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Abstract. A (2+1)-dimensional generalized KdV equation (ut+u3ux+αuxxx)x+βuyy =0, α, β∈ 

R+ is subjected to Lie’s classical method. Classification of its symmetry algebra into one- 

and two-dimensional subalgebras is carried out in order to facilitate its systematic 

reduction to (1+1) dimensional PDE and then to ODEs. A solution containing two 

arbitrary functions of time t is also determined. 
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1. introduction 

The KdV equation 

(1.1) 𝑢𝑡 + 𝑢𝑢𝑥 + 𝛿𝑢𝑥𝑥𝑥 = 0, 
is integrable in the sense that it possesses solitons, B¨acklund transformations, Lax pair, 

infinite number of conservation laws and Painlev´e property. Whitham [7] has given a 

representation of a periodic wave as a sum of solitons for (1.1). Miura [4] established a 

relation between (1.1) and the modified KdV equation ut+au2ux+uxxx =0. 

Liu and Yang [3] studied bifurcation problems for a generalized KdV equation 

(1.2) 𝑢𝑡 + 𝑎𝑢𝑛𝑢𝑥 + 𝑢𝑥𝑥𝑥  = 0, 𝑛 ≥ 1, 𝑎 ∈ 𝑅. 

A generalized version of (1.2) in the form 

(1.3) 𝑢𝑡 + 𝑢𝑛𝑢𝑥 + 𝛼(𝑡)𝑢 + 𝛽 𝑡 𝑢𝑥𝑥𝑥 = 0, 
has recently been studied for its symmetry group and similarity solution by 

Senthilkumaran, Pandiaraja and Mayil Vaganan [6]. 

In this paper we introduce yet another (2 + 1)-dimensional variable coefficient KdV 

equation 

(1.4)                𝑢𝑡 + 𝑢3𝑢𝑥 + 𝛼𝑢𝑥𝑥𝑥  𝑥  + 𝛽𝑢𝑦𝑦  = 0, 𝛼, 𝛽 ∈ 𝑅+. 

Our intention is to show that equation (1.4) admits a five-dimensional Lie algebra, and 

classify it into the one- and two-dimensional sub algebras in order to reduce (1.4) to 

(1+1)-dimensional partial differential equations (PDEs) and then to ordinary differential 

equations (ODEs). It is shown that (1.4) reduces to a once differentiated generalized KdV 

equation, a linear equation 𝑊𝑟𝑟 (𝑟, 𝑠) = 0 . We shall establish that the symmetry 

generators form a closed Lie algebra and this allowed us to use the recent method due to 

Ahmad, Bokhari, Kara and Zaman [1] to sucessively reduce (1.4) to (1+1)-dimensional 

PDEs and ODEs with the help of two-dimensional Abelian and solvable non-Abelian sub 

algebras. 

 

          This paper is organised as follows: In section 2 we determine the symmetry group 

of (1.4) and write down the associated Lie algebra. In section 3 we consider all one 

dimensional sub algebras and obtain the corresponding reductions to (1+1)-dimensional 
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PDEs. In section 4 we show that the generators form a closed Lie algebra and use this fact 

to reduce (1.4) successively to (1+1)-dimensional PDEs and ODEs. Section 5 summarises 

the results of the present work. 

 

2. The symmetry group and Lie algebra of (1.4) 

If (1.4) is invariant under classical Lie group of infinitesimal transformations (Olver 

[5], Blumen and Kumei [2]) 

(2.1) 𝑥𝑖
∗  = 𝑥𝑖 + 𝜖𝜉𝑖 𝑥, 𝑦, 𝑡, 𝑢 + 𝑂 𝜖2 , 𝑖 = 1,2,3,4, 

where 𝜉1  = 𝜉, 𝜉2  = 𝜂, 𝜉3  = 𝜏, 𝜉4  = 𝜙,  then the fourth prolongation pr(4)V of the 

corresponding vector field 

(2.2) 𝑉 = 𝜏 𝑥, 𝑦, 𝑡; 𝑢 𝜕𝑡 + 𝜉 𝑥, 𝑦, 𝑡; 𝑢 𝜕𝑥 + 𝜂 𝑥, 𝑦, 𝑡; 𝑢 𝜕𝑦  + 𝜙 𝑥, 𝑦, 𝑡; 𝑢 𝜕𝑢 . 

satisfies 

(2.3) 𝑝𝑟 4 𝑉 Ω(𝑥, 𝑦, 𝑡; )|Ω(𝑥, 𝑦, 𝑡; 𝑢)  = 0. 
The determining equations are obtained from (2.3) and solved for the infinitesimals 

𝜉, 𝜂, 𝜏, 𝜙 

(2.4) 𝜉 = 𝑐1 +
𝑐5𝑥

3
−

 𝑐2𝑦  

2𝛽
   𝜂 = 𝑐3 + 𝑐2𝑡 +

2𝑐5𝑦

3
,  𝜏 = 𝑐4 + 𝑐5𝑡, ∅ =

−2𝑐5𝑢

9
. 

 

Now we write down the five symmetry generators corresponding to each of the constants 

𝑐𝑖 , i =1,2,...,5 involved in the infinitesimals, viz., 

(2.5) 𝑉1 = 𝜕𝑥 ,   𝑉2 =
−𝑦

2𝛽
𝜕𝑥 + 𝑡𝜕𝑦 ,   𝑉3 = 𝜕𝑦 ,   𝑉4 = 𝜕𝑡 ,

                                                 𝑉5 =
𝑥

3
𝜕𝑥 +

2𝑦

3
𝜕𝑦 + 𝑡𝜕𝑡 −

2𝑢

9
𝜕𝑢  . 

These symmetry generators form a closed Lie algebra as is seen from the following 

commutator Table: 

Table 1 

 

 

 

 

 

 

  

3. Reductions of (1.4) by one-dimensional sub algebras 

As there are five generators, we consider the reductions of (1.4) under each generator 

separately. 

Case 1. Sub algebra 𝐿𝑠,1  = {𝑉1 } 

The characteristic equation associated the generator V1 is 

(3.1) 
𝑑𝑥

1
=

𝑑𝑦

0
=

𝑑𝑡

0
=

𝑑𝑢

0
. 

and the similarity transformation is 

(3.2) 𝑠 = 𝑦, 𝑟 = 𝑡, 𝑢 = 𝑊 𝑟, 𝑠 .  
Using (3.2) in (1.4), the latter changes to a linear PDE 

(3.3) 𝑊𝑠𝑠  = 0, 
whose general solution 

(3.4) 𝑊(𝑟, 𝑠) = 𝐴(𝑟)𝑠 + 𝐵(𝑟), 

[Vi,Vj] V1 V2 V3 V4 V5 

V1 0 0 0 0 V1/3 

V2 0 0 V1/2β −V3 −V2/3 

V3 0 −V1/2β 0 0 2V3/3 

V4 0 V3 0 0 V4 

V5 V1/3 V2/3 2V3/3 V4 0 
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yields a solution of (1.4) involving two arbitrary functions A(t) and B(t). 

Case 2. Sub algebra Ls,2 ={V2} 

The characteristic equation and its solutions are 

(3.5) 
𝑑𝑥

𝑦
=

𝑑𝑦

−2𝛽𝑡
=

𝑑𝑡

0
=

𝑑𝑢

0
,  

(3.6) 𝑠 = 2𝛽𝑡𝑥 +
𝑦2

2
,   𝑟 = 𝑡,   𝑢 = 𝑊(𝑟, 𝑠). 

In view of (3.6), (1.4) transforms into 

(3.7)  2𝑠𝑊𝑠 + 4𝛽𝑟2𝑊3𝑊𝑠 + 2𝑟𝑊𝑟  + 𝑊 + 16𝛼𝛽3𝑟4𝑊𝑠𝑠𝑠 𝑠  = 0. 
 

Case 3. Sub algebra Ls,3 ={V3} 

The characteristic equation associated with V3 is 

(3.8) 
𝑑𝑥

0
=

𝑑𝑦

1
=

𝑑𝑡

0
=

𝑑𝑢

0
. 

Integrating (3.8) we get 

(3.9) 𝑠 = 𝑥, 𝑟 = 𝑡, 𝑢 = 𝑊(𝑟, 𝑠). 

 

Equations (1.4) and (3.9) together lead to 

(3.10)  𝑊𝑟  + 𝑊3𝑊𝑠 + 𝛼𝑊𝑠𝑠𝑠  𝑠  = 0. 

The above equation is once differentiated KdV equation with variable coefficient. 

Case 4. Sub algebra 𝐿𝑠,4  = {𝑉4 } 

The characteristic equation associated with V4 is 

(3.11) 
𝑑𝑥

0
=

𝑑𝑦

0
=

𝑑𝑡

1
=

𝑑𝑢

0
. 

Integration of (3.11) gives rise to 

(3.12) 𝑠 = 𝑦,  𝑟 = 𝑥, 𝑢 = 𝑊(𝑟, 𝑠). 

Inserting the ansatz (3.12) into (1.4), we find that 

(3.13)  𝑊3𝑊𝑟  + 𝛼𝑊𝑟𝑟𝑟  𝑟  + 𝛽𝑊𝑠𝑠  = 0. 

 

Case 5. Sub algebra Ls,5 ={V5} 

The solution of the characteristic equation associated with V5, namely, 

(3.14) 
𝑑𝑥

𝑥
=

𝑑𝑦

2𝑦
=

𝑑𝑡

3𝑡
= −

3𝑑𝑢

2𝑢
, 

is 

(3.15) 𝑟 = 𝑥𝑡−
1

3 ,    𝑠 = 𝑦𝑡−
2

3 ,    𝑢 = 𝑡−
2

9𝑊 𝑟, 𝑠 . 
Substituting from (3.15) into (1.4) the latter reduces to 

(3.16)  9𝑊3𝑊𝑟  − 3𝑟𝑊𝑟  − 2𝑊 − 6𝑠𝑊𝑠 + 9𝛼𝑊𝑟𝑟𝑟  𝑟  + 9𝛽𝑊𝑠𝑠  = 0. 

 

4. Reductions of (1.4) by two-dimensional sub algebras 

As reductions can be facilitated using two types of two-dimensional sub algebras, 

namely, Abelian sub algebras and solvable non-Abelian sub algebras, we consider them 

separately. 

(4.1) Two-dimensional Abelian sub algebras 

Case 1. Sub algebra 𝐿𝐴,1  = {𝑉1 , 𝑉2} 

From Table 1 we find that the generators V1 and V2 commute, that is, [V1,V2] = 0. We 

can initiate the reduction procedure by taking V1 or V2. If we begin with V2, then (1.4) is 

reduced to the PDE (3.7) . We now write below 𝑉2
∗ which is V2, but, expressed in terms of 

the similarity variables given in (3.2): 
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(4.1) 𝑉2
∗ = 2𝛽𝑟𝜕𝑠. 

The associated characteristic equation is 
𝑑𝑟

0
=

𝑑𝑠

2𝛽𝑟
=

𝑑𝑊

0
, whose solution is 𝜌 = 𝑟  and 

𝑊 = 𝐻(𝜌). Consequently, (3.3) is replaced by an ODE 

(4.2) 2𝜌𝐻′ = 𝐹(𝜌). 

Case 2. Sub algebra 𝐿𝐴,2  = {𝑉1 , 𝑉3} 

It follows from Table 1 that [V1,V3]=0. We shall begin with V3 to transform (1.4) to 

(3.10). Then V1 changes to 𝑉1
∗ = 𝜕𝑟 . Integration of the characteristic equations associated 

with 𝑉1
∗ gives W =H(ρ), ρ=r which reduces (3.3) to H′ =G(r). 

Case 3. Sub algebra LA,3 ={V1,V4} 

Since [V1,V4]=0, we begin with V1 and arrive at the PDE (3.3). We express V4 in 

terms of the similarity variables defined in (3.6) as 𝑉4
∗ = 𝜕𝑟 . As a result (3.7) reduces to 

H′′ =0. 

Case 4. Sub algebra LA,4 ={V3,V4} 

We begin with V3. In this case (1.4) is reduced to the PDE (3.10). 

We express V4 in terms of the similarity variables defined (3.12) as 

(4.3)  𝑉4
∗ = 𝜕𝑟 . 

The characteristic equation for 𝑉4
∗ is 

(4.4)  
𝑑𝑟

1
=

𝑑𝑠

0
=

𝑑𝑤

0
. 

Integrating (4.4) we obtain the transformation 𝑊 = 𝐻(𝜌), 𝜌 = 𝑟 which replaces (3.10) 

by 

(4.5)  𝐻3𝐻′ + 𝛼𝐻′′′ = 𝐺(𝜌), 

where G(ρ) is an arbitrary function. 

4.2. A two-dimensional solvable Non-Abelian sub algebra 

The sub algebra 𝐿𝑛𝐴 ,1  = {𝑉4 , 𝑉5} has the property [V4,V5]=V4. With V4 we transform 

(1.4) to (3.13). We express V5 in terms of the similarity variables defined (3.9) as 

(4.6)  𝑉5
∗ =

1

3
𝑟𝜕𝑟 +

2

3
𝑠𝜕𝑠 −

2

9
𝑊𝜕𝑤 . 

The characteristic equation for 𝑉5
∗ is 

(4.7)  
𝑑𝑟
𝑟

3

=
𝑑𝑠
𝑠

3

=
𝑑𝑊

−
𝑤

9

 . 

Integration of (4.7) leads to new variables and 𝑊 = 𝑠−
1

3  𝐻(𝜌), 𝜌 = 𝑟𝑠−
1

2, where H(ρ) 

satisfies the ODE 

(4.8)  (36𝐻3𝐻′ + 36𝛼𝐻′′′ + 16𝛽𝜌𝐻 + 9𝛽𝜌2𝐻′)′ + 5𝛽𝜌𝐻′ = 0. 

 

5. A (2 + 1)-dimensional VCKdV equation with damping 

In this chapter we consider the following (2 + 1)-dimensional VCKdV equations 

with damping 

(5.1) 
 

  𝜆𝑢𝑚 + 𝑢𝑡 + 𝑢3𝑢𝑥 + 𝛼𝑢𝑥𝑥𝑥
 
𝑥

+ 𝛽𝑢𝑦𝑦  = 0, 𝛼, 𝛽, 𝜆 ∈ 𝑅+, 

(5.2)  𝑡𝜆𝑢 + 𝑢𝑡 + 𝑢3𝑢𝑥 + 𝛼𝑢𝑥𝑥𝑥  𝑥 + 𝛽𝑢𝑦𝑦  = 0,                 𝛼, 𝛽, 𝜆 ∈ 𝑅+,   

(5.3)  𝑡𝜆𝑢𝑚 +𝑢𝑡 +𝑢3𝑢𝑥 +𝛼𝑢𝑥𝑥𝑥  
𝑥

+𝛽𝑢𝑦𝑦  = 0,𝛼, 𝛽, 𝜆 ∈ 𝑅+
. 

For (5.1), the infinitesimals 𝜉, 𝜂, 𝜏, 𝜙 and the four generators corresponding to each of the 

constants 𝑐𝑖 , 𝑖 = 1, 2 ,3 & 4 are 

(5.4) 𝜉 = 𝑐3 + 𝑐4𝑦   𝜂 = 𝑐1 = 2𝑐4𝑡𝛽,     𝜏 = 𝑐2 ,   ∅ = 0,  
and 
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(5.5) 𝑉1  = 𝜕𝑦 , 𝑉2 = 𝜕𝑡 , 𝑉3 = 𝜕𝑥 , 𝑉4 = 𝑦𝜕𝑥 − 2𝑡𝛽𝜕𝑦 . 

These symmetry generators form a closed Lie algebra as is seen from the following 

commutator Table: 

Table 2 

 

 

 

 

 

 

 

For both the equations (5.2) - (5.3), the form of the infinitesimals 𝜉, 𝜂, 𝜏, 𝜙 are the same: 

(5.6) 𝜉 = 𝑐2  + 𝑐3𝑦   𝜂 = 𝑐1 − 2𝑐3𝑡𝛽, 𝜏 = 0,   ∅ = 0  . 
Now we write down the three symmetry generators corresponding to each of the 

constants 𝑐𝑖 , 𝑖 = 1,2,3 involved in the infinitesimals, viz., 

(5.7) 𝑉1  = 𝜕𝑦  , 𝑉2  = 𝜕𝑥 ,    𝑉3  = 𝑦𝜕𝑥 − 2𝑡𝛽𝜕𝑦 . 

These symmetry generators form a closed Lie algebra as is seen from the following 

commutator Table: 

Table 3 

 

 

 

 

 

The reductions of one-dimensional sub algebras of equations (5.1) and (5.2, 5.3) are given 

in Table 4 ,Table 5 and Table 6. 

Table 4 

 

Table 5 

  

 

  

[Vi,Vj] V1 V2 V3 V4 

V1 0 0 0 V3 

V2 0 0 0 −2βV1 

V3 0 0 0 0 

V4 V3 2βV1 0 0 

[Vi,Vj] V1 V2 V3 

V1 0 0 V2 

V2 0 0 0 

V3 V2 0 0 

Vi Reduction  

V1  𝑊𝑟  + 𝑊3𝑊𝑠 + 𝜆𝑊𝑚 + 𝛼𝑊𝑠𝑠𝑠  𝑠  = 0.  

V2  𝑊3𝑊𝑟  + 𝜆𝑊𝑚 + 𝛼𝑊𝑟𝑟𝑟  𝑟  + 𝛽𝑊𝑠𝑠  = 0.  

V3 𝑊𝑠𝑠 = 0.  

V4  2𝜆𝑟𝑊𝑚 + 2𝑠𝑊𝑠 + 4𝛽𝑟2𝑊3𝑊𝑠 + 2𝑟𝑊𝑟  + 𝑊 + 16𝛼𝛽3𝑟4𝑊𝑠𝑠𝑠  𝑠 = 0  

Vi Reduction  

V1 (rλW +Wr +W3Ws+αusss)s =0.  

V2 𝑊𝑠𝑠 = 0.  

V3  2𝑠𝑊𝑠 + 4𝛽𝑟2𝑊3 𝑊𝑠 + 2𝑟𝑊𝑟  +  2𝑟𝜆+1  + 1 𝑊 + 16𝛼𝛽3𝑟4𝑊𝑠𝑠𝑠 𝑠 = 0  
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Table 6 

 

 

 

 

 
 

 

The reductions of two-dimensional sub algebras of equations (5.1) and (5.2,5.3) are given 

in Table 7 and Table 8. 

Table 7 

Algebra Reduction 

[V1,V2]=0 (H3H′+λHm+αH′′′)′ =0. 

[V2,V3]=0 H′′ =0. 

[V3,V4]=0 H′ =L(ρ). 

Table 8 

Algebra Reduction 

[V1,V2]=0 H′ =G1(ρ) 

[V2,V3] H′ =G2(ρ) 

 

6. Conclusions 

• In this paper a (2+1)-dimensional KdV equation with variable coefficient 
 𝑢𝑡 +  𝑢3𝑢𝑥 + 𝛼𝑢𝑥𝑥𝑥  𝑥 + 𝛽𝑢𝑦𝑦  = 0, 𝛼, 𝛽 ∈ 𝑅+  is subjected to Lie’s classical 

method 

• Equation (1.4) admits a five-dimensional symmetry group. 

• It is established that the symmetry generators form a closed Lie algebra. 

• Classification of symmetry algebra of (1.4) into one- and two-dimensional 

subalgebras is carried out. 

• Systematic reduction to (1+1)-dimensional PDE and then to ODEs are 

performed using one-dimensional and two-dimensional Abelian and solvable 

nonAbelian subalgebras. 

• A solution of (1.4) containg two arbitrary functions of t is determined by 
reduction to a linear partial differential equation.  
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Vi Reduction  

V1  𝑟𝜆𝑊𝑚 + 𝑊𝑟  + 𝑊3𝑊𝑠 + 𝛼𝑢𝑠𝑠𝑠 𝑠
 = 0.  

V2 𝑊𝑠𝑠 = 0.  

V3  2𝑠𝑊𝑠 + 4𝛽𝑟2𝑊
3
𝑊𝑠 + 2𝑟𝑊𝑟  + 2𝑟𝜆+1𝑊

𝑚
+𝑊 + 16𝛼𝛽

3
𝑟4𝑊𝑠𝑠𝑠 

𝑠
= 0  


