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Introduction 

We know that the generating function ),( yxz  of Euler polynomials )(yEm  is given by 
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(1) 

For the special case m

m EEy  )0(,0 is the m
th

 Euler number. From (1), we note that                      
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With the usual convention of replacing 
nE by nE . The generating function ),( yxZv of Eulerian 

polynomials )/( vxJm are defined by 
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Where Cv with 1v  

For the special case )()/0(,0 vJvJy mm  .  

)(vJm is called the m
th

 Eulerian number. Sometimes it is called the m
th
 Frobenius Euler number. 

From equation (1) and equation (3). We can note that )()1/( yEyJ mm   

From equation (3), we get 
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From equation (3) and equation (4), we get 
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Now replacing byvJ m )(  )(vJm  in equation (5), we get 
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Hence, we get the recurrence relation for )(vJm . 
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Where km, is kronecker symbol 

For MM  , the m
th
 Eulerain polynomials )/()( vxJ M

m of order M are defined be generating function 

as follows 
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For the special case ,0y )()/0( )()( vJvJ M

m

M

m  are called the m
th

 Eulerian number of order M. 

NON –LINER DIFFERENTIAL EQUATIONS 

We define that 
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v
vZZ

x 




1
)(  

                       
yxM ZexxZyxZ ...),(  for MM                                                                (9) 

We have 
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v ZeyxZyxZ  ),(),( from equation (9), we get 
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From equation (10), we get 
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Theorem 1. For Cv  with ,1v  MM   
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Where )(...)()(
)(

)()( vxZxvZvZand
dv

vZd
vZ M
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Proof:- 

We will prove by induction 

(i) If M=1, the it is obvious 
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(ii) Assume that equation (12) is true for some M>1. 

Let us suppose 
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From equation (11) and equation(13), we get 
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From equation (13) and equation (14), we have 
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Corollary1. For Cv with ,,1 MMv   
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It is obvious proved from the fact that  
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IDENTITIES OF EULERIAN NUMBERS AND POLYNOMIALS OF HIGHER ORDER 

Therom2. For   haveweMZmMM ,0,   
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Proof :- 

From equation (8) and equation (9), we get 
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(16) 

From equation (3) and equation (9), we get 
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From equation (15) and comparing with coefficients of equation (16) and (17), we obtain the 

required result of this theorem. 

Corrolary2. For  ZmMM , we have 
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Proof. We have 
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Hence proved. 

Corollary 3. For  ZmMM , , we have 
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Proof. From equation (4) and (17), we have   
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From equation (8),(15) and (19).  

Hence proved. 
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