
International Journal of Mathematics Trends and Technology (IJMTT) – Volume 65 Issue 6 - June 2019 

 

 

ISSN: 2231-5373                              http://www.ijmttjournal.org                              Page 104 

 

A New And Efficient Proposed Approach For 

Optimizing The Initial Basic Feasible Solution 

Of A Linear Transportation Problem 
 

Opara Jude
1
, Oruh Ben Ifeanyichukwu

2
, Ihekuna Stephen, O.

3
, Okenwe Idochi

4 
 

 
1Department of Statistics, Michael Okpara University of Agriculture Umudike 

P.M.B. 7267, Umuahia Abia State, Nigeria 
2Department of Mathematics, Michael Okpara University of Agriculture, Umudike 

P.M.B. 7267, Umuahia, Abia State, Nigeria 
3Department of Statistics, Imo State University, PMB 2000, Owerri Nigeria 

4Department of Statistics, School of Applied Sciences, Ken Saro Wiwa Polytechnic PMB 20, Bori, 

Rivers State Nigeria 
 

Abstract  

In this research, a new approach (Loop Product Difference) for optimizing the initial basic feasible solution of a 
balanced transportation problem is proposed. The proposed technique has been tested and proven efficient by 

solving several number of cost minimizing transportation problems and it was discovered that the method gives the 

same result as that of optimal solution obtained by using MODI/Stepping stone methods. Conclusively, it can be 

said that proposed technique is easy to adopt and close to optimality if employed with the Inverse Coefficient of 

Variation Method as an improved technique of obtaining Initial Basic Feasible Solution.  

 

Keywords: Transportation Problem, Inverse Coefficient of Variation Method, Initial Basic Feasible Solution, 
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INTRODUCTION 

Transportation Problem (TP) is linked with supply and demand of commodities transported from several sources to 
the different destinations. The destinations where commodities arrive are regarded as the demand while the sources 

from which one needs to transport are regarded as the supply. Transportation problem is popular in operations 

research for its real life wide application. This is a special kind of network optimization problems which deals with 

the determination of a minimum-cost schedule for transporting a single commodity from a number of sources 

(warehouses) to a number of destinations (markets). This class of problem which is basically a linear programming 

problem can be extended to some practical applications such as inventory control, staff assignment, job scheduling, 

cash flow etc. The optimal solution to the classical transportation problem requires the determination of a number of 

units of commodities to be transported from each origin to various destinations, satisfying source availability and 

destination demands so that the total cost of transportation is minimum. The available amounts at the supply points 

and the amounts required at the demand points are the parameters of the transportation problem (Deshabrata et al, 

2013). 

 
The transportation problem has a lot of special structure. For instance, each variable appears in exactly two 

constraints (with a non-zero coefficient). When a variable has a non-zero coefficient, the coefficient is either plus or 

minus. Due to this special structure, two possible things turn out to be true. The first is that, there are alternative 

methods of solving transportation problems that are more efficient than the standard simplex algorithm. This turns 

out to be important in practice, because real-world transportation problems have enormous numbers of variables. 

The Second is that, because of the special structure, it is possible to solve the transportation problem in whole 

numbers. That is, if the data of the problem (supplies, demands, and costs) are all whole numbers, then there is a 

whole number solution. The significance of this property is that you do not need to impose the difficult to handle 

integer constraints in order to get a solution that satisfies the constraints.  
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There are basically three stages for the solution procedure for the transportation problem: 

Stage 1: Mathematical formulation of the transportation problem, 

Stage 2: Finding an initial basic feasible solution, 

Stage 3: Optimize the initial basic feasible solution which is obtained in Stage 2. 

 

Our focus in this study is on stage 3: to propose a new and easy technique for optimizing the initial basic feasible 
solution. 

 

Related Literature Review 

 

Abul and Mosharraf (2018) carried out a research on an Innovative Algorithmic Approach for Solving Profit 

Maximization Problems. In their study, a new algorithmic technique was developed to tackle the profit 

maximization problems using transportation algorithm of Transportation Problem (TP) which included three basic 

parts; first converting the maximization problem into the minimization problem, second formatting the Total 

Opportunity Table (TOT) from the converted Transportation Table (TT), and last allocations of profits using the 

Row Average Total Opportunity Value (RATOV) and Column Average Total Opportunity Value (CATOV). The 

algorithm considered the average of the cell values of the TOT along each row identified as RATOV and the 

average of the cell values of the TOT along each column identified as CATOV. Allocations of profits are started in 
the cell along the row or column which has the highest RATOVs or CATOVs. The study concluded that the Initial 

Basic Feasible Solution (IBFS) obtained by the method is better than some other familiar methods which were 

discussed in the study with the three different examples, even though the results or outcomes of the algorithm were 

optimal or near optimal solutions.  

 

Amaravathy et al (2018) worked on Optimal Solution of OFSTF, MDMA Methods with Existing Methods 

Comparison. In their study, a different approach OFSTF (Origin, First, Second, Third, and Fourth quadrants) 

Method was applied for obtaining a feasible solution for transportation problems directly. The proposed method was 

a unique, it gave always feasible (may be optimal for some extant) solution without disturbance of degeneracy 

condition. The method involved minimum iterations to reach optimality. A numerical example was solved to check 

the validity of the proposed method and degeneracy problem was also discussed. 
 

In the present work we experiment with a new transportation technique for optimal solution with less calculation, 

using Inverse Coefficient of Variation Method (ICVM) as a technique for obtaining initial feasible solution to a 

transportation problem. 

 
 

Model Formulation of a Linear Transportation Problem 

 

The formulation of the transportation model employs double – subscripted variables of the form xij. Thus, the 

general formulation of the transportation problem with supply (sp), demand (d), n sources and m destinations, is 

given by  

Minimize 
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ijij
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The general formulation of the transportation problem reveals that m supply constraints and n demand constraints 

translate into m + n total constraints.  

 

 

Algorithm for Solving Linear Transportation Problem via New Technique 
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The algorithm for the method for determining the optimal solution to transportation problem of the proposed 

approach is stated as follows: 

 

► Determine the initial basic feasible solution by using Northwest Corner Method (NWCM), Least Cost 

Method (LCM), Vogel’s Approximation Method (VAM), Row Minimum Method (RMM), Column 

Minimum Method (CMM), Allocation Table Method (ATM) or Inverse Coefficient of Variation Method 
(ICVM).  

 

In this study, the Inverse Coefficient of Variation Method (ICVM) gives a better result (close to optimal) according 

to Opara et al (2017). Hence, it was employed to obtain the initial basic feasible solution in this study. 

 

Test for Optimality using the Proposed Technique (Loop Product Difference) 

Basically, there are two well known methods of obtaining optimal solution indirectly (obtaining first the initial basic 

feasible solution), which are MODI method and Stepping Stone method. Hence, the new algorithm for obtaining the 

optimal solution of the linear transportation problem indirectly is discussed below. 

 

Step 1: Form a closed path for the entire non basic cell. The closed path has the following properties: 

►It starts and ends in the identified cell. 
►It consists of a series of alternate horizontal and vertical connected lines only (no diagonals). 

►It can be traced anticlockwise or clockwise. 

►All other corners of the path lie in the allocated cells only. 

► The path may skip over any number of allocated or vacant cells. 

► There will always be one and only one closed path, which may be traced. 

It should be noted that the closed path has even number of corners (4, 6, 8, 10, etc) and any allocated cell can be 

considered only once. The shape of a closed path may or may not be square or rectangular; it may have a peculiar 

configuration and the lines may even cross over. 

● Having formed the closed path, mark the identified empty cell as positive and each occupied cell at the corners of 

the path alternately –ve, +ve, –ve, +ve and so on. 

 

Step 2:  For each non basic cell, determine tqnmcmcmcts CCCCC  tsP and if 0Pts  , stop. Otherwise 

obtain   tqnmcmcmcts CCCCC  minPts

 

and go to step 3, where tsC  is the cost of the leaving variable in 

the closed path with a positive sign, mcC is the smallest cost in the closed path with a positive sign, mcC  is the 

smallest cost in the closed path with a negative sign, and nmcC is the next smallest cost in the closed path with a 

negative sign.   

 

Step 3: The non basic variable say tqC enters the basis since 0C tq  . Allocate tqx , (where   is found as in 

the linear transportation case) in the concerned closed loop, which when modified by the tqx  value will keep 

i
a and 

j
b  values unchanged. Determine the leaving variable say 

Btk
x , where 

Btk
x  is the basic variable which 

turns to zero while making the modification, and tqx  becomes the new basic variable, and go to Step 1. 

 

Numerical Problems using the Proposed Technique 

 

We shall use seven numerical examples to illustrate the proposed algorithm. These examples were extracted from 

Opara et al (2017). 

 

 

 

 



International Journal of Mathematics Trends and Technology (IJMTT) – Volume 65 Issue 6 - June 2019 

 

 

ISSN: 2231-5373                              http://www.ijmttjournal.org                              Page 107 

 

 

 

 

 

Illustration of the New Algorithm 

 

Example 1 

Consider a Transportation problem with four markets and four warehouses. The market demands are 10, 4, 6, and 14 

while the warehouse capacities are 6, 9, 7, and 12. The cell entries represent unit cost of transportation, and the table 

is shown in Table 1. 

 
Table 1: Data of Example 1 

 Markets Supply 

Warehouse M1 M2 M3 M4  

W1  2 5 6 3 6 

W2 9 6 2 1 9 

W3 5 2 3 6 7 

W4 7 7 2 4 12 

Demand 10 4 6 14 34 

 
 

Solution 

The initial basic feasible solution using Inverse Coefficient of Variation Method (ICVM) is summarized in Table 2. 

Table 2: Initial Basic Feasible Solution Table of Example 1 
 

 

 

 

 

Hence, the total transportation cost is 6(2) + 9(1) + 3(5) + 4(2) + 1(7) + 6(2) + 5(4) = N83. 

 

Test for Optimality using the Proposed Technique (Loop Product Difference) 

 

Steps 1 and 2 

 

For cell (1, 2), the loop can be expressed as: 
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For cell (1, 3), the loop can be expressed as: 
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For cell (1, 4), the loop can be expressed as: 
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For cell (2, 1), the loop can be expressed as: 

 
 

 2 

(6) 

5 

     

6 

 

3 

9 

 

6 

       

2 

          

1 

(9) 

5 

 (3) 

2 

(4) 

3 

        

6 

7 

(1) 

7 

 

2 

(6) 

4 

(5) 

 

; 29)7(1)4(9P 4124442121  CCCC  
 

For cell (2, 2), the loop can be expressed as: 
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For cell (2, 3), the loop can be expressed as: 
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For cell (3, 3), the loop can be expressed as: 
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For cell (3, 4), the loop can be expressed as: 
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For cell (4, 4), the loop can be expressed as: 
 

 2 

(6) 

5 

     

6 

 

3 

9 

 

6 

       

2 

          

1 

(9) 

5 

 (3) 

2 

(4) 

3 

        

6 

7 

(1) 

7 

 

2 

  (6) 

4 

(5) 

 

; 21)7(2)5(7P 4132314444  CCCC  

 

nmcmcmcts CCCC  tsP

nmcmcmcts CCCC  tsP

nmcmcmcts CCCC  tsP

 – 

 – 

 + 

 + 

 – 

 + 

 + 

 – 

 – 

 + 

 + 

 – 

 – 

 +  – 

 + 

nmcmcmcts CCCC  tsP



International Journal of Mathematics Trends and Technology (IJMTT) – Volume 65 Issue 6 - June 2019 

 

 

ISSN: 2231-5373                              http://www.ijmttjournal.org                              Page 110 

 

Since none of the product difference )(Pts  is negative, we stop; the present feasible solution is optimal. Hence, the 

optimal solution is  

6X11  , 9X24  , 3X31  , 4X32  , 1X41  , 6X43  , 5X44   and the minimum cost for this transportation 

problem is               45267124531926 N83. 
 
 

 

Example 2 
Consider the transportation problem with three markets and four warehouses. The market demands are 16, 10, 14, 

while the warehouse capacities are 11, 12, 10, 7. The unit cost of transportation is as given in Table 3. 
 

Table 3: Data of Example 2 
 Markets Supply 

Warehouses M1 M2 M3  

W1 4 3 4 11 

W2 10 7 5 12 

W3 8 8 3 10 

W4 5 6 6 7 

Demand         16     10      14  
 

The initial basic feasible solution using Inverse Coefficient of Variation Method (ICVM) is summarized in Table 4. 

Table 4: Initial Basic Feasible Solution Table of Example 1 
 Markets 

Warehouses M1 M2 M3 

W1 4 

(11) 

3 4 

W2 10 7 

(8) 

5 

(4) 

W3 8 8 3 

(10) 

W4 5 

(5) 

6 

(2) 

6 

 

Total transportation cost = 11(4) + 8(7) + 4(5) + 10(3) + 5(5) + 2(6) = 187 

 

Test for Optimality using the Proposed Technique 

 

Steps 1 and 2 

 

For cell (1, 2), the loop can be expressed as: 
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; 9)6(4)5(3P 4211411212  CCCC  
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For cell (1, 3), the loop can be expressed as: 
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For cell (2, 1), the loop can be expressed as: 
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For cell (3, 1), the loop can be expressed as: 
 

 4 

     (11) 

3 

     

4 

 

10 

 

7 

      (8) 

5 

          (4)       

8 

  

8 

 

3 

       (10)        

5 

(5) 

6 

       (2) 

6 

 

 

; 25)5(3)5(8P 4133233131  CCCC  
 

For cell (3, 2), the loop can be expressed as: 
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For cell (4, 3), the loop can be expressed as: 
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; 12)6(5)7(6P 4223224343  CCCC  
 

Step 3: 
 

  9min 12   PCCCC nmcmcmcts  

 

It is obvious that the presence of negative value for the empty cell signifies non optimality; hence we readjust. 

Therefore 12x  should enter the basis since it is the most negative empty cell cost, after adjusting the values 42x
 
left 

the basic. 

 
 Markets Supply 

Warehouses M1 M2 M3  

W1 4 

11 

3 

(-9) 
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11 
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(25) 
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4 

12 

W3 8 

(25) 

8 

  (19) 
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W4 5 

5 
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2 

6 

(12) 

7 

 Demand         16     10      14  

The basic variable with the least value among the corners having negative sign in the loop is the leaving variable. 

Hence, 42x  with the least value of 2 is the leaving variable. Thus, we increase the corners with + sign by 2, and 

reduce the ones with – sign by 2. The adjusted tableau becomes: 
 

 Markets Supply 

Warehouses M1 M2 M3  

W1 4 

9 

3 

2 

4 11 

W2 10 7 

8 

5 

4 

12 

W3 8 8 3 

10 

10 

W4 5 

7 

6 6 7 

Demand         16     10      14  

 
 

At the end of this stage of iteration, the basic feasible solution is 

nmcmcmcts CCCC  tsP

 + 
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  –  

 + 

 + 

  –  

  –  
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911 x , 212 x , 822 x , 423 x , 1033 x , 741 x  

 

We then go back to Steps 1 and 2 

 

For cell (1, 3), the loop can be expressed as: 
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For cell (2, 1), the loop can be expressed as: 
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For cell (3, 1), the loop can be expressed as: 
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For cell (3, 2), the loop can be expressed as: 
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For cell (4, 2), the loop can be expressed as: 
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For cell (4, 3), the loop can be expressed as: 
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Since none of the product difference )(Pts  is negative, we stop; the present feasible solution is optimal. Hence, the 

optimal solution is  

911 x , 212 x , 822 x , 423 x , 1033 x , 741 x and the minimum cost for this  transportation problem 

is             1835731054783249  . 

 

The remaining five examples shall be presented in their last tableau without illustration. 

 

Example 3 
 

Dangote Flour Mills Plc is a manufacturing company located in Calabar. The company produces Bread Flour (BF), 

Confectionery Flour (CF), Penny Semolina (PS) and Wheat Offals (WO). These products are supplied to 
thefollowing states (locations) Bayelsa, Anambra, Rivers, Kano, Abia, Enugu, AkwaIbom etc. For the purpose ofthis 

study, only four (4) of these demand points shall be considered; Enugu, Akwa-Ibom, Anambra and 
Rivers. Theestimated supply capacities of the four products, the demand requirements at the four sites (states) and 

the transportation cost per bag of each product are given in Table 5. 
 

Table 5: Data of Example 3 
 Enugu Akwa

-Ibom 

Anambra Rivers Supply  

BF  45 

 

52 

 

           63 

 

57 

 

15500 

CF 58 

 

48 

 

56 

 

54 

 

12000 

PS 52 55 

 

62 

 

58 14400 

WO 65 48 

 

44 

 

54 11600 

Demand 12600 12500 13000 15400 53500 
 

The initial basic feasible solution using Inverse Coefficient of Variation Method (ICVM) is summarized in Table 6. 

 

nmcmcmcts CCCC  tsP

nmcmcmcts CCCC  tsP

 + 

  –  

  –  

 + 

 + 

  –  

  –  

 + 

  –   + 
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Table 6: Initial Basic Feasible Solution Table of Example 3 
 Enugu Akwa-

Ibom 

Anambra Rivers 

BF  45 

(12600) 

52 

(2900) 

           63 

 

57 

 

CF 58 

 

48 

(9600) 

56 

(1400) 

54 

(1000) 

PS 52 55 

 

62 

 

58 

(14400) 

WO 65 48 

 

44 

(11600) 

54 

Hence, the total transportation cost is 12600(45) + 2900(52) + 9600(48) + 1400(56) + 1000(54) + 14400(58) + 

11600(44) = 2,656,600. 

 
The optimal table using the proposed technique is summarized in Table 7 

 

Table 7: Optimal Table of Example 3 
 Enugu Akwa-

Ibom 

Anambra Rivers 

BF  45 

(12600) 

52 

(1900) 

           63 

 

57 

(1000) 

CF 58 

 

48 

(10600) 

56 

(1400) 

54 

 

PS 52 55 

 

62 

 

58 

(14400) 

WO 65 48 

 

44 

(11600) 

54 

 

The solution is optimal at iteration two and the optimal solution is 1260011 x , 190012 x , 1060022 x ,

140023 x , 1440034 x , 1160043 x and the minimum cost for this  transportation problem is 

               600,655,21160044144005814005610600481000571900521260045  . 

 

Example 4 

Consider a Transportation problem with four markets and three warehouses. The market demands are 10, 6, 8, and 

12 while the warehouse capacities are 12, 14, and 10.The cell entries represent unit cost of transportation, and the 

table is shown in Table 8. 
 

Table 8: Data of Example 4 
 Markets   

Warehouses M1 M2 M3 M4 Supply 

W1 5 7 9 6 12 

W2 6 7 10 5 14 

W3 7 6 8 1 10 

Demand 10 6 8 12 36 
 

The initial basic feasible solution using Inverse Coefficient of Variation Method (ICVM) is summarized in Table 9. 

Table 9: Initial Basic Feasible Solution Table of Example 4 
 Markets  

Warehouses M1 M2 M3 M4 

W1 5 

(10) 

7 9 

(2) 

6 

W2 6 7 

(6) 

10 

(6) 

5 

(2) 

W3 7 

 

6 8 1 

(10) 

 

Total transportation cost = 10(5) + 2(9) + 6(7) + 6(10) + 2(5) + 10(1) = 190. 

The present initial basic feasible solution is optimal using the proposed technique. 
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Example 5 

A company manufactures motor cars and it has three factories F1, F2 and F3whose weekly production capacities are 

300, 400 and 500 pieces of cars respectively. The company supplies motor cars to its four showrooms located at D1, 

D2, D3 and D4 whose weekly demands are 250, 350, 400 and 200 pieces of cars respectively. The transportation 

costs per piece of motor cars are given in the transportation Table 10. Find out the schedule of shifting of motor cars 

from factories to showrooms with minimum cost: 
 

Table 10: Data of Example 5 
 Showrooms  

Factories D1 D2 D3 D4  

F1 3 1 7 4 300 

F2 2 6 5 9 400 

F3 8 3 3 2 500 

Demand 250 350 400 200  

 
The initial basic feasible solution using Inverse Coefficient of Variation Method (ICVM) is summarized in Table 11. 

Table 11: Initial Basic Feasible Solution Table of Example 5 
 Showrooms 

Factories D1 D2 D3 D4 

F1 3 

 

1 

(300) 

7 4 

F2 2 

(250) 

6 

 

5 

(150) 

9 

F3 8 3 

(50) 

3 

(250) 

2 

(200) 
 

Total transportation cost = 300(1) + 250(2) + 150(5) + 50(3) + 250(3) + 200(2) = 2850. The present initial basic 

feasible solution is optimal using the proposed technique. 

 

Example 6 

Consider the following transportation problem (Transportation Table 12) involving four sources and four 

destinations. The cell entries represent the cost of transportation per unit. Obtain an initial basic feasible solution. 
 

Table 12: Data of Example 6 
 Destinations  

Sources D1 D2 D3 D4 Supply 

S1 7 5 9 11 30 

S2 4 3 8 6 25 

S3 3 8 10 5 20 

S4 2 6 7 3 15 

Demand 30 30 20 10  

 

The initial basic feasible solution using Inverse Coefficient of Variation Method (ICVM) is summarized in Table 13. 

 

 

Table 13: Initial Basic Feasible Solution Table of Example 6 
 Destinations 

Sources D1 D2 D3 D4 

S1 7 

(5) 

5 

(5) 

9 

(20) 

11 

S2 4 3 

(25) 

8 6 

S3 3 

(20) 

8 10 5 
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S4 2 

(5) 

6 7 3 

(10) 

Total transportation cost = 5(7) + 5(5) + 20(9) + 25(3) + 20(3) + 5(2) + 10(3) = 415. 

The optimal solution table using the proposed technique is summarized in Table 14 

 
Table 14: Optimal Table of Example 6 
 Destinations 

Sources D1 D2 D3 D4 

S1 7 

 

5 

(10) 

9 

(20) 

11 

S2 4 

(5) 

3 

(20) 

8 6 

S3 3 

(20) 

8 10 5 

S4 2 

(5) 

6 7 3 

(10) 

 

The solution is optimal at iteration two and the optimal solution is 1012 x , 2013 x , 521 x , 2022 x ,

2031 x , 541 x , 1044 x  and the minimum cost for this transportation problem is 

               4103102532032045920510  . 

 

Example 7 

Consider the following transportation problem (Transportation Table 15) involving three origins and three 

destinations. The cell entries represent the cost of transportation per unit. Obtain an initial basic feasible solution. 

 
Table 15: Data of Example 7 

 Destinations Supply  

Origins  D1 D2 D3  

O1 4 3 5 90 

O2 6 5 4 80 

O3 8 10 7 100 

Demand 70 120 80  

 
The initial basic feasible solution using Inverse Coefficient of Variation Method (ICVM) is summarized in Table 16. 

 

Table 16: Initial Basic Feasible Solution Table of Example 7 
 Destinations 

Origins  D1 D2 D3 

O1 4 3 

(90) 

5 

O2 6 5 

(30) 

4 

(50) 

O3 8 

(70) 

10 7 

(30) 

The transportation cost = 90(3) + 30(5) + 50(4) + 70(8) + 30(7) = 1390. The present initial basic feasible solution is 

optimal using the proposed technique. 

 

CONCLUSION 

 

In this study, a new approach (Loop Product Difference) for optimizing the initial basic feasible solution of a 

balanced transportation problem is proposed. It has been tested and proven efficient by solving several number of 

cost minimizing transportation problems and it is discovered that the Method gives the same result as that of optimal 

solution obtained via MODI/Stepping stone methods. Conclusively, it can be said that proposed technique is easy to 
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adopt and close to optimality if employed with the Inverse Coefficient of Variation Method as an improved 

technique of obtaining Initial Basic Feasible Solution.  
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