, 2, …, n) are such that they are (adjacent with all vi) and vi (i = 1, 2, …, n}  are adjacent with u0 
only, then 

dM (u0, vi) = (n + 4) for i = 1, 2, …, n 

and  

dM (vi, vj) = (n + 7) for 1 ≤ i  ≠  j ≤ n 

Proof. Clearly, deg(u0) = n, deg(vi) = 1 for all i. 

Since u0 is adjacent with every vi.   by Remark (1.3) 

dM (u, vi) = deg u0 + deg vi + 3 = n + 1 + 3 = (n + 4) for all vi. 

 Let vi ,vj be distinct vertices of Sn. 

Since, dM is symmetric,  without loss of generality, we can assume that 1 ≤  i <j < n.  The shortest vi – vj  path  is P : vi→ 

u0→vj and it is of length 3.  Now, by definition 

dM(vi, vj) = d(vi, vj) + 

0

0

{ , , }

deg ({ , , })
i j

i j

x P v u v

x O v u v


  

              = 2 + (deg vi + deg u0 + deg vj) + 3 

             = 2 + ( 1 + n + 1) + 3 = (n + 7). 

This completes the proof of the theorem. 

Remark 2.8. The complete bipartite graph K1,1 = K2, K1,2 = S2 and K1,n (n ≥ 3) is Sn and these are already discussed. 

Now, we consider the following. 

Theorem (2.9). For the complete bipartite graph Km, n (m, n ≥ 2) with (vertex) bipartition (X, Y), where X={u1, u2, …, 

um} and Y ={v1, v2, …, vn} , 

( , ) (2 5)M

i id u u n m   
    1 i i m   , 

( , ) =(2m+n+5)       1 j<j nM

j jd v v 
   

and 
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dM(ui, vj) = (n + m + 3) :   i ε {1,2,… m} and j ε {1,2,…, n}  

Proof. By the definition of Km,n, clearly  deg(ui) = n and deg(vi) = m for i ε {1,2,… m} and j ε {1,2,…, n} . 

Let i, i
1
 ε {1,2,…,m} and i

1 i. Without loss of generality we can assume that 1 i i m   .  

Since ui is connected with 
iu   by means of any vertex v ε Y, it follows that { , , }i iP u v u    is a shortest 

i iu u   path in 

Km,n. So, by definition  

( , ) ( , )M

i i i id u u d u u  + 

0

0

{ , , }

deg ({ , , })
i j

i j

x P v u v

x O v u v


  

      2 (deg deg deg ) 3i iu v u       

       = 2 + (n + m + n) + 2  

                 =  ( 2n + m + 5). 

Similarly, it follows that  

( , ) 2 5.M

j jd v v m n    

Since ui and vj are adjacent in Km,n,  by Remark (1.3)  

( , ) deg deg 3M

i j i jd u v u v    

      = n + m + 3. 

§3. Calculation of M-Eccentricity etc for Standard Graphs 

Thamarai Selvi and Vaidyanathan introduced these concepts for standard graphs as follows 

As usual G and H have their usual meanings. 

Definition (3.1) a) Let vV(G).  The M – Eccentricity of v, denoted by eM(v) is defined to be max {dM(u,v): uV(G)} 

If u0 V(G) be such that dM(u0, v) = eM(v), then u0 is called an M – Eccentric vertex of v.  Further, it is also called an M 

– Eccentric vertex of G. 

b) The maximum radius called the M – radius of G, dented by r
M

(G) = min {e
M

(u,v): vV(G)}. 

c) The maximum diameter called the M – diameter of G, denoted by dM(G) = max{eM(v): v V(G)} 

d) The maximum centre called the M – centre of G, denoted by CD (G) is the subgraph of G induced by the set of all 

vertices of minimum M – eccentricity. 

e) G is said to be M – self centered iff CM(G) = G or equivalently rM(G) = dM(G). 

f) The set of all vertices of maximum M – eccentricity is called the M – periphery of G. 

Result (3.2).  For the complete graph Kn (n ≥ 2) rM(Kn)  = dM(Kn) = (2n + 1), CD (Kn) = Kn   Kn is self centered and M 

– periphery of Kn is V(Kn). 

Proof. Th(2.1) gives that dM(u, v) = (2n + 1) for all u, v V(Kn).  So eM(v) is the same and = (2n + 1) for all vV(G).  

Hence the result follows from Definition (3.1). 
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Result (3.3). For the paths Pn ( n = 2,3), rM(P2) = dM(P2) = 5 and rM(P3) = 2(3) = 6 and dM(P3) =  9 = 4(3) – 3. 

Proof.  Th (2.2) (a) gives that dM(u,v) = 5  

Since P2 = K2, the result follows from the above Result when n = 2. 

Suppose n = 3. From Th.(2.5), we get that rM(P3) = min {6, 9} = 6 = 2(3).  

dM(P3) = max {6, 9} = 9 = 4(3) – 3. 

If P3 = v1 – v2 – v3, then eM(v1) = 9 = eM(v3), e
M(v2) = 6. 

So CD (P3) is the subgraph of P3 consisting of the single vertex v2 and the M – periphery of P3 is the vertex set consisting 

of the vertices v1 and v3, the edge set being the empty set. 

Result (3.4).  For the star  graph Sn (n ≥ 3) , rM(Sn) = (n + 4), dM(Sn) = (n + 7). 

CD (Sn) is the subgraph generated by the single vertex u0 and the periphery is the set {v1, v2, …, vn}. 

Proof. By Theorem (2.7) 

eM(u0) = Max {dM(u0, vi): i = 1, 2, …, n} = (n + 4) 

For any i {1, 2, …, m}  

eM(vi) = Max (dM(vi, u0), Max{dM(vi, vj): j   {1, 2, …n} – {i}} 

           = Max (n + 4, n + 7) 

          = (n + 7) 

So rM (Sn) = Min {eM (u0), {eM(vi): i=1,2,…,n}} 

                 = Min (n+4, n+7)  

                 = n + 4 

dM(Sn) = Max {eM(u0), Max{eM(vi): i = 1, 2, …, n} 

            = Max {n+4, n+7} = (n + 7) 

So CD(Sn) is the subgraph with single vertex set u0 and the M – periphery of CD Sn is the vertex set {v1, v2, …, vn} 

Result (3.5). For the complete bipartite graph Km, n (m, n ≥ 2) and m ≤ n, 

rM(Km,n) = 2m + n + 1, dM (Km,n) = m + 2n + 1, CD (Km,n) is the subgraph generated by Y and M – periphery is the set X. 

Proof. By Th. (2.3), for any u X 

eM(u) = Max {dM(u, z): z V(Km,n) = X U Y} 

          =  Max (Max {dM(u, u‟): u‟ X}, Max{dM(u, v): vY}) 

          =  Max (m + 2n + 5, m + n  + 3) 

          =  (m + 2n + 5) 

For any v Y 

e
M

(v) = Max { d
M

(v, z): z X U Y} 
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          =  Max (Max {dM(v, u): uX}, Max{dM(v, v‟): v‟Y}) 

          =  Max (m + n  + 3, 2m + n + 5) 

          =  (2m + n + 5). 

Without loss of generality, we can assume that m ≤ n. Now, 

rM (Km,n) = Min {m + 2n + 5, 2m + n + 5} 

               = 2m + n + 5 

dM (Km,n) = Max {m + 2n + 5, 2m + n + 5} 

                = m + 2n + 5 

So CD (Km,n) is the subgraph generated by the set Y = {v1, v2, …, vn}.  This is null set with n vertices. 

The M – Periphery of Km,n is the vertex set X = {u1, u2, …, um}.   
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