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 ABSTRACT 

This study compares the effect of sample sizes on the empirical power of some homogeneity of variance tests that 

have been proposed to assess the homogeneity of within-group variances, prior to ANOVA. The Tests of 

Homogeneity of Variance (THV) compared are: Bartlett (1937), Levene (1960), Cochran (1941) and Hartley Fmax 

(1950) tests. Homogeneity of variances occurs when variances are equal across groups. Homogeneity of variance 

testing is a statistical method designed to provide evidence that groups are comparable by demonstrating that the 

variations found between groups are small enough that they are considered practically insignificant.Few 

recommendations exist regarding the appropriate use of these tests under varying data conditions. Monte Carlo 

simulation methods were used to generate data to examine and compare the power rates of the tests under 
conditions of equal and unequal sample sizes when the underlying distribution is normal 1,000 times through the 

use of R software. It was found that Hartley Fmax test performs best (highest power) when the sample sizes are 

equal, while, Cochran test has the worst performance. Generally, when the sample sizes are both equal and 

unequal, Levene test has the highest power followed by Bartlett test, hence, Bartlett and Levene tests will be 

recommended for both equal and unequal sample sizes since they give higher power (above 0.8).Thus it is important 

for researchers to conduct an initial analysis of the data in order to determine the distribution of the population and 

is also advised to pay attention to the amount of sample size required to obtain a powerful test.   
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INTRODUCTION 

Tests for homogeneity of variances are often of interest as a preliminary to other analyses such as analysis of 

variance or a pooling of data from different sources to yield an improved estimated variance. Many authors claim 
that a test of homogeneity of variancesis a prerequisite to analysis of variance. Others, like Zar (1999), confide that 

the testspresently available have such poor performance that they are not really useful, ANOVA beingmore robust to 

departures from homoscedasticity than can be detected using a test ofhomogeneity of variances, especially under 

conditions of non-normality. To apply the ANOVA test, several assumptions must be verified, including normal 

populations, homoscedasticity and independent observations. Underwood (1997) reminds us that the analysis of 

variance presents problems with heterogeneity in balancedsamples only when one of the variances is markedly 

larger than the others; it is notespecially sensitive to non-normality of the data which badly affects most of the 

classicaltests for homogeneity of variances.  

 

Homogeneity of variances occurs when populations have similar variance.  The classical approach to hypothesis 

testing usually begins with the likelihood ratio test under the assumption of normal distributions. However, the 
distribution of the statistic in the likelihood ratio test for equality of variances in normal populations depend on the 

kurtosis of the distribution (Box (1953)), which helps to explain why that test is so sensitive to departures from 

normality. This non robust property of the likelihood ratio test has prompted the invention of many alternative tests 

for variances. Some of these tests are modifications of the likelihood ratio test. Others are adaptations of the F test to 

test the variances rather than the sample means. Many tests are based on the non parametric methodsalthough their 

modification for the case in which the means are unknown often makes these tests distributionally dependent.  
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A good number of tests for homogeneity of variances are available for different situations. The most frequently used 

tests include those of Bartlett, Levene, Brown- Forsythe, Fligner Killeen, Welch tests, etc. All these tests have their 

various limitations. The various tests considered in this research work are Bartlett (1937), Levene (1960), Cochran 

(1941) and Hartley’s Fmax (1950) tests.  

 

Bartlett’s test involves computing a statistic whose sampling distribution is closely approximated by the chi-square 
distribution with n-1 degrees of freedom when the random samples are from independent normal populations 

(Montgomery (1997)). Bartlett’s statistic is designed to test for equality of variances across groups against the 

alternative that variances are unequal for at least two groups. 

 

The hypothesis of Bartlett test is given by: 

 

H0:   σ1
2 = σ2

2 = ... = σk
2

; where k is the number of independent samples. 

H1:  σi
2 ≠  σj

2 for at least one pair (i, j) where i ≠ j. 

 

Bartlett test can be used to answer the following question: Is the assumption of equal variances valid? It is useful 

whenever the assumption of equalvariances is made. In particular, this assumption is made forthe frequently used 

one-way analysis of variance. Bartlett test is known to be powerful only if the sampled populations are normal, but 
badly affected by non-normality (Box, 1953). Bartlett test is the one most often presented in textbooks and taught in 

introductory courses because of its ease of computation.It can be easily applied in different ANOVA designs with 

equal or unequal sample sizes. 

 

The Levene test uses an F test to test the null hypothesis that variances are equal across groups. The test is meant to 

be used with normally distributed data but can tolerate relatively low deviation from normality. Levene test is an 

alternative to the Bartlett test though the test is less sensitive to departures from normality than the Bartlett test. If 

there is strong evidence that the data do in fact come from a normal, or nearly normal, distribution, then Bartlett test 

has better performance. The assumptions underlying this test include: the samples from the populations under 

consideration are independent and approximately normal. 

 
Cochran test is a one sided upper limit variance outlier test. The Cochrantest is used to decide if a single estimate of 

a variance is significantly larger than a group of variances with which the single estimate is supposed to be 

comparable i.e., it is used to assess the homogeneity of variances in the one factor case. The Cochrantest is 

essentially an outlier test. Assumptions of Cochran test include: observations in each group are normally distributed 

and independent among groups. 

 

The study compares four tests for homogeneity of variances based on their powers through simulation studies. The 

simulation is conducted by varying different sample sizes to determine which of the tests that have a higher power. 

In each simulation problem, the rate of rejection of the null hypothesis (at α = 5%) when the null hypothesis is false 

is the power computed after 1000 independent simulations involving the desired number of observations from the 

selected type of distribution which is a normal distribution. 

 

Statement of Problem 

 

Often, the effect of violation of assumption of one-way ANOVA result depends on the extent of the violation (such 

as how unequal the population variances are, or how heavy-tailed one or another population distribution is). Some 

small violations may have little practical effect on the analysis, while other violations may render the one-way 

ANOVA result incorrect or un-interpretable. In particular, small sample sizes can increase vulnerability to 

assumption violations. While homogeneity of variance tests have been gaining in popularity within fields such as 

education and psychology, as researchers are becoming more aware of the different methods, few recommendations 

currently exist regarding the appropriate use of the tests. The primary concern is related to whether these tests will 

be able to correctly detect homogeneity among groups when the groups are in fact homogenous (i.e., the test has 

sufficient power) and will not conclude equivalence when the groups are truly different (i.e., type I error). Typically 
we want the power of our test to be 0.80 or greater (i.e., we will correctly conclude equivalence 80% or more of the 

time). Insufficient power could lead to a conclusion of non homogeneity even if the population variances are 

equivalent (a type II error). 
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We note that the effects of the assumption of normality and constant variance are inter-related. As the violation of 

the assumption of homogeneity of variance is likely caused by a small sample or by the violation of normality, 

sample size is an important factor that conceptually influences the power of homogeneity of variance tests. For 

instance, small sample sizes result in larger confidence intervals than large sample sizes. As such, small sample sizes 

should more likely lead to conclusions of heterogeneity while large sample sizes should more likely lead to 

conclusions of homogeneity. 
 

In this study, we compare the effect of sample sizes on the empirical power of the tests. Monte Carlo simulation 

based on normal distributions for various sample sizes both equal and unequal will reveal which of the four tests that 

is more powerful. Hence, we hope that our study will indicate an appropriate test of homogeneity of variances for 

testing the assumption of homogeneity of variancesin a given data set.  

 

Literature Review 

 

Diep et al. (2014) provided a SAS macro for testing the homogeneity of variance assumption in one way ANOVA 

models using fourteen different approaches. They used simulation methods to compare the fourteen tests in terms of 

their type I error rate and statistical power. The tests are Brown and Forsythe, Levene (absolute values), 

Levene(squared values), O’Brien, Bartlett, Bootstrap Brown-Forsythe, Ramsey’s Conditional Test, Z-variance, MZ-
variance test, Cochran C test(with arithmetic mean), Cochran C test(with harmonic mean), G test, F-max test (with 

arithmetic mean), F-max test(with harmonic mean). The result obtained from the simulation showed that Levene 

with the Squared residuals, Brown-Forsythe, O’Brien, Ramsey’s conditional procedure and Bootstrap Brown-

Forsythe tests were the five tests that controlled type I error adequately. O’Brien had slightly less power and 

Bootstrap Brown-Forsythe had slightly greater power than other tests. The O’Brien and Ramsey conditional 

procedure seemed to be the most robust.     

  

Li et al. (2015) compared the performances of 7 homogeneity of variance tests namely: F test, Bartlett test, Levene 

test, trimmed –mean –based Levene test, Brown Forsythe test, Phipson and Oshlack equal variance test based on 

absolute difference and Phipson  and Oshlack equal variance test based on squared difference. Simulation studies 

were used to evaluate the effects of sample size, inequality of means, non normal distributions and outliers on the 
performances of the 7 equal variance tests. The results showed that as the sample size increases, the performance of 

the 7 tests improve. That is, the estimated type I error rates are closer to the nominal value 0.05 and the estimated 

power is closer to the maximum value of one as the sample size increases. The inequality of means had no effect on 

all the7 tests. Both non normality and outliers had effects on the performance of the 7 tests. F and Bartlett’s test were 

much more sensitive (i.e., having large type 1 error rates) to non normality and outliers than the other 5 tests. 

 

In a simulation study carried out by Harritet al. (2017) to compare empirical type I error and power of five tests 

namely: Anom, Bartlett’s, Levenes, Brown-Forsythe and Conover tests to check homogeneity of variances, a 

comprehensive Monte Carlo simulation study was carried out for different number of groups (k=3,4,5 and 10), 

variance ratios (1,5,10,15  and 20) and sample size combinations under normality assumption. Based on the results 

of the simulation, carried out, it was observed that the best robust tests are the Anom and Bartlett’s tests followed by 

Levene and Conover’s test. But both Conover and Levene tests have been slightly negatively affected from increase 
in the number of groups when sample sizes were small. On the other hand, since the Brown-Forsythe test did not 

give satisfactory results for any of the experimental conditions, it was concluded that the use of the test should not 

be preferred for checking homogeneity of variance assumption. 

 

 

Brief Description of the Tests 
 

Let Yij be an observation on the jth subject of the ith treatment (population), then the one way ANOVA model can be 

written as: 

Yij = μ + αi+ eij,    i = 1, 2, . . ., t;  j = 1, 2, . . . , n.  

Where μ is the overall mean for all t treatments, αi the ith treatment effect with restriction 
 𝛼𝑡
𝑖=1 i=0 and eij’s represent error terms which are assumed to be mutually independent and normally distributed with 

E(eij) = 0, V(eij) = σ2. 

Our interest is on testing the null hypothesis 
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H0 : σ1
2=σ2

2=…=σk
2 

 

Against the alternative hypothesis 

H 1: σi
2 ≠ σj

2 for at least one pair (i, j) for i≠j. 

The test for homogeneity of variances is used to determine if the assumption of equal variances is valid. 

Statement of hypothesis for normality assumption of the real data collected is given by; 

H0: The data is normally distributed. 

H1: The data is not normally distributed. 

A p-value less than 0.05 indicates a violation of the assumption. There are many tests of assumptions of 

homogeneity of variances. Commonly used tests which will be looked at in this research work are the Bartlett 

(1937), Levene (1960), Hartley (1950) and Cochran (1941). In what follows, we give a brief procedure of each test. 

 

Bartlett Test 
The hypothesis for Bartlett test is given as: 
Ho:   σ1

2 = σ2
2 = ... = σk

2
;  where k is the number of independent samples. 

H1:  σi
2 

≠  σj
2
 for at least one pair (i, j) where i≠j. 

 

To test for equality of variances across groups against the alternative that variances are unequal for at least two 

groups, the Bartlett test statistic is used. It is given by: 

B= C-1[(n-k) lnS2- 2

1

( 1) ln
k

i i

i

n S


 ];   

Where; 

 C=1+ 
1

3(k−1)
1

1 1

1

k

i in n k

 
 

  
 ; 

2

iS is the variance of the ith group and is given by; 

2

iS = 

2( )

1i

x x

n






;  

n is the total sample size; 

ni is the sample size of the ith group; 
k is the number of groups 

S2 is the pooled variance given by; 

S2=

2( 1)i in S

N k






; 

 

The pooled variance is the weighted average of the group variances. The Bartlett test statistic follows chi-square 

distribution with (k-1) degrees of freedom. 

The hypothesis H0 is rejected on significance level α, when: 

B > 2

1 , 1k  
;      

Where 2

1 , 1k  
  is the critical value of the chi-square distribution with k-1 degrees of freedom. Bartlett’s test is 

known to be powerful if the sampled populations are normal, but badly affected by non-normality (Box, 1953). 
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Levene Test 

Definition: The hypothesis for the Levene test is given as: 
Ho:   σ1

2 = σ2
2 = ... = σk

2
;  where k is the number of independent samples. 

H1:  σi
2 ≠ σj

2 for at least one pair (i, j) where i≠j. 

Given a variable Y with sample of size N divided into k subgroups, where Ni is the sample size of the ith subgroup, 

the Levene test statistic is defined as: 

                 W = 
1

N k

k





2

. ..

1

2

.

1 1

( )

( )
i

k

i i

i

Nk

ij i

i j

N Z Z

Z Z



 








 

Where;  

Zij= sample observation j taken from treatment i ; 

Ni  =number of observations from treatment i (at least one Ni must be 3 or more); 

 N = overall size of combined samples; 

Z i. =mean of sample data from treatment i; 

Z ..=mean of overall sample. 
At least one of the treatments must have three or more observations else the Levene test statistic will be undefined 

(i.e., the denominator will equal zero if each treatment has 1 or 2 observations). 

Zij can be computed using any of the following formulae: 

1. .ij ij iZ Y Y  where Y i. is the mean of the ith subgroup.  

2. .ij ij iZ Y Y   where Y i. is the median  of the ith subgroup. 

3. 
'

.ij ij iZ Y Y  where Y i.
’ is the 10% trimmed mean of the ith subgroup. 

Here the 10% trimmed mean is the arithmetic mean calculated when the largest 10% and smallest 10% of the cases 

have been eliminated; eliminating extreme cases from the computation of the mean results in a better estimate of 

central tendency, especially when the data are non-normal. 

The three choices for calculating Zij determine the robustness and power of Levene test. The Levene test rejects the 

hypothesis that the variances are equal if 

W > Fα, k-1, N-k 

where Fα, k-1, N-k is the upper critical value  of the F distribution with k-1 and N-k degrees of freedom at a significance 

level of α.  

Hartley Fmax Test 

The test follows the form of hypothesis testing starting with the null hypothesis. 
H0: σ1

2 = σ2
2 = … = σk

2;   where k is the number of populations or treatments. 

H1:  σi
2 ≠ σj

2 for at least one pair (i, j) where i≠j. 
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The test statistic is given by: 

Fmax = 

2

2

max

min




  

After test statistic is calculated, a critical value is used to make determination. An F table is used to find a value 

corresponding to a = 0.05 and degrees of freedom= n-1 where n is the sample size drawn from each population. 

Cochran Test 

 The hypothesis for Cochran test is given by: 

H0 : S
2

max = 
2

1

k

k

i

S


  

H1 : S
2

max ≠ 
2

1

k

k

i

S


  

 The test statistic is calculated using the equation: 

C = 

2

2

1

max
k

i

i

S

S



 

Where; 

2

1

k

i

i

S


 is the sum of variances of the observations with equal sizes 

 (n1 = n2 =… = nk and df1 = df2 =… = dfn respectively);  

 k= number of groups 

 n = number of observations in each group. 

df = degrees of freedom. 

The test value C is compared with the value of the Cochran table. 

The null hypothesis (H0) is rejected if the test value C is greater than the critical value C (probability=α; k, df). 

 

The Bartlett, Hartley and Cochran tests test for homogeneity of variance without transformation of the data. The 

Levene method actually transforms the data and then tests for equality of variances. Cochran and Hartley tests 

assume that there are equal numbers of observations in each group. The tests of Bartlett, Cochran, Hartley and 

Levene may be applied for number of samples K>2. In such situation, the power of these tests turns out to be 
different. 

 

Statistical Power of a Hypothesis Test. 

 

The statistical power of a hypothesis test is the probability that a statistical test correctly rejects the null hypothesis 

(H0) when the alternative hypothesis (H1) is true. It can be equivalently thought of as the probability of accepting the 

alternative hypothesis (H1) when it is true i.e., the ability of a test to detect an effect, if the effect actually exists. 

That is, 

 Power =P(reject H0|H1 is true) 

The probability of not committing a Type II error is called the power of a hypothesis test. A test without sufficient 

statistical power not be able to provide the researcher with enough information to draw conclusions regarding the 
acceptance or rejection of the null hypothesis. Usually one would only consider the power of a test when one failed 

to reject the null hypothesis. High power is desirable from (0.7 to 1.0). High power means that there is a high 

probability of rejecting the null hypothesis when the null hypothesis is false. 

 



International Journal of Mathematics Trends and Technology (IJMTT) – Volume 65 Issue 6 - June 2019 

 

 

ISSN: 2231-5373                              http://www.ijmttjournal.org                              Page 125 

As the power increases, there are decreasing chances of a type II error (false positive), which are also referred to as 

the false negative ratio (β) since the power is equal to 1-β, again, under the alternative hypothesis. A similar concept 

is type 1 error, also referred to as the “false positive rate” or the level of the test under the null hypothesis. 

 

Simulation Technique  

The program flow chart for the simulation study is as follows: 
i.  Generate random samples from the distribution specified by the alternative hypothesis.  

ii. Select the sample sizes, the number of simulation times, the level of significance α.  

iii. Calculate the test statistics from the simulated data under Bartlett, Levene, Cochran Hartley Fmax and 

determine if the null hypothesis is accepted or rejected. Tabulate the number of rejections and use this to 

calculate the test’s significance level. 

iv. Repeat steps (i), (ii) and (iii) several number of times as specified, tabulating the number of times the 

simulated data leads to a rejection of the null hypothesis. The power of the test is the proportion of 

simulated samples in step (iii) that leads to rejection of the null hypothesis. 

 

The number of repetition of simulation has been considered to be 1,000. The alpha level (α) set at 0.05. All 

simulated data were generated from a normal distribution. 

 

DATA COLLECTION AND ANALYSIS 

Table 1: The number of university of Port-Harcourt students who suffered pneumonia  

 

Steps for the real data analysis 
 

Checking the distribution of the data 

TREATMENT 
2006 2007 2008 2009 2010 2011 2012 2013 2014 2015  

12       12      12     12     12       12     12      12     12     12 

shapiro.test(Data4test$RESPONSE)##to check for normality of the data 

Shapiro-Wilk normality test 

data:  Data4test$RESPONSE 

W = 0.98029, p-value = 0.07579 

 

Interpretation: since the p-value is greater than 0.05, the data is normally distributed.  

Hence, the normality assumption is met. 
 

YEAR JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC 

2006 80 94 98 90 103 92 83 98 85 100 96 82 

2007 90 95 87 89 94 107 92 89 103 95 102 91 

2008 100 101 99 92 96 90 93 88 90 94 91 95 

2009 88 100 92 93 92 108 91 100 90 95 89 93 

2010 103 100 93 95 88 93 92 99 93 81 91 94 

2011 107 94 93 104 109 98 111 94 90 94 94 105 

2012 89 98 87 95 91 89 101 98 89 91 100 94 

2013 103 93 100 107 94 91 86 95 90 89 99 85 

2014 92 96 108 91 96 95 91 101 105 97 104 93 

2015 98 87 96 100 95 91 97 96 88 92 91 83 
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Fig.1: Box plots 

 

Fig. 2:  Density plot 
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Fig. 3: Histogram plot 

 
Interpretation: it is observed that the shape of the data implies normal distribution 

Bartlett test of homogeneity of variances 

data:  RESPONSE by TREATMENT 

Bartlett K-squared = 6.5441, df = 9, p-value =0.6845 

 

Interpretation: 

Since the p-value is greater than 0.05, there is no variation in the treatment groups( number of years ). 

 

Levene test of homogeneity. 

Levene Test for Homogeneity of Variance (center = median) 

Df    F value  Pr(>F) 
group   9  0.8869 0.5394 

 

Interpretation: 

Since the p-value is greater than 0.05, there is no variation in the treatment groups (number of years ). 

 

Cochran Test for Homogeneity 

Cochran test of homogeneity of variances 

data:  lm(data = Data4test, RESPONSE ~ TREATMENT) 

       C = 0.16297, n = 12, k = 10, p-value = 0.7293 

alternative hypothesis: Group 2006 has outlying variance 

sample estimates: 

         2006      2007    2008       2009      2010       2011      2012  
       59.4773 40.0909 17.9015 33.1136 32.8182 53.1742 23.3636  

           2013       2014      2015  

       46.0606 33.3561 25.6061 

Interpretation: 

Since the p-value is greater than 0.05, there is no variation in the treatment groups(number of years ). 

HartleyFmax test 

       [1] 9.89927 
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Analysis using simulated data 

Bartlett test of homogeneity of variances 

data:  values by ind 

Bartlett's K-squared = 6.3235, df = 11, p-value = 0.8509 

 

Levene test of homogeneity of variances 

Levene's Test for Homogeneity of Variance (center = median) 

Df F value Pr(>F) 

group  11  0.3321 0.9769 

      108 

Hartley Fmax test of homogeneity of variances 

 [1] 9.89927 

  

Cochran test of homogeneity of variances 

Cochran test of homogeneity of variances 

data:  lm(values ~ ind, data = test) 

C = 0.14436, n = 10, k = 12, p-value = 0.8106 
alternative hypothesis: Group X1 has outlying variance 

sample estimates: 
   X1      X2      X3      X4      X5           X6              X7      X8          X9          X10        X11                 X12  

1.6404  0.6230  1.2263  0.9492  0.8048     0.4231     0.6888  0.7005   1.3340   0.8940       0.9575         1.1220  

 

Interpretation: The results of the various tests show that there is no variation in the groups. Hence the assumption 

of homogeneity of variance is met. 

 

Simulation for Power of the Various Tests 
 The R codes used for the simulation are given in the appendix.  

 

 

 

 

 

Table 2: Simulation Results for power of Bartlett test 

Equal sample size Power Unequal sample size Power 

15,15,15; N=45 0.4968 15,20,30; N=65 0.6662 

20,20,20; N=60 0.6688 20,30,45; N=95 0.8614 

30,30,30; N=90 0.8716 40,50,60; N=150 0.9866 

50,50,50; N=150 0.9866 50,50,100; N=200 0.9994 

 

Interpretation: It is observed that as the sample sizes increase (for both equal and unequal), the power increase. 

This implies that increase in sample size improves the power of a test. 

 

Table 3 :  Simulation Results for power of Levene test 

Equal sample size Power Unequal sample size Power 

15,15,15; N=45 0.9518 15,20,30; N=65 0.9538 

20,20,20; N=60 0.9463 20,30,45; N=95 0.9725 

30,30,30; N=90 0.9597 40,50,60; N=150 0.9988 

 

Interpretation: 
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It is observed that as the sample sizes increase (for both equal and unequal), the power of the test increase with 

greater powers occurring at unequal sample sizes. 

Table 4: Simulation results for power of Cochran test 

Equal sample size Power Unequal sample size Power 

15,15,15; N=45 0.3333 15,20,30; N=65 0.4615 

20,20,20; N=60 0.3333 20,30,45; N=95 0.4737 

30,30,30; N=90 0.3333 40,50,60; N=150 0.4801 

50,50,50; N=150 0.3333 50,50,100; N=200 0.5000 

 

Interpretation: 
It is observed that when the sample sizes are equal, the power values remain the same and very low. But when the 

sample sizes are unequal, the power of the test increases but considerably low compared to the powers of Bartlett 

and Levene tests. 

Table 5:  Simulation results for Hartley Fmax test 

Equal sample size Power Unequal sample size Power 

15,15,15; N=45 1.0000 15,20,30; N=65 0.4444 

20,20,20; N=60 1.0000 20,30,45; N=95 0.5000 

30,30,30; N=90 1.0000 40,50,60; N=150 0.6667 

50,50,50; N=150 1.0000 50,50,100; N=200 0.5000 

 

Interpretation: It is observed that when the sample sizes are equal, the power values remain the same with the 

perfect value of one.. But when the sample sizes are unequal, the power of the test increases but considerably low 
compared to the powers of Bartlett and Levene tests. 

Thus, Cochran and Hartley Fmax test behave alike. 

 

Table 6: Summary of the simulation results for the four tests. 

Sample size Power 

Equal Bartlett Levene Cochran Hartley Fmax 

15,15,15; N=45 0.4968 0.9518 0.3333 1.0000 

20,20,20; N=60 0.6662 0.9463 0.3333 1.0000 

30,30,30; N=90 0.8614 0.9597 0.3333 1.0000 

50,50,50; N=150 0.9866 0.9952 0.3333 1.0000 

Sample size Power 

Unequal Bartlett Levene Cochran Hartley’s  Fmax 

15,20,30; N=65 0.6688 0.9538 0.4615 0.4444 

20,30,45; N=95 0.8716 0.9725 0.4737 0.5000 

40,50,60; N=150 0.9866 0.9988 0.4801 0.6667 

50,50,100; N=200 0.9994 0.9997 0.5000 0.5000 

 

Interpretation: The power of Levene test is similar to Bartlett test. When the sample sizes increase, the powers 

approach one for both equal and unequal cases.  Cochran test performs better when the sample size is unequal. 

 

Summary and Conclusion 
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The purpose of this research was to perform a quantitative assessment of the statistical power of four homogeneity 

of variance tests namely: Bartlett, Levene, Cochran and Hartley Fmax tests by varying different sample sizes. The 

results obtained in this study showed that Levene test have the highest power. However, Bartlett and Levene tests 

have similar power (above 0.8), while Cochran’s testperforms poorly (power around 0.3) when the sample sizes are 

equal. The study showed that equal sample sizes had no effect on the powers of Cochran and Hartley’s Fmax tests. 

Conclusively, Levene and Bartlett tests appear to be the superior over Cochran and Hartley Fmax tests. Marked 
improvement in power occurs at larger sample sizes. 
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 APPENDIX A 

THE CODES FOR LOADING AND TRANSFORMATION OF THE REAL DATA INTO R 

SOFTWARE 

data4test <- read_excel("C:/Users/user/Documents/STAT.TEST/Data4test.xlsx",col_names =TRUE,sheet = 2) 

attach(data4test)## to load the data into R. 

str(Data4test)##to check the structure of the data. 

data4test$TREATMENT <-as.factor(data4test$TREATMENT)## converting the treatment to factors. 

table(TREATMENT)##to show the different levels of the treatments. 

R codes for graphical representation of the real data. 

plot(RESPONSE~TREATMENT,data = Data4test,col = rainbow(3))##boxplots of  the treatments. 

plotmeans(response ~ trt, xlab="Treatment", ylab="Response", 

main="Mean Plot\nwith 95% CI") 

qqPlot(fit, labels=row.names(TREATMENT), id.method="identify", 
simulate=TRUE, main="Q-Q Plot") 

 h <- hist(Data4test$RESPONSE,breaks=12,col="red",xlab="RESPONSE",main="Colored histogram with 12 

bins")## Checking the distribution of the data using histogram plot. 

d <- density(Data4test$RESPONSE)##visualising the distibution of the data using density and polygon. 

plot(d,main = "kernel Density of RESPONSE") 

polygon(d,col="red",border = "blue",main="kernel Density of RESPONSE") 

 

APPENDIX B 

CODES FOR HOMOGENEITY OF VARIANCE TESTS 

Bartlett test of homogeneity: 

bartlett.test(RESPONSE~TREATMENT,data=Data4test)## testing homogeneity of variances using bartlett test. 

Levene test of homogeneity: 

library(car) ## package required for the test 

leveneTest(Data4test$RESPONSE,Data4test$TREATMENT) ## levene test for homogeneity of variance. 

Cochran test of homogeneity: 

library(GAD) ##package required for the test. 

C.test(lm(data = Data4test,RESPONSE~TREATMENT))## cochran's test of homogeneity of variance. 

Hartley’s test of homogeneity 

library(SuppDists) ## package required for the test. 

qmaxFratio(p = 0.05,df = 9,k = 10,lower.tail = FALSE)## Hartley's fmax test using the package "SuppDist" 

R codes for the different tests using simulated data. 

set.seed(1000) 

sims = 1000 
pvals<-matrix(NA,sims)          

## simulate data under the null hypothesis. 

for(var in 1:1000){ 

  i=1 

output<- matrix(ncol=12,nrow=10) 

while(i <= 1000){ 

output[,i] <- rnorm(10,mean=0,sd=1) 

  i=i+1 

} 

## Fit the models 

data=(data.frame(output)) 
test<- stack(data) 

## Bartlett test of homogeneity 

f <- bartlett.test(values~ind,data=test) 

f 
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##Levene test of homogeneity 

library(car) 

g <- leveneTest(values~ind,data=test) 

g 

## Hartley's Fmax test 

library(SuppDists) 
h <- qmaxFratio(values~ind,p = 0.05,df = 9,k = 10,lower.tail = FALSE) 

h 

## Cochran's test of homogeneity 

library(GAD) 

m <- C.test(lm(values~ind,data=test)) 

m 

  APPENDIX C 

CODES FOR POWER SIMULATION OF HOMOGENEITY OF VARIANCE TESTS. 

R code for power simulation of Bartlett test. 

## simulation for equal and unequal sample sizes. 

asim<-1000  #simulate with 1000 replications. 

alpha<- 0.05 
pv<-rep(NA,asim) 

for(i in 1:asim) 

{ 

set.seed(i) 

  n1<-50 

  n2<-50 

  n3<-100 

mu<-0 

  sd1<-sqrt(25) 

  sd2<-sqrt(50) 

  sd3<-sqrt(100) 
  g1<-rnorm(n1,mu,sd1) 

  g2<-rnorm(n2,mu,sd2) 

  g3<-rnorm(n3,mu,sd3) 

  x=c(g1,g2,g3) 

  group=c(rep(1,n1),rep(2,n2),rep(3,n3)) 

  N=200 

  k=3 

  v1=var(g1) 

  v2=var(g2) 

  v3=var(g3) 

  #pooled variance 

  A=((n1-1)*v1+(n2-1)*v2+(n3-1)*v3)/(N-k) 
  #calculate B 

  B=((N-k)*(log(A)))-((n1-1)*log(v1)+(n2-1)*log(v2)+(n3-1)*log(v3)) 

  #calculate C 

  C=1+(1/(3*(k-1))*(((1/(n1-1))+(1/(n2-1))+(1/(n3-1)))-(1/(N-k)))) 

  #calculate layard estimator 

  xbar1=mean(g1) 

  xbar2=mean(g2) 

  xbar3=mean(g3) 

  sum1=sum((g1-xbar1)^4) 

  sum2=sum((g2-xbar2)^4) 

  sum3=sum((g3-xbar3)^4) 
  sum4=sum((g1-xbar1)^2) 

  sum5=sum((g2-xbar2)^2) 

  sum6=sum((g3-xbar3)^2) 

  y= (N*(sum1+sum2+sum3))/((sum4+sum5+sum6)^2) 
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  #calculate bartlett modified statistic 

  bar2=B/(C*(1/2)*(y-1)) 

  bar2 

pv[i]<-pchisq(bar2,2,lower=FALSE) 

}  

power<- mean(pv<0.05) 
power 

 

R code for power simulation of Levenetest 

library(car) 

## mean version of Levene 

asim<- 1000 #simulate with 1000 replications. 

pval<- rep(NA,asim) 

alpha<- 0.05 

power<- rep(NA,length(t)) #allocate a vector to store the calculated power in. 

for(i in 1:asim) 

{ 

set.seed(i)   
t <-3 #number of group 

n1=15#sample size for group1 

n2=20 #sample size for group2 

n3=30 #sample size for group3 

N <- n1+n2+n3 #overall sample size,group1+group2+group3 

#generated data 

g1 <- rnorm(n1,0,1) #n1=15; mean=0;sd=1 

g2 <- rnorm(n2,0,1) #n2=15;mean=0;sd=1 

g3 <- rnorm(n3,0,1) #n3=15;mean=0;sd=1 

xbar1 <- mean(g1) 

xbar2 <- mean(g2) 
xbar3 <- mean(g3) 

z1 <- abs(g1-xbar1) 

z2 <- abs(g2-xbar2) 

z3 <- abs(g3-xbar3) 

zbar1 <- mean(z1) 

zbar2 <- mean(z2) 

zbar3 <- mean(z3) 

zbar<- (sum(z1)+sum(z2)+sum(z3))/(n1+n2+n3) 

numerator1 <- n1*(zbar1-zbar)^2 

numerator2 <- n2*(zbar2-zbar)^2 

numerator3 <- n3*(zbar3-zbar)^2 

numerator<- (numerator1+numerator2+numerator3) 
denominator1 <- sum((z1-zbar1)^2) 

denominator2 <- sum((z2-zbar2)^2) 

denominator3 <- sum((z3-zbar3)^2) 

denominator<-(denominator1+denominator2+denominator3) 

Flevene<- numerator/denominator 

Fvalue<- (1-pf(Flevene,2,(n1+n2+n3-3))) 

pv[i] <- Fvalue 

} 

Power<- mean pv[i] 

power 

R code for power simulation of Cochran test 
library(SuppDists) 

asim<- 1000 

pv<- rep(NA,asim) 

alpha<- 0.5 



International Journal of Mathematics Trends and Technology (IJMTT) – Volume 65 Issue 6 - June 2019 

 

 

ISSN: 2231-5373                              http://www.ijmttjournal.org                              Page 134 

for(i in 1:asim) 

{ 

set.seed(i) 

  t <- 3 

#generated data 

    g1 <- rnorm(n1,0,1)  
    g2 <- rnorm(n2,0,1)  

    g3 <- rnorm(n3,0,1) 

  n1=15 

  n2=15 

  n3=15 

  N <- n1+n2+n3 

  sd1 <- 15 

  sd2 <- 20 

  sd3 <- 30 

sd<- c(sd1,sd2,sd3) 

numerator<- max(sd) 

denominator<- sum(sd1+sd2+sd3) 
} 

Fcochran<- numerator/denominator 

pv[i] <- Fcochran 

power<- pv[i] 

power 

R code for power simulation of HartleyFmax test 

library(SuppDists) 

asim<- 1000 

pv<- rep(NA,asim) 

alpha<- 0.5 

for(i in 1:asim) 
{ 

set.seed(i) 

t <- 3 

#generated data 

 g1 <- rnorm(n1,0,1)  

 g2 <- rnorm(n2,0,1)  

 g3 <- rnorm(n3,0,1) 

n1=15 

n2=15 

n3=15 

N <- n1+n2+n3 

sd1 <- 15 
sd2 <- 20 

sd3 <- 30 

sd<- c(sd1,sd2,sd3) 

numerator<- min(sd) 

denominator<- max(sd) 

} 

Fmax<- numerator/denominator 

pv[i] <- Fmax 

power<- pv[i] 

power 

 


