Symmetry Reductions of $(U_T + U^3 U_X + \alpha U_{XXX})_X + \beta U_{YY} = 0$

¹J. K. Subashini , ²B. Mayil Vaganan

¹Department of Mathematics, K.L.N. College of Engineering, Pottapalayam-630612, India.

²Department of Applied Mathematics and Statistics, Madurai Kamaraj University, Madurai-625021, Tamilnadu, India,

Abstract. A (2+1)-dimensional generalized KdV equation $(u_t+u^3u_x+\alpha u_{xxx})_x+\beta u_{yy}=0$, $\alpha, \beta \in \mathbb{R}^+$ is subjected to Lie's classical method. Classification of its symmetry algebra into oneand two-dimensional subalgebras is carried out in order to facilitate its systematic reduction to (1+1) dimensional PDE and then to ODEs. A solution containing two arbitrary functions of time t is also determined.

Key words. A (2+1)-dimensional generalized KdV equation; Symmetry algebra.

1. introduction

The KdV equation

(1.1) $u_t + uu_x + \delta u_{xxx} = 0$, is integrable in the sense that it possesses solitons, B"acklund transformations, Lax pair, infinite number of conservation laws and Painlev'e property. Whitham [7] has given a representation of a periodic wave as a sum of solitons for (1.1). Miura [4] established a relation between (1.1) and the modified KdV equation $u_t + au^2u_x + u_{xxx} = 0$.

Liu and Yang [3] studied bifurcation problems for a generalized KdV equation (1.2) $u_t + au^n u_x + u_{xxx} = 0$, $n \ge 1$, $a \in R$. A generalized version of (1.2) in the form

(1.3) $u_t + u^n u_x + \alpha(t)u + \beta(t)u_{xxx} = 0,$

has recently been studied for its symmetry group and similarity solution by Senthilkumaran, Pandiaraja and Mayil Vaganan [6].

In this paper we introduce yet another (2 + 1)-dimensional variable coefficient KdV equation

(1.4) $(u_t + u^3 u_x + \alpha u_{xxx})_x + \beta u_{yy} = 0, \alpha, \beta \in \mathbb{R}^+.$

Our intention is to show that equation (1.4) admits a five-dimensional Lie algebra, and classify it into the one- and two-dimensional sub algebras in order to reduce (1.4) to (1+1)-dimensional partial differential equations (PDEs) and then to ordinary differential equations (ODEs). It is shown that (1.4) reduces to a once differentiated generalized KdV equation, a linear equation $W_{rr}(r, s) = 0$. We shall establish that the symmetry generators form a closed Lie algebra and this allowed us to use the recent method due to Ahmad, Bokhari, Kara and Zaman [1] to successively reduce (1.4) to (1+1)-dimensional PDEs and ODEs with the help of two-dimensional Abelian and solvable non-Abelian sub algebras.

This paper is organised as follows: In section 2 we determine the symmetry group of (1.4) and write down the associated Lie algebra. In section 3 we consider all one dimensional sub algebras and obtain the corresponding reductions to (1+1)-dimensional

PDEs. In section 4 we show that the generators form a closed Lie algebra and use this fact to reduce (1.4) successively to (1+1)-dimensional PDEs and ODEs. Section 5 summarises the results of the present work.

2. The symmetry group and Lie algebra of (1.4)

If (1.4) is invariant under classical Lie group of infinitesimal transformations (Olver [5], Blumen and Kumei [2])

(2.1) $x_i^* = x_i + \epsilon \xi_i(x, y, t, u) + O(\epsilon^2), i = 1,2,3,4,$ where $\xi_1 = \xi$, $\xi_2 = \eta$, $\xi_3 = \tau$, $\xi_4 = \phi$, then the fourth prolongation $pr^{(4)}V$ of the corresponding vector field

(2.2) $V = \tau(x, y, t; u)\partial_t + \xi(x, y, t; u)\partial_x + \eta(x, y, t; u)\partial_y + \phi(x, y, t; u)\partial_u.$ satisfies

(2.3)
$$pr^{(4)}V \Omega(x, y, t;)|_{\Omega(x, y, t; u)} = 0.$$

The determining equations are obtained from (2.3) and solved for the infinitesimals ξ, η, τ, ϕ

(2.4)
$$\xi = c_1 + \frac{c_5 x}{3} - \frac{(c_{2y})}{2\beta}$$
 $\eta = c_3 + c_2 t + \frac{2c_5 y}{3}$, $\tau = c_4 + c_5 t$, $\phi = \frac{-2c_5 u}{9}$

Now we write down the five symmetry generators corresponding to each of the constants c_i , i = 1, 2, ..., 5 involved in the infinitesimals, viz.,

(2.5) $V_1 = \partial_x, V_2 = \frac{-y}{2\beta}\partial_x + t\partial_y, V_3 = \partial_y, V_4 = \partial_t,$ $V_5 = \frac{x}{3}\partial_x + \frac{2y}{3}\partial_y + t\partial_t - \frac{2u}{9}\partial_u.$

These symmetry generators form a closed Lie algebra as is seen from the following commutator Table:

$[V_i, V_j]$	V_1	V_2	V_3	V_4	V_5
V_1	0	0	0	0	$V_{1}/3$
V_2	0	0	$V_1/2\beta$	$-V_3$	$-V_2/3$
V_3	0	$-V_1/2\beta$	0	0	2V ₃ /3
V_4	0	V_3	0	0	V_4
V_5	$V_{1}/3$	V ₂ /3	2V ₃ /3	V_4	0

Table 1

3. Reductions of (1.4) by one-dimensional sub algebras

As there are five generators, we consider the reductions of (1.4) under each generator separately.

Case 1. Sub algebra $L_{s,1} = \{V_1\}$

The characteristic equation associated the generator V_1 is

(3.1)
$$\frac{dx}{1} = \frac{dy}{0} = \frac{dt}{0} = \frac{du}{0}.$$

and the similarity transformation is

 $\begin{array}{ll} (3.2) & s = y, \ r = t, \ u = W(r,s). \\ \text{Using (3.2) in (1.4), the latter changes to a linear PDE} \\ (3.3) & W_{ss} = 0, \\ \text{whose general solution} \\ (3.4) & W(r,s) = A(r)s + B(r), \end{array}$

yields a solution of (1.4) involving two arbitrary functions A(t) and B(t). Case 2. Sub algebra $L_{s,2} = \{V_2\}$ The characteristic equation and its solutions are $\frac{dx}{v} = \frac{dy}{-2\beta t} = \frac{dt}{0} = \frac{du}{0},$ (3.5) $s = 2\beta tx + \frac{y^2}{2}, r = t, u = W(r, s).$ (3.6)In view of (3.6), (1.4) transforms into $(2sW_{\rm s} + 4\beta r^2 W^3 W_{\rm s} + 2rW_{\rm r} + W + 16\alpha\beta^3 r^4 W_{\rm ssc})_{\rm s} = 0.$ (3.7)Case 3. Sub algebra $L_{s,3} = \{V_3\}$ The characteristic equation associated with V_3 is $\frac{dx}{dt} = \frac{dy}{dt} = \frac{dt}{dt} = \frac{du}{dt}.$ (3.8)Integrating (3.8) we get s = x, r = t, u = W(r, s). (3.9)Equations (1.4) and (3.9) together lead to $(W_r + W^3 W_s + \alpha W_{sss})_s = 0.$ (3.10)The above equation is once differentiated KdV equation with variable coefficient. Case 4. Sub algebra $L_{s,4} = \{V_4\}$ The characteristic equation associated with V_4 is $\frac{dx}{0} = \frac{dy}{0} = \frac{dt}{1} = \frac{du}{0}.$ (3.11)Integration of (3.11) gives rise to (3.12)s = y, r = x, u = W(r, s).Inserting the ansatz (3.12) into (1.4), we find that $(W^3 W_r + \alpha W_{rrr})_r + \beta W_{rr} = 0.$ (3.13)Case 5. Sub algebra $L_{s,5} = \{V_5\}$ The solution of the characteristic equation associated with V_5 , namely, $\frac{dx}{x} = \frac{dy}{2y} = \frac{dt}{3t} = -\frac{3du}{2y},$ (3.14)is $r = xt^{-\frac{1}{3}}, s = yt^{-\frac{2}{3}}, u = t^{-\frac{2}{9}}W(r,s).$

(3.15) $r = xt^{-3}, s = yt^{-3}, u = t^{-9}W(r, s).$ Substituting from (3.15) into (1.4) the latter reduces to (3.16) $(9W^3W_r - 3rW_r - 2W - 6sW_s + 9\alpha W_{rrr})_r + 9\beta W_{ss} = 0.$

4. Reductions of (1.4) by two-dimensional sub algebras

As reductions can be facilitated using two types of two-dimensional sub algebras, namely, Abelian sub algebras and solvable non-Abelian sub algebras, we consider them separately.

(4.1) Two-dimensional Abelian sub algebras

Case 1. Sub algebra $L_{A,1} = \{V_1, V_2\}$

From Table 1 we find that the generators V_1 and V_2 commute, that is, $[V_1, V_2] = 0$. We can initiate the reduction procedure by taking V_1 or V_2 . If we begin with V_2 , then (1.4) is reduced to the PDE (3.7). We now write below V_2^* which is V_2 , but, expressed in terms of the similarity variables given in (3.2):

$$(4.1) V_2^* = 2\beta r \partial_s.$$

The associated characteristic equation is $\frac{dr}{0} = \frac{ds}{2\beta r} = \frac{dW}{0}$, whose solution is $\rho = r$ and $W = H(\rho)$. Consequently, (3.3) is replaced by an ODE

(4.2) $2\rho H' = F(\rho).$

Case 2. Sub algebra $L_{A,2} = \{V_1, V_3\}$

It follows from Table 1 that $[V_1, V_3]=0$. We shall begin with V_3 to transform (1.4) to (3.10). Then V_1 changes to $V_1^* = \partial_r$. Integration of the characteristic equations associated with V_1^* gives $W = H(\rho)$, $\rho = r$ which reduces (3.3) to H' = G(r).

Case 3. Sub algebra $L_{A,3} = \{V_1, V_4\}$

Since $[V_1, V_4]=0$, we begin with V_1 and arrive at the PDE (3.3). We express V_4 in terms of the similarity variables defined in (3.6) as $V_4^* = \partial_r$. As a result (3.7) reduces to $H^{''}=0$.

Case 4. Sub algebra $L_{A,4} = \{V_3, V_4\}$

We begin with V_3 . In this case (1.4) is reduced to the PDE (3.10).

We express V_4 in terms of the similarity variables defined (3.12) as

The characteristic equation for V_4^* is

$$\frac{r}{1} = \frac{ds}{0} = \frac{dw}{0}.$$

 $V_4^* = \partial_r.$

Integrating (4.4) we obtain the transformation $W = H(\rho)$, $\rho = r$ which replaces (3.10) by

(4.5) $H^{3}H' + \alpha H''' = G(\rho),$

where $G(\rho)$ is an arbitrary function.

4.2. A two-dimensional solvable Non-Abelian sub algebra

The sub algebra $L_{nA,1} = \{V_4, V_5\}$ has the property $[V_4, V_5] = V_4$. With V_4 we transform

(1.4) to (3.13). We express V_5 in terms of the similarity variables defined (3.9) as

(4.6)
$$V_5^* = \frac{1}{3}r\partial_r + \frac{2}{3}s\partial_s - \frac{2}{9}W\partial_w.$$

The characteristic equation for V_5^* is

(4.7)
$$\frac{dr}{\frac{r}{3}} = \frac{ds}{\frac{s}{3}} = \frac{dW}{\frac{W}{9}}$$

Integration of (4.7) leads to new variables and $W = s^{-\frac{1}{3}}H(\rho)$, $\rho = rs^{-\frac{1}{2}}$, where $H(\rho)$ satisfies the ODE

(4.8) $(36H^3H' + 36\alpha H''' + 16\beta\rho H + 9\beta\rho^2 H')' + 5\beta\rho H' = 0.$

5. A (2 + 1)-dimensional VCKdV equation with damping

In this chapter we consider the following (2 + 1)-dimensional VCKdV equations with damping

(5.1)
$$(\lambda u^m + u_t + u^3 u_x + \alpha u_{xxx})_x + \beta u_{yy} = 0, \qquad \alpha, \ \beta, \ \lambda \in \mathbb{R}^+,$$

(5.2)
$$(t^\lambda u + u_t + u^3 u_x + \alpha u_{xxx})_x + \beta u_{yy} = 0, \qquad \alpha, \ \beta, \ \lambda \in \mathbb{R}^+,$$

(5.3)
$$(t^{\lambda}u^{m}+u_{t}+u^{3}u_{x}+\alpha u_{xxx})+\beta u_{yy}=0, \alpha, \beta, \lambda \in \mathbb{R}^{+}.$$

For (5.1), the infinitesimals ξ , η , τ , ϕ and the four generators corresponding to each of the constants c_i , i = 1, 2, 3 & 4 are

(5.4)
$$\xi = c_3 + c_4 y$$
 $\eta = c_1 = 2c_4 t\beta$, $\tau = c_2$, $\phi = 0$, and

(5.5) $V_1 = \partial_y, V_2 = \partial_t, V_3 = \partial_x, V_4 = y\partial_x - 2t\beta\partial_y.$

These symmetry generators form a closed Lie algebra as is seen from the following commutator Table:

Table 2

$[V_i, V_j]$	V_1	V_2	V_3	V_4
V_1	0	0	0	V_3
V_2	0	0	0	$-2\beta V_1$
V_3	0	0	0	0
V_4	V_3	$2\beta V_1$	0	0

For both the equations (5.2) - (5.3), the form of the infinitesimals ξ, η, τ, ϕ are the same: (5.6) $\xi = c_2 + c_3 y \quad \eta = c_1 - 2c_3 t\beta, \ \tau = 0, \ \phi = 0$.

Now we write down the three symmetry generators corresponding to each of the constants c_i , i = 1,2,3 involved in the infinitesimals, viz.,

(5.7)
$$V_1 = \partial_y , V_2 = \partial_x, \quad V_3 = y\partial_x - 2t\beta\partial_y$$

These symmetry generators form a closed Lie algebra as is seen from the following commutator Table:

Table 3					
$[V_i, V_j]$	V_1	V_2	V_3		
V_1	0	0	V_2		
V_2	0	0	0		
V_3	V_2	0	0		

The reductions of one-dimensional sub algebras of equations (5.1) and (5.2, 5.3) are given in Table 4, Table 5 and Table 6.

Table	4
-------	---

V_i	Reduction
V_1	$(W_r + W^3 W_s + \lambda W^m + \alpha W_{sss})_s = 0.$
V_2	$(W^3W_r + \lambda W^m + \alpha W_{rrr})_r + \beta W_{ss} = 0.$
V_3	$W_{ss}=0.$
V_4	$(2\lambda rW^{m} + 2sW_{s} + 4\beta r^{2}W^{3}W_{s} + 2rW_{r} + W + 16\alpha\beta^{3}r^{4}W_{sss})_{s} = 0$

Table 5

V_i	Reduction
V_1	$(r^{\lambda}W+W_r+W^3W_s+\alpha u_{sss})=0.$
V_2	$W_{ss}=0.$
V_3	$(2sW_{s} + 4\beta r^{2}W^{3}W_{s} + 2rW_{r} + (2r^{\lambda+1} + 1)W + 16\alpha\beta^{3}r^{4}W_{sss})_{s} = 0$

Table	6
-------	---

V_i	Reduction
V_1	$\left(r^{\lambda}W^{m}+W_{r}+W^{3}W_{s}+\alpha u_{sss}\right)_{s}=0.$
V_2	$W_{ss}=0.$
V_3	$(2sW_{s} + 4\beta r^{2}W^{3}W_{s} + 2rW_{r} + 2r^{\lambda+1}W^{m} + W + 16\alpha\beta^{3}r^{4}W_{sss})_{s} = 0$

The reductions of two-dimensional sub algebras of equations (5.1) and (5.2,5.3) are given in Table 7 and Table 8.

Table 7				
Algebra		Reduction		
$[V_1, V_2] = 0$		$(H_3H'+\lambda H_m+\alpha H'')'=0.$		
$[V_2, V_3] = 0$		$H^{''} = 0.$		
$[V_3, V_4] = 0$		$H^{'}=L(ho).$		
Table			le 8	
Alg		ebra	Reduction	
				1

$[V_1, V_2] = 0$	$H' = G_1(\rho)$
$[V_2, V_3]$	$H'=G_2(\rho)$
•	•

6. Conclusions

- In this paper a (2+1)-dimensional KdV equation with variable coefficient
 (u_t + u³u_x + αu_{xxx})_x + βu_{yy} = 0, α, β ∈ R⁺ is subjected to Lie's classical
 method
- Equation (1.4) admits a five-dimensional symmetry group.
- It is established that the symmetry generators form a closed Lie algebra.
- Classification of symmetry algebra of (1.4) into one- and two-dimensional subalgebras is carried out.
- Systematic reduction to (1+1)-dimensional PDE and then to ODEs are performed using one-dimensional and two-dimensional Abelian and solvable nonAbelian subalgebras.
- A solution of (1.4) containg two arbitrary functions of t is determined by reduction to a linear partial differential equation.

References

- Ahmad, A., Ashfaque H. Bokhari., Kara, A.H., Zaman, F.D Symmetry classifications and reductions of some classes of (2+1)-nonlinear heat equation, J. Math. Anal. Appl., 339: 175-181 (2008).
- [2] Bluman, G. W. and Kumei, S., Symmetries and Differential Equations, Springer-Verlag, New York, 1989. Liu Z. and Yang C., The application of bifurcation method to a higher-order KdV equation, J. Math. Anal. Appl., 275: 1-12 (2002).
- [3] Miura, R.M., Korteweg-de Vries equations and generalizations. A remarkable explicit nonlinear transformation, *I.Math. Phys.* 9: 1202-1204 (1968).
- [4] Olver, P. J., Applications of Lie Groups to differential equations, Graduate Texts in Mathematics, 107, Springer-Verlag, New York, 1986.
- [5] Senthilkumaran, M., Pandiaraja, D. and Mayil Vaganan, B. New Exact explicit Solutions of the Generalized KdV Equations 2008 Appl. Math. comp. 202 693-699
- [6] Whitham, G. B., Linear and Nonlinear Waves, Wiley, New York, 1974.