Symmetry Reductions of $\left(U_{T}+U^{3} U_{X}+\alpha U_{X X X}\right)_{X}+\beta U_{Y Y}=0$

${ }^{1}$ J. K. Subashini, ${ }^{2}$ B. Mayil Vaganan
${ }^{1}$ Department of Mathematics, K.L.N. College of Engineering, Pottapalayam-630612, India,
${ }^{2}$ Department of Applied Mathematics and Statistics, Madurai Kamaraj University, Madurai-625021, Tamilnadu, India,

Abstract. A (2+1)-dimensional generalized KdV equation $\left(u_{t}+u^{3} u_{x}+\alpha u_{x x x}\right)_{x}+\beta u_{y y}=0, \alpha, \beta \in$ R^{+}is subjected to Lie's classical method. Classification of its symmetry algebra into oneand two-dimensional subalgebras is carried out in order to facilitate its systematic reduction to $(1+1)$ dimensional PDE and then to ODEs. A solution containing two arbitrary functions of time tis also determined.
Key words. A (2+1)-dimensional generalized KdV equation; Symmetry algebra.

1. introduction

The KdV equation

$$
\begin{equation*}
u_{t}+u u_{x}+\delta u_{x x x}=0 \tag{1.1}
\end{equation*}
$$

is integrable in the sense that it possesses solitons, B"acklund transformations, Lax pair, infinite number of conservation laws and Painlev'e property. Whitham [7] has given a representation of a periodic wave as a sum of solitons for (1.1). Miura [4] established a relation between (1.1) and the modified KdV equation $u_{t}+a u^{2} u_{x}+u_{x x x}=0$.

Liu and Yang [3] studied bifurcation problems for a generalized KdV equation

$$
\begin{equation*}
u_{t}+a u^{n} u_{x}+u_{x x x}=0, \quad n \geq 1, \quad a \in R . \tag{1.2}
\end{equation*}
$$

A generalized version of (1.2) in the form

$$
\begin{equation*}
u_{t}+u^{n} u_{x}+\alpha(t) u+\beta(t) u_{x x x}=0 \tag{1.3}
\end{equation*}
$$

has recently been studied for its symmetry group and similarity solution by Senthilkumaran, Pandiaraja and Mayil Vaganan [6].

In this paper we introduce yet another $(2+1)$-dimensional variable coefficient KdV equation

$$
\begin{equation*}
\left(u_{t}+u^{3} u_{x}+\alpha u_{x x x}\right)_{x}+\beta u_{y y}=0, \alpha, \beta \in R^{+} \tag{1.4}
\end{equation*}
$$

Our intention is to show that equation (1.4) admits a five-dimensional Lie algebra, and classify it into the one- and two-dimensional sub algebras in order to reduce (1.4) to $(1+1)$-dimensional partial differential equations (PDEs) and then to ordinary differential equations (ODEs). It is shown that (1.4) reduces to a once differentiated generalized KdV equation, a linear equation $W_{r r}(r, s)=0$. We shall establish that the symmetry generators form a closed Lie algebra and this allowed us to use the recent method due to Ahmad, Bokhari, Kara and Zaman [1] to sucessively reduce (1.4) to (1+1)-dimensional PDEs and ODEs with the help of two-dimensional Abelian and solvable non-Abelian sub algebras.

This paper is organised as follows: In section 2 we determine the symmetry group of (1.4) and write down the associated Lie algebra. In section 3 we consider all one dimensional sub algebras and obtain the corresponding reductions to (1+1)-dimensional

PDEs. In section 4 we show that the generators form a closed Lie algebra and use this fact to reduce (1.4) successively to (1+1)-dimensional PDEs and ODEs. Section 5 summarises the results of the present work.

2. The symmetry group and Lie algebra of (1.4)

If (1.4) is invariant under classical Lie group of infinitesimal transformations (Olver [5], Blumen and Kumei [2])

$$
\begin{equation*}
x_{i}^{*}=x_{i}+\epsilon \xi_{i}(x, y, t, u)+O\left(\epsilon^{2}\right), i=1,2,3,4, \tag{2.1}
\end{equation*}
$$

where $\xi_{1}=\xi, \xi_{2}=\eta, \xi_{3}=\tau, \xi_{4}=\phi$, then the fourth prolongation $p r^{(4)} V$ of the corresponding vector field

$$
\begin{equation*}
V=\tau(x, y, t ; u) \partial_{t}+\xi(x, y, t ; u) \partial_{x}+\eta(x, y, t ; u) \partial_{y}+\phi(x, y, t ; u) \partial_{u} \tag{2.2}
\end{equation*}
$$

satisfies

$$
\begin{equation*}
p r^{(4)} V \Omega(x, y, t ;) \mid \Omega(x, y, t ; u)=0 \tag{2.3}
\end{equation*}
$$

The determining equations are obtained from (2.3) and solved for the infinitesimals ξ, η, τ, ϕ

$$
\begin{equation*}
\xi=c_{1}+\frac{c_{5} x}{3}-\frac{\left(c_{2 y}\right)}{2 \beta} \quad \eta=c_{3}+c_{2} t+\frac{2 c_{5} y}{3}, \tau=c_{4}+c_{5} t, \varnothing=\frac{-2 c_{5} u}{9} . \tag{2.4}
\end{equation*}
$$

Now we write down the five symmetry generators corresponding to each of the constants $c_{i}, i=1,2, \ldots, 5$ involved in the infinitesimals, viz.,
(2.5) $V_{1}=\partial_{x}, V_{2}=\frac{-y}{2 \beta} \partial_{x}+t \partial_{y}, \quad V_{3}=\partial_{y}, \quad V_{4}=\partial_{t}$,

$$
V_{5}=\frac{x}{3} \partial_{x}+\frac{2 y}{3} \partial_{y}+t \partial_{t}-\frac{2 u}{9} \partial_{u} .
$$

These symmetry generators form a closed Lie algebra as is seen from the following commutator Table:

Table 1

$\left[V_{i}, V_{j}\right]$	V_{1}	V_{2}	V_{3}	V_{4}	V_{5}
V_{1}	0	0	0	0	$V_{1} / 3$
V_{2}	0	0	$V_{1} / 2 \beta$	$-V_{3}$	$-V_{2} / 3$
V_{3}	0	$-V_{1} / 2 \beta$	0	0	$2 V_{3} / 3$
V_{4}	0	V_{3}	0	0	V_{4}
V_{5}	$V_{1} / 3$	$V_{2} / 3$	$2 V_{3} / 3$	V_{4}	0

3. Reductions of (1.4) by one-dimensional sub algebras

As there are five generators, we consider the reductions of (1.4) under each generator separately.

Case 1. Sub algebra $L_{s, 1}=\left\{V_{1}\right\}$
The characteristic equation associated the generator V_{1} is

$$
\begin{equation*}
\frac{d x}{1}=\frac{d y}{0}=\frac{d t}{0}=\frac{d u}{0} . \tag{3.1}
\end{equation*}
$$

and the similarity transformation is

$$
\begin{equation*}
s=y, r=t, u=W(r, s) \tag{3.2}
\end{equation*}
$$

Using (3.2) in (1.4), the latter changes to a linear PDE

$$
\begin{equation*}
W_{s s}=0, \tag{3.3}
\end{equation*}
$$

whose general solution

$$
\begin{equation*}
W(r, s)=A(r) s+B(r) \tag{3.4}
\end{equation*}
$$

yields a solution of (1.4) involving two arbitrary functions $A(t)$ and $B(t)$.
Case 2. Sub algebra $L_{s, 2}=\left\{V_{2}\right\}$
The characteristic equation and its solutions are

$$
\begin{align*}
\frac{d x}{y} & =\frac{d y}{-2 \beta t}=\frac{d t}{0}=\frac{d u}{0} \tag{3.5}\\
s & =2 \beta t x+\frac{y^{2}}{2}, \quad r=t, \quad u=W(r, s) \tag{3.6}
\end{align*}
$$

In view of (3.6), (1.4) transforms into

$$
\begin{equation*}
\left(2 s W_{s}+4 \beta r^{2} W^{3} W_{s}+2 r W_{r}+W+16 \alpha \beta^{3} r^{4} W_{s s s}\right)_{s}=0 \tag{3.7}
\end{equation*}
$$

Case 3. Sub algebra $L_{s, 3}=\left\{V_{3}\right\}$
The characteristic equation associated with V_{3} is

$$
\begin{align*}
& \frac{d x}{0}=\frac{d y}{1}=\frac{d t}{0}=\frac{d u}{0} \tag{3.8}\\
& s=x, \quad r=t, \quad u=W(r, s) \tag{3.9}
\end{align*}
$$

Integrating (3.8) we get

Equations (1.4) and (3.9) together lead to
(3.10) $\quad\left(W_{r}+W^{3} W_{s}+\alpha W_{s s s}\right)_{s}=0$

The above equation is once differentiated KdV equation with variable coefficient.
Case 4. Sub algebra $L_{s, 4}=\left\{V_{4}\right\}$
The characteristic equation associated with V_{4} is

$$
\begin{equation*}
\frac{d x}{0}=\frac{d y}{0}=\frac{d t}{1}=\frac{d u}{0} \tag{3.11}
\end{equation*}
$$

Integration of (3.11) gives rise to

$$
(3.12) \quad s=y, r=x, u=W(r, s)
$$

Inserting the ansatz (3.12) into (1.4), we find that

$$
\begin{equation*}
\left(W^{3} W_{r}+\alpha W_{r r r}\right)_{r}+\beta W_{s s}=0 \tag{3.13}
\end{equation*}
$$

Case 5. Sub algebra $L_{s, 5}=\left\{V_{5}\right\}$
The solution of the characteristic equation associated with V_{5}, namely,

$$
\begin{equation*}
\frac{d x}{x}=\frac{d y}{2 y}=\frac{d t}{3 t}=-\frac{3 d u}{2 u} \tag{3.14}
\end{equation*}
$$

is

$$
\begin{equation*}
r=x t^{-\frac{1}{3}}, \quad s=y t^{-\frac{2}{3}}, \quad u=t^{-\frac{2}{9}} W(r, s) \tag{3.15}
\end{equation*}
$$

Substituting from (3.15) into (1.4) the latter reduces to

$$
\begin{equation*}
\left(9 W^{3} W_{r}-3 r W_{r}-2 W-6 s W_{s}+9 \alpha W_{r r r}\right)_{r}+9 \beta W_{s s}=0 \tag{3.16}
\end{equation*}
$$

4. Reductions of (1.4) by two-dimensional sub algebras

As reductions can be facilitated using two types of two-dimensional sub algebras, namely, Abelian sub algebras and solvable non-Abelian sub algebras, we consider them separately.

(4.1) Two-dimensional Abelian sub algebras

Case 1. Sub algebra $L_{A, 1}=\left\{V_{1}, V_{2}\right\}$
From Table 1 we find that the generators V_{1} and V_{2} commute, that is, $\left[V_{1}, V_{2}\right]=0$. We can initiate the reduction procedure by taking V_{1} or V_{2}. If we begin with V_{2}, then (1.4) is reduced to the PDE (3.7). We now write below V_{2}^{*} which is V_{2}, but, expressed in terms of the similarity variables given in (3.2):

$$
\begin{equation*}
V_{2}^{*}=2 \beta r \partial_{s} . \tag{4.1}
\end{equation*}
$$

The associated characteristic equation is $\frac{d r}{0}=\frac{d s}{2 \beta r}=\frac{d W}{0}$, whose solution is $\rho=r$ and $W=H(\rho)$. Consequently, (3.3) is replaced by an ODE

$$
\begin{equation*}
2 \rho H^{\prime}=F(\rho) \tag{4.2}
\end{equation*}
$$

Case 2. Sub algebra $L_{A, 2}=\left\{V_{1}, V_{3}\right\}$
It follows from Table 1 that $\left[V_{1}, V_{3}\right]=0$. We shall begin with V_{3} to transform (1.4) to (3.10). Then V_{1} changes to $V_{1}^{*}=\partial_{r}$. Integration of the characteristic equations associated with V_{1}^{*} gives $W=H(\rho), \rho=r$ which reduces (3.3) to $H^{\prime}=G(r)$.

Case 3. Sub algebra $L_{A, 3}=\left\{V_{1}, V_{4}\right\}$
Since $\left[V_{1}, V_{4}\right]=0$, we begin with V_{1} and arrive at the PDE (3.3). We express V_{4} in terms of the similarity variables defined in (3.6) as $V_{4}^{*}=\partial_{r}$. As a result (3.7) reduces to $H^{\prime \prime}=0$.

Case 4. Sub algebra $L_{A, 4}=\left\{V_{3}, V_{4}\right\}$
We begin with V_{3}. In this case (1.4) is reduced to the PDE (3.10).
We express V_{4} in terms of the similarity variables defined (3.12) as

$$
\begin{equation*}
V_{4}^{*}=\partial_{r} . \tag{4.3}
\end{equation*}
$$

The characteristic equation for V_{4}^{*} is

$$
\begin{equation*}
\frac{d r}{1}=\frac{d s}{0}=\frac{d w}{0} . \tag{4.4}
\end{equation*}
$$

Integrating (4.4) we obtain the transformation $W=H(\rho), \rho=r$ which replaces (3.10) by

$$
\begin{equation*}
H^{3} H^{\prime}+\alpha H^{\prime \prime \prime}=G(\rho), \tag{4.5}
\end{equation*}
$$

where $G(\rho)$ is an arbitrary function.

4.2. A two-dimensional solvable Non-Abelian sub algebra

The sub algebra $L_{n A, 1}=\left\{V_{4}, V_{5}\right\}$ has the property $\left[V_{4}, V_{5}\right]=V_{4}$. With V_{4} we transform (1.4) to (3.13). We express V_{5} in terms of the similarity variables defined (3.9) as

$$
\begin{equation*}
V_{5}^{*}=\frac{1}{3} r \partial_{r}+\frac{2}{3} s \partial_{s}-\frac{2}{9} W \partial_{w} . \tag{4.6}
\end{equation*}
$$

The characteristic equation for V_{5}^{*} is

$$
\begin{equation*}
\frac{d r}{\frac{r}{3}}=\frac{d s}{\frac{s}{3}}=\frac{d W}{-\frac{W}{9}} . \tag{4.7}
\end{equation*}
$$

Integration of (4.7) leads to new variables and $W=s^{-\frac{1}{3}} H(\rho), \rho=r s^{-\frac{1}{2}}$, where $H(\rho)$ satisfies the ODE

$$
\begin{equation*}
\left(36 H^{3} H^{\prime}+36 \alpha H^{\prime \prime \prime}+16 \beta \rho H+9 \beta \rho^{2} H^{\prime}\right)^{\prime}+5 \beta \rho H^{\prime}=0 \tag{4.8}
\end{equation*}
$$

5. A ($2+1$)-dimensional VCKdV equation with damping

In this chapter we consider the following $(2+1)$-dimensional VCKdV equations with damping

$$
\begin{gather*}
\left(\lambda u^{m}+u_{t}+u^{3} u_{x}+\alpha u_{x x x}\right)_{x}+\beta u_{y y}=0, \quad \alpha, \beta, \lambda \in R^{+}, \tag{5.1}\\
\left(t^{\lambda} u+u_{t}+u^{3} u_{x}+\alpha u_{x x x}\right)_{x}+\beta u_{y y}=0, \quad \alpha, \beta, \lambda \in R^{+} \tag{5.2}\\
\left(t^{\lambda} u^{m}+u_{t}+u^{3} u_{x}+\alpha u_{x x x}\right)_{x}+\beta u_{y y}=0, \alpha, \beta, \lambda \in R^{+} . \tag{5.3}
\end{gather*}
$$

For (5.1), the infinitesimals ξ, η, τ, ϕ and the four generators corresponding to each of the constants $c_{i}, i=1,2,3 \& 4$ are

$$
\begin{equation*}
\xi=c_{3}+c_{4} y \quad \eta=c_{1}=2 c_{4} t \beta, \quad \tau=c_{2}, \quad \emptyset=0 \tag{5.4}
\end{equation*}
$$

and

$$
\begin{equation*}
V_{1}=\partial_{y}, V_{2}=\partial_{t}, V_{3}=\partial_{x}, V_{4}=y \partial_{x}-2 t \beta \partial_{y} \tag{5.5}
\end{equation*}
$$

These symmetry generators form a closed Lie algebra as is seen from the following commutator Table:

Table 2

$\left[V_{i}, V_{j}\right]$	V_{1}	V_{2}	V_{3}	V_{4}
V_{1}	0	0	0	V_{3}
V_{2}	0	0	0	$-2 \beta V_{1}$
V_{3}	0	0	0	0
V_{4}	V_{3}	$2 \beta V_{1}$	0	0

For both the equations (5.2) - (5.3), the form of the infinitesimals ξ, η, τ, ϕ are the same:

$$
\begin{equation*}
\xi=c_{2}+c_{3} y \quad \eta=c_{1}-2 c_{3} t \beta, \tau=0, \quad \emptyset=0 . \tag{5.6}
\end{equation*}
$$

Now we write down the three symmetry generators corresponding to each of the constants $c_{i}, i=1,2,3$ involved in the infinitesimals, viz.,

$$
\begin{equation*}
V_{1}=\partial_{y}, V_{2}=\partial_{x}, \quad V_{3}=y \partial_{x}-2 t \beta \partial_{y} . \tag{5.7}
\end{equation*}
$$

These symmetry generators form a closed Lie algebra as is seen from the following commutator Table:

Table 3

$\left[V_{i}, V_{j}\right]$	V_{1}	V_{2}	V_{3}
V_{1}	0	0	V_{2}
V_{2}	0	0	0
V_{3}	V_{2}	0	0

The reductions of one-dimensional sub algebras of equations (5.1) and (5.2, 5.3) are given in Table 4 ,Table 5 and Table 6.

Table 4

V_{i}	Reduction
V_{1}	$\left(W_{r}+W^{3} W_{s}+\lambda W^{m}+\alpha W_{s s s}\right)_{s}=0$.
V_{2}	$\left(W^{3} W_{r}+\lambda W^{m}+\alpha W_{r r r}\right)_{r}+\beta W_{s s}=0$.
V_{3}	$W_{s s}=0$.
V_{4}	$\left(2 \lambda r W^{m}+2 s W_{s}+4 \beta r^{2} W^{3} W_{s}+2 r W_{r}+W+16 \alpha \beta^{3} r^{4} W_{s s s}\right)_{s}=0$

Table 5

V_{i}	Reduction
V_{1}	$\left(r^{\lambda} W+W_{r}+W^{3} W_{s}+\alpha u_{s s s}\right)_{s}=0$.
V_{2}	$W_{s s}=0$.
V_{3}	$\left(2 s W_{s}+4 \beta r^{2} W^{3} W_{s}+2 r W_{r}+\left(2 r^{\lambda+1}+1\right) W+16 \alpha \beta^{3} r^{4} W_{s s s}\right)_{s}=0$

Table 6

V_{i}	Reduction
V_{1}	$\left(r^{\lambda} W^{m}+W_{r}+W^{3} W_{s}+\alpha u_{s s s}\right)_{s}=0$.
V_{2}	$W_{s s}=0$.
V_{3}	$\left(2 s W_{s}+4 \beta r^{2} W^{3} W_{s}+2 r W_{r}+2 r^{\lambda+1} W^{m}+W+16 \alpha \beta^{3} r^{4} W_{s s s}\right)_{s}=0$

The reductions of two-dimensional sub algebras of equations (5.1) and $(5.2,5.3)$ are given in Table 7 and Table 8.

Table 7

Algebra	Reduction
$\left[V_{1}, V_{2}\right]=0$	$\left(H_{3} H^{\prime}+\lambda H_{m}+\alpha H^{\prime \prime \prime}\right)^{\prime}=0$.
$\left[V_{2}, V_{3}\right]=0$	$H^{\prime \prime}=0$.
$\left[V_{3}, V_{4}\right]=0$	$H^{\prime}=L(\rho)$.

Table 8

Algebra	Reduction
$\left[V_{1}, V_{2}\right]=0$	$H^{\prime}=G_{1}(\rho)$
$\left[V_{2}, V_{3}\right]$	$H^{\prime}=G_{2}(\rho)$

6. Conclusions

- In this paper a $(2+1)$-dimensional $K d V$ equation with variable coefficient $\left(u_{t}+u^{3} u_{x}+\alpha u_{x x x}\right)_{x}+\beta u_{y y}=0, \alpha, \beta \in R^{+}$is subjected to Lie's classical method
- Equation (1.4) admits a five-dimensional symmetry group.
- It is established that the symmetry generators form a closed Lie algebra.
- Classification of symmetry algebra of (1.4) into one- and two-dimensional subalgebras is carried out.
- Systematic reduction to ($1+1$)-dimensional PDE and then to ODEs are performed using one-dimensional and two-dimensional Abelian and solvable nonAbelian subalgebras.
- A solution of (1.4) containg two arbitrary functions of t is determined by reduction to a linear partial differential equation.

References

[1] Ahmad, A., Ashfaque H. Bokhari., Kara, A.H., Zaman, F.D Symmetry classifications and reductions of some classes of (2+1)-nonlinear heat equation, J. Math. Anal. Appl., 339: 175181 (2008).
[2] Bluman, G. W. and Kumei, S., Symmetries and Differential Equations, Springer-Verlag, New York, 1989. Liu Z. and Yang C., The application of bifurcation method to a higher-order KdV equation, J. Math. Anal. Appl., 275: 1-12 (2002).
[3] Miura, R.M., Korteweg-de Vries equations and generalizations. A remarkable explicit nonlinear transformation, I.Math. Phys. 9: 1202-1204 (1968).
[4] Olver, P. J., Applications of Lie Groups to differential equations, Graduate Texts in Mathematics, 107, Springer-Verlag, New York, 1986.
[5] Senthilkumaran, M., Pandiaraja, D. and Mayil Vaganan, B. New Exact explicit Solutions of the Generalized KdV Equations 2008 Appl. Math. comp. 202 693-699
[6] Whitham, G. B., Linear and Nonlinear Waves, Wiley, New York, 1974.

