Alpha Level Subgroups of Alpha-Fuzzy Subgroup

T. Rajeswari Department of Mathematics, Idhaya College For Women, Kumbakonam (India)

Abstract

The concept of α -level subgroup of an α -fuzzy subgroup is defined and its characterizations are obtained. It is also proved a necessary and sufficient condition for two α -level subgroups to be equal.

Keywords: fuzzy subgroup, α -fuzzy set, α -fuzzy subgroup, level subgroups.

Mathematical Subject Classification: 03E72, 08A72, 20N25.

I. Introduction and Preliminaries

In 1965, Zadeh introduced the notion of fuzzy set[1]. In 1971, A. Rosenfeld defined fuzzy groups[2] and many group theory results have been extended to fuzzy groups. P.Sivaramakrishna Das introduced the concept of level subgroups of a fuzzy group[3]. P.K.Sharma introduced the notion of α -fuzzy set, α -fuzzy subgroup, α -fuzzy coset and analysed their characterizations in[5]. In this paper, α - level subgroups of an α -fuzzy

subgroup is defined and its characterizations are obtained. It is also discussed about α -fuzzy subgroups relative to a finite cyclic group.

Throughout this paper, α - denotes a member of [0,1].

Definition 1.1 Let X be a non empty set. A fuzzy subset A of X is a function

$$A: X \to [0,1].$$

Definition 1.2 A fuzzy subset A of a group G is called a **fuzzy subgroup** of G if

- (i) $A(xy) \ge \min\{A(x), A(y)\}$
- (ii) $A(x^{-1}) = A(x)$, for all $x, y \in G$.

Definition 1.3 Let A be a fuzzy subset of a set S. For $t \in [0,1]$, the set $A_t = \{x \in S/A(x) \ge t\}$ is called a **level subset** of A.

Definition 1.4 Let *G* be a group and *A* be a fuzzy subgroup of *G*. The subgroups A_t , $t \in [0,1]$ and $t \leq A(e)$, are called **level subgroups** of *A*.

Definition 1.6 Let *A* be a fuzzy subset of a group *G*. Let $\alpha \in [0,1]$. Then an α -fuzzy subset of *G*(with respect to a fuzzy set *A*), denoted by A^{α} , is defined as $A^{\alpha}(x) = min\{A(x), \alpha\}$, for all $x \in G$.

Definition 1.7 A fuzzy subset A of a group G is called a α -fuzzy subgroup of G if

(i)
$$A^{\alpha}(xy) = min\{A^{\alpha}(x), A^{\alpha}(y)\}$$

(ii) $A^{\alpha}(x^{-1}) = A^{\alpha}(x)$, for all $x, y \in G$.

Theorem 1.8 If $A: G \rightarrow [0,1]$ is a α -fuzzy group of a group G, then

(i) $A^{\alpha}(x) \leq A^{\alpha}(e)$, where *e* is the identity element of *G*.

(ii)
$$A^{\alpha}(xy^{-1}) = A^{\alpha}(e) \Longrightarrow A^{\alpha}(x) = A^{\alpha}(y)$$
, for all $x, y \in G$.

Theorem 1.9 $A: G \to [0,1]$ is a fuzzy group of a group G iff $A^{\alpha}(xy^{-1}) \ge \min\{A^{\alpha}(x), A^{\alpha}(y)\}$, for all $x, y \in G$.

II. α - LEVEL SUBGROUPS OF α -FUZZY SUBGROUP

In this section, the concept of α - level subgroup of an α -fuzzy subgroup is defined and its properties are determined. The relation between α -fuzzy subgroups and their α -level subgroups is obtained.

Definition 2.1. Let *G* be a group. Let $A : G \to [0,1]$ be a fuzzy subset of *G*. For $t \in [0,1]$, an α -level subset of the fuzzy subset *A*, denoted by A_t^{α} , is defined as $A_t^{\alpha} = \left\{ x \in G \middle| A^{\alpha}(x) \ge t \right\}$.

Example 2.2. Let $G = \{e, a, b, ab\}$ be a group. Let $A : G \rightarrow [0,1]$ be defined as

$$A(x) = \begin{cases} 0.6, \text{ if } x = e \\ 0.8, \text{ if } x = a, b \text{ Let } \alpha = 0.7 \text{ and } t = 0.65. \text{ Then } A_t^{\alpha} = \{a, b, ab\} \text{ is an } \alpha \text{-level subset of } A. \\ 0.7, \text{ if } x = ab \end{cases}$$

Theorem 2.3 Let *G* be a group. Let $t \in [0,1]$ and let $t \le A_t^{\alpha}(e)$. Let $A:G \to [0,1]$ be an α -fuzzy subgroup of a group G. Then the α -level subset A_t^{α} is a subgroup of *G*, where *e* is the identity of G.

Proof:

Let *G* be a group. Let $A : G \rightarrow [0,1]$ be an α -fuzzy subgroup. Let $t \in [0,1]$ and

 $t \leq A_t^{\alpha}(e) \cdot A_t^{\alpha} = \left\{ x \in G \middle| A^{\alpha}(x) \geq t \right\}$ is non empty subset of G. If $x, y \in A_t^{\alpha}$, then $\min\{A^{\alpha}(x), A^{\alpha}(y)\} \geq t$. Since A^{α} is a fuzzy subgroup, $A^{\alpha}(xy) \geq \min\{A^{\alpha}(x), A^{\alpha}(y)\} \geq t$ which implies $xy \in A_t^{\alpha}$. Also $A^{\alpha}(x^{-1}) = A^{\alpha}(x)$. Since $x \in A_t^{\alpha}$, $A^{\alpha}(x) \geq t$ which implies that $A^{\alpha}(x^{-1}) \geq t$. Therefore $x^{-1} \in A_t^{\alpha}$. Thus A_t^{α} is a subgroup of G.

Theorem 2.4: Let *G* be a group. Let *A*: $G \rightarrow [0,1]$ be a fuzzy subset of *G* such that A_t^{α} is a subgroup of *G*, for all $t \in [0,1], t \leq A^{\alpha}(e)$. Then *A* is an α - fuzzy subgroup of *G*. **Proof:** Let $x, y \in G$ and let $A^{\alpha}(x) = t_{l}$ and $A^{\alpha}(y) = t_{2}$, where $t_{l}, t_{2} \in [0,1]$. Therefore $x \in A_{t_{1}}^{\alpha}$ and $y \in A_{t_{2}}^{\alpha}$. Suppose that $t_{l} < t$. Then $A_{t_{2}}^{\alpha} \subset A_{t_{1}}^{\alpha}$ which implies that $y \in A_{t_{1}}^{\alpha}$. Since $x, y \in A_{t_{1}}^{\alpha}$ and $A_{t_{1}}^{\alpha}$ is a subgroup of G, $xy \in A_{t_{1}}^{\alpha}$. Therefore $A^{\alpha}(xy) \ge t = \min\{A^{\alpha}(x), A^{\alpha}(y)\}$. Now let $x \in G$ and $A^{\alpha}(x) = t$. Therefore $a \in A_{t}^{\alpha}$ which implies that $a^{-1} \in A_{t}^{\alpha}$, since A_{t}^{α} is a subgroup of G. Then $A^{\alpha}(x^{-1}) \ge t = A^{\alpha}(x)$ Thus A^{α} is a fuzzy group and hence A is an α -fuzzy subgroup of G.

Definition 2.5 Let *G* be a group. Let *A* be an α -fuzzy subgroup of *G*. If $t \in [0,1]$ and $t \leq A^{\alpha}(e)$, then the subgroups A_t^{α} are said to be α -level subgroups of *A*.

Example 2.6

Let $G = \{e, a, b, c\}$ be the klein four group. Let a fuzzy subset A of G be defined as $A(x) = \begin{cases} 1, & \text{if } x = e, a \\ 3/4, & \text{if } x = b, c \end{cases} \text{ If } \alpha = 0.85, \text{ then } A \text{ is an } \alpha \text{-fuzzy subgroup of } G. \text{ If } t = 0.8, \text{ then} \\ 0, & \text{otherwise} \end{cases}$

 $A_t^{\alpha} = \{e, a\}$ which is a subgroup of *G* and is an α -level subgroup of *A*.

Remark 2.7 If G is a group which is also finite, then the number of subgroups of G is finite whereas the number of α -level subgroups of an α -fuzzy subgroup A seems to be infinite. But since every α -level subgroup is a subgroup of G, not all these α - level subgroups will be distinct. This is characterized in the following theorem.

Theorem 2.8 Let G be a group. Let A be an α -fuzzy subgroup of G. Let $t_1, t_2 \in [0,1]$ and $t_1 < t_2$. Then two α -level subgroups $A_{t_1}^{\alpha}, A_{t_2}^{\alpha}$ of A are equal iff there is no $x \in G$ such that $t_1 < A^{\alpha}(x) < t_2$.

Proof:

Assume that $A_{t_1}^{\alpha} = A_{t_2}^{\alpha}$. Suppose that there exists $x \in G$ such that $t_1 < A^{\alpha}(x) < t_2$. Then $x \in A_{t_1}^{\alpha}$ But $x \notin A_{t_2}^{\alpha}$. This implies that $A_{t_1}^{\alpha} \neq A_{t_2}^{\alpha}$ which is a contradiction. Conversely, assume that there is no $x \in G$ such that $t_1 < A^{\alpha}(x) < t_2$. Since $t_1 < t_2$, $A_{t_2}^{\alpha} \subset A_{t_1}^{\alpha}$. If $x \in A_{t_1}^{\alpha}$, then $t_1 \leq A^{\alpha}(x)$. Also $t \leq A^{\alpha}(x)$ does not lie between t_1 , t_2 . Therefore $t_2 \leq A^{\alpha}(x)$ which implies that $A_{t_1}^{\alpha} = A_{t_2}^{\alpha}$.

Corollary 2.9 Let G be a finite group of order n. Let A be an α -fuzzy subgroup of G. Let t_i 's be the distinct images of elements of G. Then $A_{t_i}^{\alpha}$'s are the only α -level subgroup of A [$im(A^{\alpha}) = \{t_i / A^{\alpha}(x) = t_i \text{ for some } x \in G \}$ **Proof:** Since $t_i \leq A^{\alpha}(e)$, for all t_i where $t_i \in [0,1]$, e-identity of G By theorem 2.3, $A_{t_i}^{\alpha}$ is a subgroup of G for each i. Let $t \in [0,1]$. Suppose that $t = A^{\alpha}(e)$, then $A_t^{\alpha} = \{e\}$ which is an α -level subgroup of A. Let $t \neq Im(A^{\alpha})$. Suppose that $t_i < t < t_j$, where $t_i, t_j \in Im(A^{\alpha})$. Since $A^{\alpha}(x) \neq t$, for all $x \in G$ by theorem 2.8, $A_{t_i}^{\alpha} = A_{t_j}^{\alpha} = A_t^{\alpha}$ which is an α -level subgroup of A. Suppose that $t < t_r$, where t_r is the least element in $Im(A^{\alpha})$. Then $A^{\alpha}(x) > t$ for all $x \in G$. Therefore $A_{t_r}^{\alpha} = A_t^{\alpha} = G$. Thus for any $t \in [0,1]$, $A_{t_i}^{\alpha} \, S$ are the only α -level subgroup of A.

BIBLIOGRAPHY

- [1] Zadeh L. A., Fuzzy sets, Information and Control, 8, (1965), 338-353
- [2] Rosenfeld A., Fuzzy groups, Journal of Mathematical Analysis and Application, 35, (1971), 512-517
- [3] Sivaramakrishna Das P., Fuzzy groups and level subgroups, Journal of Mathematical Analysis and Applications, 84, (1981), 264-269
- [4] Rajeshkumar, Fuzzy algebra, University of Dehli Publication Division (1993)
- [5] Sharma P. K., α-Fuzzy subgroups, International Journal of Fuzzy Mathematics and Systems, 3(1), (2013), 47-59