Some Eulerian Polynomials of Higher Order

Jahangeer Habibullah Ganai ${ }^{1}$ and Anjna Singh ${ }^{2}$
${ }^{1,2}$ Department of Mathematical Sciences A.P.S. University, Rewa (M.P.) 486003 India, Govt. Girls P.G. College Rewa, (M.P)

Abstract

In the current paper we will derive identities of Eulerian polynomials of higher order from non linear ordinary differential equations. We will show that the generating functions of Eulerian polynomials are the solutions of our non linear ordinary differential equations.

Keywords - Eulerian numbers, polynomials.

Introduction

We know that the generating function $z(x, y)$ of Euler polynomials $E_{m}(y)$ is given by

$$
\begin{equation*}
Z(x, y)=\frac{2}{e^{x}+1} e^{y x}=\sum_{m=0}^{\infty} E_{m}(y) \frac{x^{m}}{m!} \tag{1}
\end{equation*}
$$

For the special case $y=0, E^{m}(0)=E_{m}$ is the $\mathrm{m}^{\text {th }}$ Euler number. From (1), we note that

$$
\begin{equation*}
E_{0}=1,(E+1)^{m}+E_{m}=0, \quad \text { if } \quad n>0 \tag{2}
\end{equation*}
$$

With the usual convention of replacing E^{n} by E_{n}. The generating function $Z_{v}(x, y)$ of Eulerian polynomials $J_{m}(x / v)$ are defined by

$$
\begin{equation*}
Z_{v}(x, y)=\frac{1-v}{e^{x}-v} e^{y x}=\sum_{m=0}^{\infty} J_{m}(x / v) \frac{x^{m}}{m!} \tag{3}
\end{equation*}
$$

Where $v \in C$ with $v \neq 1$
For the special case $y=0, \quad J_{m}(0 / v)=J_{m}(v)$.
$J_{m}(v)$ is called the $\mathrm{m}^{\text {th }}$ Eulerian number. Sometimes it is called the $\mathrm{m}^{\text {th }}$ Frobenius Euler number.
From equation (1) and equation (3). We can note that $J_{m}(y /-1)=E_{m}(y)$
From equation (3), we get

$$
\begin{equation*}
\frac{1-v}{e^{x}-v} e^{v x}=\left[\sum_{i=0}^{\infty} J_{i}(v) \frac{x^{v}}{i!}\right]\left[\sum_{j=0}^{\infty} \frac{y^{j} x^{j}}{j!}\right] \tag{4}
\end{equation*}
$$

From equation (3) and equation (4), we get

$$
\begin{equation*}
J_{m}(x / v)=\sum_{i=0}^{m}\binom{m}{i} x^{m-i} J_{i}(v)=(J(v)+y)^{m} \tag{5}
\end{equation*}
$$

Now replacing $J^{m}(v)$ by $J_{m}(v)$ in equation (5), we get

$$
\begin{equation*}
1-v=\frac{1-v}{e^{x}-v} e^{x}-\frac{1-v}{e^{x}-v} v=\sum_{m=0}^{\infty}(J(v)+1)^{m} \frac{x^{m}}{m!}-\sum_{n=0}^{\infty} v J_{m}(v) \frac{x^{m}}{m!} \tag{6}
\end{equation*}
$$

Hence, we get the recurrence relation for $J_{m}(v)$.

$$
\begin{equation*}
J_{0}(v)=1, \quad J_{m}(1 / v)-v J_{m}(v)=(1-v) \delta_{0}, m \tag{7}
\end{equation*}
$$

Where $\delta_{m, k}$ is kronecker symbol
For $M \in M$, the $\mathrm{m}^{\text {th }}$ Eulerain polynomials $J_{m}^{(M)}(x / v)$ of order M are defined be generating function as follows

$$
\begin{equation*}
Z_{v}^{M}(x, y)=\left(\frac{1-v}{e^{x}-v}\right) x\left(\frac{1-v}{e^{x}-v}\right) x \ldots x\left(\frac{1-v}{e^{x}-v}\right) e^{v x}=\sum_{m=00}^{\infty} J_{m}^{(M)}(x / v) \frac{x^{m}}{m!} \tag{8}
\end{equation*}
$$

For the special case $y=0, J_{m}^{(M)}(0 / v)=J_{m}^{(M)}(v)$ are called the $\mathrm{m}^{\text {th }}$ Eulerian number of order M.

NON -LINER DIFFERENTIAL EQUATIONS

We define that $Z=Z(v)=\frac{1-v}{e^{x}-v}$

$$
\begin{equation*}
Z^{M}(x, y)=Z \quad x \ldots x \quad Z e^{y x} \text { for } M \in M \tag{9}
\end{equation*}
$$

We have $Z(x, y)=Z_{v}(x, y)=Z e^{y x}$ from equation (9), we get

$$
\begin{equation*}
Z^{(1)}=\frac{d Z}{d v}=-\frac{1}{1-v} \frac{1-v}{e^{x}-v}+\frac{1}{1-v}\left(\frac{1-v}{e^{x}-v}\right)^{2} \tag{10}
\end{equation*}
$$

From equation (10), we get

$$
\begin{align*}
Z^{(1)}(x, y) & =Z^{(1)} e^{x y}=-\frac{1}{1-v}\left(Z(x, y)-Z^{2}(x, y)\right), \tag{11}\\
(1-v) Z^{(1)}+Z & =Z^{2}
\end{align*}
$$

Theorem 1. For $v \in C$ with $v \neq 1, M \in M$

$$
\begin{align*}
Z(v) & =\frac{1-v}{e^{x}-v} \text { is a solution of } \\
Z^{M}(v) & =\sum_{k=0}^{M-1} \frac{1}{k!}(1-v)^{k} Z^{(k)}(v) \tag{12}
\end{align*}
$$

Where $Z^{(k)}(v)=\frac{d^{k} Z(v)}{d v^{k}}$ and $Z^{M}(v)=Z(v) x \ldots x Z(v)$

Proof:-

We will prove by induction
(i) If $\mathrm{M}=1$, the it is obvious
(ii) Assume that equation (12) is true for some $\mathrm{M}>1$.

Let us suppose

$$
\begin{align*}
M Z^{M-1} Z^{(1)} & =\sum_{k=0}^{M-1} \frac{1}{k!}\left(\left(-k(1-v)^{k-1} Z^{(k)}+(1-v)^{k} Z^{(k+1)}\right)\right. \\
& =\frac{1}{(M-1)!}(1-v)^{M-1} Z^{(M)} \tag{13}
\end{align*}
$$

From equation (11) and equation(13), we get

$$
\begin{equation*}
\frac{1}{M!}(1-v)^{M} Z^{(M)}=Z^{M-1}(1-v) Z^{(1)}=Z^{N-1}\left(-Z+Z^{2}\right) \tag{14}
\end{equation*}
$$

From equation (13) and equation (14), we have

$$
Z^{M+1}=Z^{M}+\frac{1}{M!}(1-v)^{M} Z^{(M)}=\sum_{k=0}^{M} \frac{1}{k!}(1-v)^{k} Z^{(k)}
$$

Corollary1. For $v \in C$ with $v \neq 1, M \in M$,

$$
\begin{align*}
Z(x, y) & =\frac{1-v}{e^{x}-v} e^{y x} \text { is solution of the } \\
Z^{N}(x, y) & =\sum_{k=0}^{N-1} \frac{1}{k!}(1-v)^{k} Z^{(k)}(x, y) \tag{15}
\end{align*}
$$

It is obvious proved from the fact that

$$
Z^{M}(x, y)=Z^{M}(v) e^{y x} \quad \text { and } \quad Z^{(k)}(x, y)=\frac{d^{k} Z(v)}{d v^{k}} e^{y x}
$$

IDENTITIES OF EULERIAN NUMBERS AND POLYNOMIALS OF HIGHER ORDER

Therom2. For $M \in M, m \in Z=M \cup\{0\}$, we have

$$
J_{m}^{(M)}(v)=\sum_{k=0}^{M-1} \frac{1}{k!}(1-v) k \frac{d^{k} J_{m}(v)}{d v^{k}}
$$

Proof :-
From equation (8) and equation (9), we get

$$
\begin{equation*}
Z^{M}=\frac{1-v}{e^{x}-v} x \ldots x \frac{1-v}{e^{x}-v}=\sum_{m=0}^{\infty} J_{m}^{(M)}(v) \frac{x^{m}}{m!} \tag{16}
\end{equation*}
$$

From equation (3) and equation (9), we get

$$
\begin{equation*}
Z^{(k)}=\frac{d^{k} Z(v)}{d v^{k}}=\sum_{m=0}^{\infty} \frac{d^{k} J_{m}(v)}{d u^{k}} \frac{x^{m}}{m!} \tag{17}
\end{equation*}
$$

From equation (15) and comparing with coefficients of equation (16) and (17), we obtain the required result of this theorem.

Corrolary2. For $M \in M, m \in Z_{+}$we have

$$
\sum_{i_{1} \ldots+i_{M}=m}\binom{m}{i_{1}, \ldots i_{M}} J i_{1}(v) J i_{2}(v) \ldots J i_{N}(v)=\sum_{k=0}^{M-1} \frac{1}{k!}(1-v)^{k} \frac{d^{k} J_{m}(v)}{d v^{k}}
$$

Proof. We have

$$
\begin{align*}
\sum_{m=0}^{\infty} J_{m}^{(M)}(v) \frac{x^{m}}{m!}=\frac{1-v}{e^{x}-v} x \ldots x \frac{1-v}{e^{x}-v} & =\left[\sum_{i_{1}}^{\infty} J_{i_{1}}(v) \frac{x^{i_{1}}}{i!}\right] x \ldots x\left[\sum_{i_{M=0}}^{\infty} J_{i_{1}}(v) \frac{x^{i_{M}}}{i_{M}!}\right] \tag{18}\\
& =\sum_{m=0}^{\infty}\left[\sum_{i_{1}+\ldots+i_{M}=m}\binom{m}{i_{1}, \ldots j_{M}} J_{i_{1}}(v) J_{i_{2}}(v) \ldots J_{i_{M}}(v)\right] \frac{x^{m}}{m!}
\end{align*}
$$

Hence proved.
Corollary 3. For $M \in M, m \in Z_{+}$, we have

$$
J_{m}^{(M)}(x / v)=\sum_{k=0}^{M-1} \frac{1}{k!}(1-v)^{k} \sum_{i=0}^{m}\left({ }_{i}^{m}\right) x^{m-i} \frac{d^{k} J_{m}(v)}{d v^{k}}
$$

Proof. From equation (4) and (17), we have

$$
\begin{align*}
Z^{(k)}(x, y) & =Z^{(k)} e^{v x} \\
& =\left[\sum_{m=0}^{\infty} \frac{d^{k} J_{m}(v)}{d v^{k}} \frac{x^{m}}{m!}\right]\left[\sum_{m=0}^{\infty} \frac{y^{m} x^{m}}{m!}\right] \\
& =\sum_{m=0}^{\infty}\left[\sum_{i=o}^{m}\left({ }_{i}^{m}\right) y^{m-i} \frac{d^{k} J_{i}(v)}{d v^{k}}\right] \frac{x^{m}}{m!} \tag{19}
\end{align*}
$$

From equation (8),(15) and (19).

Hence proved.

REFERENCES

[1] J. Choi, T. Kim, Y. H. Kim, A note on the q-analogue of Euler numbers and polynomials, Honam Math. J. 33 (2011), no. 4, 529-534.
[2] J. Choi, T. Kim, Y. H. Kim, B. Lee, On the (w, q)-Euler numbers and polynomials with weight α, Proc. Jongjeon Math. Soc. 15 (2012), no. 1,91-100.
[3] J. Choi, D. S. Kim, T. Kim, Y. H. Kim, A note on some identities of Frobenius, Euler numbers and polynomials, Int. J. of Math. and Math. Sci., Article ID 861797 (2012), 9 pages.
[4] L. Carlitz, Eulerian numbers and polynomials, Math. Mag. 23 (1959), 247-260.
[5] L. Carlitz, The product of two Eulerian polynomials, Math. Mag. 36 (1963), 37-41.
[6] T. Kim, Identities involving Frobenius-Euler polynomials arising from non- linear differential equations, J. of Number Theory 132 (2012), 2854-2865.
[7] T. Kim, J. Choi, A note on the product of Frobenius-Euler polynomials arising from the p-adic integral on Zp, Adv. Studies Contemp. Math. 22 (2012), no. 2, 215-223.

