Geometrical Method of Determination of the Value of $\mathrm{Pi}(\pi)$

Dhananjay Shantaram Janorkar
Author, Researcher and Founder President, Shantaram Janorkar Foundation of Mathematics, Mahan-444405, Tq.Barshitakli, Dist. Akola, (Maharashtra State), INDIA

Abstract

The value of an irrational number pi (π) is determined from the ancient times up to the modern super computer era. It is found to be irrational number. We give here geometrical method of determination of $\operatorname{Pi}(\pi)$ and we determind it as 3.141592653 . This perticualer value is named as "Goba" and the relation between Circumference of Circle and its radius is fixed as Circumference of Circle $=2 \Theta \mathrm{r}_{\mathrm{s}}$.

Keywords

Value of Pi; Value of Goba; Geometrical method; Arc radius; Straight radius; Circle; Circumference of circle.

I. INTRODUCTION

History of pi: pi or π has a very long history. The history of the value of pi with the help of the old generation to the modern super computer as follows, 1). The value of pi given by Vayupuran, Mahabharat, old Babaolian, Egipshian Papayari, Baudhyan sulyabsutra, Baible, Talmud, Chaupai and Bramhaghupt is 3, 2). Baudhyan 3.088, 3). Aryabhatta I 3.1416, 4). Ayapoloniyas 3.141666...., 5). Tyatvarthyardhigam Formula: $\mathrm{C}=\sqrt{10 \mathrm{D}^{2}}$, 6). Jain value: $\sqrt{10}$, 7). Tyolemy $3.141666 \ldots$, 8). Archimedes: $\frac{22}{7}$, 9). Veersen $\mathrm{C}=3 \mathrm{D}+(16 \mathrm{D}+16) / 113,10)$. Golsara $3.14159292 \ldots, 11)$. Aryabhatta II $\frac{22}{7}$ or $3.1416666 \ldots, 12$). Bhashkarachyarya, Yaakub ibn Tarik, Lalya, Alkhvarizami 3.1416, 13). Righter 3.2 , 14). Japanese scholar 3.14159292...., 15). Shrinivas Ramanujan 3.1415926538...., 16). Yogi in 1970 3.20, 17). Rajan Mahadevan in $19843.14159265358979323846 \ldots, 18$). In the last today's super computer has given the value up to billions of places after decimal point but it is incomplete therefore the values of pi (π) is irrational. ([1], [2], [3], [5], [6]).

II. MATHEMATICAL FORMULATION

Alternative Method to Determine of $\mathbf{P i}(\boldsymbol{\pi})$

I determined the value of $\mathrm{Pi}(\pi)$ by using geometrical construction of circle.

A1. The construction of formula:

The construction of formula is made via Dynamic + Static concept or via assertion. The diagram is show:

We define the dynamic value + static value as multiper of the measure of following diagram is divided in to three parts as follows,

Detail of the definitions and values in the diagrams and all various types of methods of construction are given in the reference. ([2], [3], [4], [5], [6], [7], [8], [10], [13], [14]).

Straight Radius: - Straight line segment joint centre of the circle and centre of the firstly constructed circle on the circumference of the original circle is called straight radius. And its value is taken as $\mathbf{2}^{\circ} \boldsymbol{+ 2}^{\circ}=\mathbf{4}^{\circ}$. ([2], [3], [4], [5], [6], [7], [8], [10], [13], [14]).

Measure of straight radius: - Distance between two apex of the measure of straight radius is called "Measure of straight radius" and it is in $\mathbf{4}^{0}$ degree measure. ([2], [3], [4], [5], [6], [7], [8], [10], [13], [14]).

Measure of straight radius $=\mathrm{It}$ is sum of the measure of straight radius in clockwise direction

$$
\begin{array}{lll}
\text { And anticlockwise direction } & \text { Diagram No. } 21^{0} & 1^{0} \\
=\left(2^{0}\right)+\left(2^{0}\right)=4^{0} \text { Measure of straight radius } & 1^{0} & 1^{0}
\end{array}
$$

Arc Radius: - An arular line segment jointing centre of the circle and centre of the firstly constructed circle on the circumference of the original circle is called arc radius. And its value is taken as $3^{\circ}+3^{\circ}=6^{\circ}$. OR The segment of circumference of a circle means An (Arc) arcular line segment joining measure of centre of a circle and measure of centre on the circumference of a circle and the distance between the two measures of center are equal to straight radius, in clockwise and anti clockwise direction and which divide the circumference of the original circle in to six equal parts is called "Arc Radius" of circle.

OR
Length of arc segment of circumference of circle is equal to radius then that segment of circumference of circle is called "Arc radius".

OR
The segment of the circumference of a circle whose length (distance) equal to straight radius its segment of the circumference of a circle is called "Arc Radius". ([2], [3], [4], [5], [6], [7], [8], [10], [13], [14]).

Measure of arc radius:- Distance between two apex of the measure of arc radius is called "Measure of arc radius" and it is in $\mathbf{6}^{\mathbf{0}}$ degree measure. ([2], [3], [4], [5], [6], [7], [8], [10], [13], [14]).

Measure of arc radius $=\mathrm{It}$ is sum of the measure of arc radius in clockwise direction And anticlockwise direction
$=\left(3^{0}\right)+\left(3^{0}\right)=6^{0}$ Measure of arc radius
Diagram No. 3

Circle: - Around the measure of centre of circle, up to the equil distance of radius means 6^{0} measure of centre of circle of construction means up to circumference of circle completely circular and in the one plane of diagram is called circle. And its value is taken as $6^{\circ} \times 6^{\circ}=36^{\circ}$.
A circle is a locus of a point in the plane such that its distance from a fixed point is always constant. Constant distance is called radius and fixed point is called centre.
The circle is a locus of a point such that it distance from fixed point is always constant, constant distance is called radius and fixed point is called centre of the circle. ([2], [3], [4], [5], [6], [7], [8], [10], [13], [14]).

Measure of circle: - Measure of plane is called measure of circle. OR Measure around the centre of circle is called measure of circle. And it is in Measure of $\mathbf{3 6}^{\mathbf{0}}$. ([2], [3], [4], [5], [6], [7], [8], [10], [13], [14]).

Center of circle: - The fixed point at the middle of the circle is called its centre.
The place at the centre of a circle is called the centre of circle.
Measure of centre: - Measure of the fixed point at the middle of the circle is called its measure of centre.

And measure of centre of circle is $\mathbf{1}^{\mathbf{0}}$ one Degree.

Interior all arc radius along with blue circumference of circle $=6+6+12=$ 24 arc radius or outer 24 arc radius of circle of first construction (Part No.1) 6 arc radius has 1 centre of circle hence how many centre of circle of 24 arc radius $24 \div 6=4$ centres of circle these are outside of first red construction.

Diagram No. 4

(Part No.2) Arc radius from green arc radius up to the original centre of circle $=6+12=18$ centre of circle of this radius $=18 \div 6=3$ centre of circles.

Diagram No. 5

(Part No.3) How many measure of Centre of circle of 12 arc radius $=12+6=2$ Centre of circles.

Diagram No. 6

The three parts of the diagram is as above. From this measure of $1 \operatorname{arc}$ radius is 6^{0} therefore measure of three parts is (Part No.1) 24 Arc radius $\mathbf{x} 6^{0}=144^{0}$ (Part No.2) 18 Arc radius $\mathbf{x} 6^{0}=108^{0}$ (Part No.3) 12 Arc radius \mathbf{x} $6^{0}=72^{0}$

What is mean by dynamic value? Multiplication of the measure of above three parts.
Dynamic value $=144 \times 108 \times 72=1119744^{0} \div 36^{0}$ measure of circle $=31104$ Dynamic value of Half
Circumference of circle.
What is mean by static value? Sum of the measure of above three parts.
Static value $=144+108+72=324^{0}$ Static value of Half Circumference of circle
Sum of the values Dynamic + Static $=31104+324^{0}=31428$ this total is the value of Half Circumference of circle.
The total value of Circumference of circle $=31428 \times 12 \div 6=31428 \div 2=62856$ total value
Diameter $=(6+6+12 \div 6=4$ Measure of centre of circle $)$, Diameter $=1+2+1=4$, Diameter $=(1+3$
$+3+3=4$ index of 10$)=10^{4}=10000$ Measure of radius 4 index of 10 , Diameter $10000 \mathbf{x} 2=20000$
Measure of diameter
Goba $=62856 \div 20000=3.1428$ First value of Goba as per Dynamic + Static .
(Second value of Goba $=3.1428-0.0012=3.1416$)
Second value of Goba as per Dynamic + Static
62856 This is the total value of 6 arc radius of original circumference of circle therefore how many value of one arc radius $=62856 \div 6=10476$ From this value 4 measure of centre of circle outside of first construction of circumference of circle shuld be substructed $=10476-4=10472$ This is multipled by 6 arc radius, $10472 \times 6=$ 62832 This is the total second value of Goba as well as Circumference of circle.
Hence the value of goba $=62832 \div 20000=3.1416$ This is the second value of Goba, as per Dynamic + Static of second value of Half Circumference of circle.

A2. To solve this formula what is the relation between arc radius and straight radius? This is important to search this relation, because arc radius and straight radius are in proportional.
How many power or index of 10^{0} for measure of radius?
First, Outside of the original circumference of circle + Measure of centre of circle of second construction is 10^{0} measure of radius is power or index.
10^{0} Measure of radius of power or index $=10^{\frac{24 \text { Arc radius }+30 \text { Arc radius }}{6 \text { Arc radius }}}=10^{9}$
Measure of radius $=10^{9}=10 \times 10 \times 10=1000000000^{0}$

$$
=1000000000^{\circ} \text { One billion measure of radius }([3],[5],[6]) .
$$

The extreme limit of straight radius is one hundred crore or one billion straight radius and it is $\mathbf{3}$ stages.

The three stages follow as:

Straight Radius $=10^{9}=10^{4} \times 10^{3} \times 10^{2}$ Three Stages
$10^{4} \times 10000$ First Stage
$10^{3} \times 1000$ Second Stage
$10^{2} \times 100$ Third Stage
Straight Radius $=10000 \times 1000 \times 100=1000000000$ One Hundred Crore Straight Radius or One Billion Straight Radius.
This is extreme limit of radius. There is no bigger radius then this. The arc radius is in proportion with
 Straight radius. If radius is one hundred crore degrees then what is the measure of are radius? Are radius is bigger than radius because are radius is a curve.

Straight Radius $=r_{s}$, Arc Radius $=r_{a}$, Straight Diameter $=d_{s}$, Arc Diameter $=d_{a}$, Length $=\ell$

A3. Ratio of arc radius to straight radius

$$
\text { Static } \quad \frac{\text { Arc Radius }}{\text { Value of } 3 \text { Arc Radius }}
$$

(From the base is 36° Measure of Circle)

$=\frac{31416000^{\circ}}{10000000^{\circ}}$ Value of three arc radius
$=\frac{31416000^{0} \times\left(\frac{36^{0}+36^{0}+72^{0}}{36^{0}}\right)}{10000000^{0}}$

$=\frac{31416000^{\circ} \times \frac{144^{0}}{36^{0}}}{10000000^{0}}=\frac{31416000^{\circ} \times 4 \text { Circle }}{10000000^{0}}$
$=\frac{125664000^{\circ}}{10000000^{\circ}}$ Value of 12 arc radius
$=\frac{125664000^{0}-\left[144^{0}+108^{0}+72^{0}+12^{0}\left(6^{0}+6^{0}\right)\right]}{10000000^{0}}$
$=\frac{125664000^{\circ}-336^{0}}{10000000^{\circ}}$
$=\frac{125663664^{0}}{10000000^{0}}$ Value of 12 arc radius
Diagram No. 14
$=\frac{125663664^{0}+\left(36^{0}+6^{0}\right)}{10000000^{0}}$
$=\frac{125663664^{0}+42^{0}}{10000000^{0}}=\frac{125663706^{0}}{10000000^{0}}$

Diagram No. 15

$=\frac{125663706^{0} \div 12}{10000000^{0}}$

Diagram No. 16

Value of 12 arc radius. Therefore, how many value of (1) one arc radius?
$=\frac{10471975.5^{0}}{10000000^{0}}$ Here the first stage of straight radius 10^{4} and the second stage 10^{3} of straight radius are complete.
$=\frac{10471975.5^{0} \times 100^{0}}{10000000^{\circ} \times 100^{0}}$ Here the third stage of radius 10^{2} is complete. Radius is complete.
$=\frac{1047197550^{0}}{1000000000^{0}}$
$=\frac{1047197550^{0}+1^{0}}{1000000000^{0}}$

When the original arc radius is created then it is divided in to equal part from the centre point of the arc radius. That centre point means 1^{0}.
Diagram No. 17
$=\frac{1047197551^{\circ}}{10000000000^{\circ}}$ The value of one arc radius and a straight radius is complete.

A4. Formula of Arc Radius:

According to construction No. 1:-

Method No. 1
Arc Radius $=\left[72^{\circ} \times 144^{\circ} \times 2^{\circ}+216^{\circ}\right] \times 6^{\circ} \div 2^{\circ}\right] \div 6^{\circ}\right] \times 36^{\circ}\right]-144^{\circ}\right] \div 6^{\circ}\right] \times 1000^{\circ}\right] \div 2^{\circ}\right]-72^{\circ}\right]\right.\right.\right.\right.\right.\right.\right.\right.\right.\right.\right.\right.$ $\left.\left.\left.\left.\left.\left.\left.\left.\left.\left.\times 2^{\circ}\right] \div 4^{0}\right]-6^{\circ}\right] \times 4^{\circ}\right] \times 2^{\circ}\right]+42^{\circ}\right] \div 2^{\circ}\right] \div 6^{0}\right] \times 100^{\circ}\right]+1^{\circ}\right]=1047197551^{\circ}$

Method No. 2

Arc Radius $=\left[\left[\left[\left[\left[\left[\left[\left[\left[\left[72^{\circ} \times 144^{\circ} \times 2^{\circ}+216^{\circ}\right] \div 2^{\circ} \times 36^{\circ}\right]-144^{\circ}\right] \div 6^{\circ} \times 1000^{\circ} \div 2^{\circ}\right]-72^{\circ}\right]-12^{\circ}\right] \times 4^{\circ}\right]+42^{\circ}\right] \div\right.\right.$ $\left.\left.12^{\circ} \times 100^{\circ}\right]+1^{\circ}\right]=1047197551^{\circ}$

As per construction No. 2:-

Method No. 3 (A)

Arc Radius $=\left[\left[\left[\left[\left[\left[\left[\left[\left[\left[144^{\circ} \times 108^{\circ} \times 72^{\circ}\right] \div 36^{\circ}\right]+324^{\circ}\right] \times 9^{\circ}\right]-108^{\circ}\right] \div 9^{\circ} \times 1000^{\circ} \times 4^{\circ}\right]-336^{\circ}\right]+42^{\circ}\right] \div 12^{\circ} \times\right.\right.$

$$
\left.\left.100^{\circ}\right]+1^{\circ}\right]=1047197551^{\circ}
$$

Method No. 3 (B)

$$
\begin{aligned}
\text { Arc Radius }= & {\left[\left[\left[\left[\left[\left[\left[\left[\left[\left[144^{\circ} \times 108^{\circ} \times 72^{\circ}\right] \div 36^{\circ}\right]+324^{\circ}\right] \times 9^{\circ}\right]-108^{\circ}\right] \div 9^{\circ} \times 1000^{\circ} \times 4^{\circ}\right]-336^{\circ}\right]+42^{\circ}\right] \div 2^{\circ} \div\right.\right.} \\
& \left.\left.6^{\circ} \times 100^{\circ}\right]+1^{\circ}\right]=1047197551^{\circ}
\end{aligned}
$$

Method No. 4

Arc Radius $=\left[\left[\left[\left[\left[\left[\left[72^{\circ} \times 144^{\circ}+108^{\circ}\right]-4^{\circ}\right] \times 1000^{\circ} \times 12^{\circ}\right]-336^{\circ}\right]+42^{\circ}\right] \div 12^{\circ} \times 100^{\circ}\right]+1^{\circ}\right]=1047197551^{\circ}$
As per construction No. 3:-

Method No. 5

$$
\begin{aligned}
\text { Arc Radius } & =\left[\left[\left[\left[\left[\left[\left[\left[\left[\left[\left[216^{\circ} \times 144^{\circ}\right]+324^{\circ}\right] \times 9^{\circ}\right]-108^{\circ}\right] \div 9^{\circ}\right] \times 1000^{\circ} \times 4^{\circ}\right]-336^{\circ}\right]+42^{\circ}\right] \div 12^{\circ} \times 100^{\circ}\right]+1^{\circ}\right]\right. \\
& =1047197551^{\circ}
\end{aligned}
$$

Method No. 6

Arc Radius $=\left[\left[\left[\left[\left[\left[\left[\left[\left[72^{\circ} \times 72^{\circ} \times 6^{\circ}\right]+324^{\circ}\right] \times 9^{\circ}\right]-108^{\circ}\right] \div 9^{\circ} \times 1000^{\circ} \times 4^{\circ}\right]-336^{\circ}\right]+42^{\circ}\right] \div 12^{\circ} \times 100^{\circ}\right]+1^{\circ}\right]$ $=1047197551^{\circ}$

A5. $\Theta=$ The formula of goba is self-evident and impotent. As per construction number one (1):-

$$
[[[[[[[[[[[[[[[[[[[[[72 \times 144 \times 2+216] \times 6 \div 2] \div 6] \times 36]-144] \div 6] \times 1000] \div 2]-72] \times 2] \div 4]-
$$ $\frac{6] \times 4] \times 2]+42] \div 2] \div 6] \times 100]+1] \times 6]=6283185306 \text { circumference of circle }}{2(10000 \times 1000 \times 100)=2\left(10^{4} \times 10^{3} \times 10^{2}\right)=200000000 \text { Diameter }}$ $\begin{aligned} \frac{1000}{2(10000 \times 1000 \times 100)=2\left(10^{4} \times 10^{5} \times 10^{2}\right)}= & =2000000000 \text { Diameter } \\ & =3.141592653 \Theta=\text { The value of Goba }\end{aligned}$

Signs and digits in this formula are as according to the following. The value of one arc radius:-
Dynamic value $\mathbf{7 2}^{\mathbf{0}}$ (Initial, Interior degree of circle, 12 Arc Radius x 6^{0} Measure of Arc radius $=72^{0}$) $\mathbf{1 4 4} \mathbf{1 4}^{\mathbf{0}}$ (Last or Terminal, Outside degree of circle, 24 Arc Radius x 6^{0} Measure of Arc radius $\left.=144^{0}\right) \mathbf{x} \mathbf{2}^{\mathbf{0}}(12 \div 6=2$ Multipal $)+\mathbf{2 1 6}^{\mathbf{0}}\left(72^{0}\right.$ Initial $+144^{0}$ Last or Terminal $=216^{0}, 6$ multipal circumference of circle of Static value $)$ $\mathbf{x} \mathbf{6}^{\mathbf{0}} \div \mathbf{2}^{\mathbf{0}}(12 \div 6=2$ Multipal $)=62856$ (This is the first value of Circumference of circle, This is the first value of 6 arc radius means Circumference of circle therefore how many value of one arc radius) $\div \mathbf{6}^{\mathbf{0}}=10476 \mathbf{x ~ 3 6}{ }^{\mathbf{0}}$ (For 6 circle of 36 arc radius 4^{0} should be subtracted from one arc radius therefore how many for 36 arc radius $=36 \times 4^{0}=144^{0}$ Should be subtracted $)=377136-\mathbf{1 4 4}^{0}\left(36 \times 4^{0}=144^{0}\right)=376992$ (This is the value of 6 Circumference of circle or the value of 36 arc radius) $\div \mathbf{6}^{0}$ (The value of 1 circle) $=62832$ (This is the second value of Circumference of circle, This is the value of 6 arc radius therefore how many value of one arc radius $=$ $62832 \div 6=10472$ This is the value of one arc radius) $\mathbf{x ~} \mathbf{1 0 0 0}^{\mathbf{0}}=62832000$ (This is the third value of Circumference of circle) $\div \mathbf{2}^{\mathbf{0}}(12 \div 6=2$ Multipal $)=31416000-\mathbf{7 2}^{\mathbf{0}}$ (Initial, Interior degree of circle] 12 Arc Radius $\times 6^{0}$ Measure of Arc radius $=72^{0}$) $=31415928 \times \mathbf{2 ~}^{0}=62831856$ (This is the fourth value of Circumference of circle) $\div \mathbf{4}^{\mathbf{0}}(24 \div 6=4)=15707964-\mathbf{6}^{0}$ (Centre of circle should be subtracted 6 time $)=$ $15707958 \times \mathbf{4}^{\mathbf{0}}\left(1 / 4\right.$ Multipal Circumference of circle) $=62831832 \times \mathbf{2}^{\mathbf{0}}(12 \div 6=2$ Multipal $)=125663664$ (This is the fifth value of Circumference of circle) $+\mathbf{4 2}^{\mathbf{0}}\left(36^{0}+6^{0}=42^{0}\right)=125663706 \div \mathbf{2}^{\mathbf{0}}=62831853$ (This is the sixth value of Circumference of circle, This is the value of 6 arc radius therefore how many value of one arc radius $) \div \mathbf{6}^{\mathbf{0}}$ Arc Radius $=10471975.5 \times \mathbf{1 0 0}^{\mathbf{0}}\left(10^{12 / 6}=10^{2}=100\right)=1047197550+\mathbf{1}^{\mathbf{0}}\left(1^{0}\right.$ of original center of circle) $=1047197551$ (This is the value of one arc radius therefore how many value of six arc radius) $=$ $1047197551^{0} \times 6$ Arc Radius $=6283185306^{\circ}$ (This is the last value of Circumference of circle, This is the value of six arc radius)
Hence the goba $=$ Goba $=\Theta=6283185306^{0} \div 2000000000^{\circ}=3.141592653^{0}$ formula is completed.
(As above formula of goba is created) As per sign and digit in the formula of goba is as above.

$$
\begin{aligned}
\text { Radius }= & \odot^{3 \times 3}=\cdot O^{9}=\left[10^{1+1+1+1} \times 10^{1+1+1} \times 10^{1+1}\right]=10^{9}=10^{4} \times 10^{3} \times 10^{2}=1000000000^{0} \\
& \text { One billion or } 100 \text { crores radius is finite, radius is not infinite. }
\end{aligned}
$$

$$
\left(18^{0}+18^{0}+18^{0}+3^{0}+6^{0}+9^{0}\right) \times\left(18^{0}+18^{0}+18^{0}+3^{0}+6^{0}+9^{0}\right)
$$

$$
3^{0} \times 18^{0}+3^{0} \times 18^{0}=54^{0}+54^{0} \quad+\left(18^{0}+18^{0}+18^{0}+3^{0}+6^{0}+9^{0}\right) \times\left(18^{0}+18^{0}+18^{0}+3^{0}+6^{0}+9^{0}\right)
$$

$$
=108^{0}
$$

$$
=\left(72^{0} \times 72^{0}\right)+\left(72^{0} \times 72^{0}\right)=72^{0} \times 72^{0}+72^{0} \times 72^{0}
$$

$$
=5184^{0}+5184^{0}=10368^{0}
$$

$$
108^{0}+10368^{0}
$$

$$
\text { Arc Radius }=10476^{\circ}
$$

$$
10476^{0}-1^{0}-1^{0}-1^{0}-1^{0}
$$

$$
=10472^{0} \text { Arc Radius } 10^{4} \text { up to the radius }
$$

$10472^{0} \times 10^{1+1+1}$ (\times The next 10^{3} radius start from here)
$=10472^{0} \times 10^{3}=10472^{0} \times 10^{0} \times 10^{0} \times 10^{0}$
$=10472000^{\circ}$ Arc Radius
$10472000^{\circ} \times 12$ Arc Radius $=125664000^{0}$ Value of 12 Arc Radius
$125664000^{0}-\left[(\text { Half Circumference of circle })^{2}=\left(18^{0} \times 18^{0}\right)+\left(12^{0}\right)\right] 12$ times the centre of circle must be subtracted from the circumference of circle
$125664000^{0}-\left(324^{0}+12^{0}\right)=125664000^{0}-336^{0}=125663664^{0}$ Add in it measure of circle $36^{0}+6^{0}$ degree arc radius
$=125663664^{0}+42^{0}=125663706^{0}$ Value of 12 Arc Radius
The value of one Arc Radius
$125663706^{0} \div 12$ Arc Radius $=10471975.5^{0}$ Arc Radius
$10471975.5^{0} \times 10^{1+1}$ (x The radius is equal to 10^{2})
$=10471975.5^{0} \times 10^{2}$
$=10471975.5^{0} \times 100^{0}$
$=1047197550^{\circ}$ Arc Radius
$1047197550^{\circ}+1^{0}$ (Centre point of original arc radius of circle)
$=1047197551^{\circ}$ Arc radius is completely limited
Ratio
Straight Radius 1000000000 : 1047197551 Arc radius
$\frac{\text { Arc Radius }}{\text { Straight Radius }}=\frac{1047197551}{1000000000}=1.047197551$
Straight Radius $1:$

Arc radius $=1.047197551 \times$ Straight Radius and Straight radius $=1.047197551 \div$ Arc radius ([3],[4],[5],[12]).
Circumference of circle $=6$ Arc Radius $=6 \times 1.047197551=6.283185306$ Circumference of circle
Diameter $=2$ Radius $=1 \times 2=2$ Radius
Formula of Goba $=\Theta=\frac{\text { Circumference of circle }}{\text { Diameter }}=\frac{\text { Circumference of circle }}{\text { Straight Diameter }}=\frac{6 \text { Arc Radius }}{2 \text { Straight Radius }}=$
$=\frac{6 \times 1.047197551^{0}}{2^{0}}=\frac{6.283185306^{0}}{2^{0}}=3.141592653$ Constant of Goba $([1],[2],[3],[4],[5],[6],[14])$.
Arc radius is proportional to straight radius. Therefore, circumference of circle is proportional to diameter.

III. COMPARISON OF 3.141592653 PI MEANS GOBA VALUE WITH 22/7

22/7 Pi ($\boldsymbol{\pi}$)
$22 / 7=3.142857142857143$
This $\operatorname{Pi}(\pi)$ value is incomplete.

3.141592653 Goba (Θ)

6×1.047197551 Value of one arc radius $=6.283185306$ Circumference of circle
$6.283185306 \div 2$ Straight radius $=3.141592653$
This $\operatorname{Pi}(\pi)$ means Goba (Θ) value is complete.
$22 / 7$ is a maximum approximate value, which is 3.142857142857143 our present determination of the value of pi is 3.141592653 and this is appropriate value of pi we call designate this value as Goba in the honours of Godavari and Bapurao parent of researcher and my father Late Mr. Shantaram Bapurao Janorkar with this Goba the formula of circumference of circle became circumference of circle $=2 \Theta r_{s}$ therefore Goba $=$ circumference of circle / diameter.
For, circumference of circle $=6 \lambda($ Lambda $)$ therefore $\lambda($ Lambda $)=\Theta_{\mathrm{s}} / 3([17])$.
The symbol of Goba:
Goba:

IV. CONCLUSIONS

Mathematics (Geometrical) method it is a good alternative method for determination of $\mathrm{Pi}(\pi) .3 .141592653$ This particular value we designate as Goba (Θ). It is in the range of value of pi (π).

v. Acknowledgment

Moreover, to establish this research scientifically, renowned mathematician, Honourable Prof. Dr.T.M. Karade, (D.Sc., D.Sc.), Hon. Prof. Dr. M. T. Teli, Hon. Prof. Dr.B.S. Rajput, Prof. Dr. Shriram B. Patil, Prof. Dr. Kamel

Lahmar (Algeria), AFRICA, Prof. Dr. Kishor S. Adhav, (D.Sc.), Prof. Dr.J.N. Salunke, Prof. Dr. S. D. Katore, Prof. Dr. M. B. Dhakne and Prof. Dr. D. T. Solanke, gave me guidance and still they are doing so from time to time for which I am grateful to them.

REFERENCES

[1] Shantaram Bapurao Janorkar,"Goba Cha Swayamshidha Sidhanta" (In Marathi language) -15 September, 1998, Om Publication, Mahan-444405, India
[2] Shantaram Bapurao Janorkar, "Goba Cha Swayamshidha Sidhanta Wa Sutracha Aadharacha Spastikaran" (In Marathi language) - 4 April 2004, Om Publication, Mahan-444405, India
[3] Dhananjay Shantaram Janorkar, Web-Site: www.sbjanorkar.com - 10 December, 2014, Om Publication, Mahan - 444405, India
[4] Dhananjay Shantaram Janorkar, Internet data.
[5] Dhananjay Shantaram Janorkar, researchgate.net Link: https://www.researchgate.net/profile/Dhananjay_Janorkar3/publications
[6] Shantaram Bapurao Janorkar, Dhananjay Shantaram Janorkar, The self - proving theorem of Goba and its explanation on the basis of a formula, International Journal of Shantaram Janorkar Foundation of Mathematics, Science \& Spiritual, Volume - 1, Issue - 1, 15 September, 2015, Page No. 81-156. ISSN (P):2454-5236, ISSN (O):2454-633X, India (Also in Marathi language, Page No. 157-226).
[7] Shantaram Bapurao Janorkar, Dhananjay Shantaram Janorkar, Point - The theorem of existence of point and its aspect, International Journal of Shantaram Janorkar Foundation of Mathematics, Science \& Spiritual, Volume - 1, Issue - 1, 15 September, 2015, Page No. 227-245. ISSN (P):2454-5236, ISSN (O):2454-633X, India (Also in Marathi language, Page No. 246-264).
[8] Shantaram Bapurao Janorkar, Dhananjay Shantaram Janorkar, E $=\mathrm{Mm}^{2}$ which means Energy $=$ Mass x (Speed of Mass) ${ }^{2}$, Speed of Light $=22,32,00,00,000$ Mile/per Second (Twenty two Hundred and Thirty two Cores Mile/per Second), International Journal of Shantaram Janorkar Foundation of Mathematics, Science \& Spiritual, Volume - 1, Issue-1, 15 September, 2015, Page No. 265-290. ISSN (P): 2454- 5236, ISSN (O):2454-633X, India (Also in Marathi language, Page No. 291-316).
[9] Dhananjay Shantaram Janorkar, The Theorem of the Formula of Arc Radius, International Journal of Shantaram Janorkar Foundation of Mathematics, Science \& Spiritual, Volume - 2, Issue - 2, 15 September, 2016, Page No. 1-18. ISO 9001:2008, ISSN (P):2454-5236, ISSN (O):2454-633X, India (Also in Marathi language, Page No. 19-36).
[10] Dhananjay Shantaram Janorkar, The Theorem of the Evolution or Creation of the Universe i.e. the Cosmos and the Speed, International Journal of Shantaram Janorkar Foundation of Mathematics, Science \& Spiritual, Volume- 2, Issue - 2,15 September, 2016, Page No. 37-78. ISSN (P):2454-5236, ISSN (O):2454-633X, RNI No. MAHBIL/2015/67021, India (Also in Marathi language, Page No.79-116).
[11] Dhananjay Shantaram Janorkar, The Theorem of Various Formulae of Equations in Mathematics (Geometry), International Journal of Shantaram Janorkar Foundation of Mathematics, Science \& Spiritual, Volume-2, Issue - 2, 15 September, 2016, Page No. 467-482. ISO 9001:2008, ISSN (P):2454-5236, ISSN (O):2454-633X, India (Also in Marathi language, Page No. 483-500).
[12] Dhananjay Shantaram Janorkar, The Theorems of Finding Arc Radius from Straight Radius and Finding Straight Radius from Arc Radius, International Journal of Shantaram Janorkar Foundation of Mathematics, Science \& Spiritual, Volume-2, Issue-2, 15 September, 2016, Page No. 531-536. ISO 9001:2008, ISSN (P):2454-5236, ISSN (O):2454-633X, India (Also in Marathi language, Page No. 537-542).
[13] Dhananjay Shantaram Janorkar, The Theorem of Proof of the Circumference of a Circle is in 360°, International Journal of Shantaram Janorkar Foundation of Mathematics, Science \& Spiritual, Volume - 3, Issue - 3, 15 September, 2017, Page No. 1-16. ISSN (P):2454-5236, ISSN (O):2454-633X, RNI No. MAHBIL/2015/67021, India (Also in Marathi language, Page No. 17-32).
[14] Dhananjay Shantaram Janorkar, The Theorem of the Evolution or Creation of the whole Universe i.e. the Cosmos by the Invisible Degree and the End in the Invisible Degree, International Journal of Shantaram Janorkar Foundation of Mathematics, Science \& Spiritual, Volume - 3, Issue - 3, 15 September, 2017, Page No. 623-706. ISSN (P):2454-5236, ISSN (O):2454-633X, RNI No. MAHBIL/2015/67021, India (Also in Marathi language, Page No. 707-786).
[15] Dhananjay Shantaram Janorkar, "Arc Radius of Circle in Geometry" Edition-1, 28 May, 2018, ISBN: 978-81-930845-3-3, Om Publication, Mahan - 444405, India
[16] Dhananjay Shantaram Janorkar, "Bhumiti Madhil Vartulachi Kansa Trija" (In marathi), Edition - 1, 28 May, 2018, ISBN: 978-81-930845-4-0, Om Publication, Mahan - 444405, India
[17] Dhananjay Shantaram Janorkar, True Value of $\operatorname{Pi}(\pi)$ Now is 3.141592653 we Call This as Goba Constant we Syn(folic it as This Goba, This Letter, International Journal of Mathematics Trends and Technology (IJMTT) - Volume 59 Number 1- July 2018, Page No. 27-34. ISSN: 2231-5373.

Author \& Researcher Dhananjay Shantaram Janorkar
E-Mail: sjfomindia1@gmail.com
Mobile No.: +91-9021607450, 9226442256,
Website: www.sbjanorkar.com

