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Introduction

We know that the generating function z(x,y) of Euler polynomials E_(y) is given by

Z(x,y)=

[e] Xm
e”=>E — 1
D I G ®

For the special case y=0,E™ (0) = E_ is the m™ Euler number. From (1), we note that

E=1 (E+D)"+E, =0, if n>0, (2

With the usual convention of replacing E"by E, . The generating function Z, (X, y) of Eulerian

polynomials J_(x/v) are defined by

1-v i X"
Z,(xy)= S e = 23, ©
- m=0 .

Where veCwith v=1

For the special case y =0, J,.(0/v)=J(v).

J.,(v)is called the m™ Eulerian number. Sometimes it is called the m™ Frobenius Euler number.

From equation (1) and equation (3). We can note that J . (y/-1) = E_ (y)

From equation (3), we get
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From equation (3) and equation (4), we get

Jm(x/v)zi(

i=0

m
i

Now replacing J™(v) by J,(v) inequation (5), we get

1-v 1-v 2 X" & X"
1-v= e* — V= JWV)+D)"——-> vI_(V)— 6
X v g(() ) por nz(; m()m! (6)
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Hence, we get the recurrence relation for J_(v).

Jo(v)=1 J, @/v)-vI (V)=(@2-V)5,,m @)

Where o, , is kronecker symbol

For M € M, the m™ Eulerain polynomials J® (x/v) of order M are defined be generating function

as follows

Z¥(x,y) :( 1-v jx( 1X__V )x...x( 1-v jeyx = iJ,&M’(x/v)% (8)

e“-v) \e*-v e* —v =

For the special case y =0, J™(0/v) = J™)(v) are called the m™ Eulerian number of order M.

NON —-LINER DIFFERENTIAL EQUATIONS
1-v

X

We define that Z =Z(v) =

ZY(x,y)=Z x.x Ze"for M eM (9)

We have Z(x,y)=2,(X,Y)=2Ze” from equation (9), we get

oo_dZ__ 1 1-v 1 (1—vj2
dv l1-ve*—v 1-vie*-v (10)
From equation (10), we get
Z0(x,y) =20 = - (2(x,¥) - Z*(x,Y). (1)
-V
Q-v)zW +z=2%
Theorem 1. For ve C with vl M eM
Z(V) = 1X_V is a solution of
e —v
M-1
ZM(v) = Zﬁ(l—v)kz(k)(v) (12)
k= .
k
Where Z%(v) :% and Z" (v) = Z(V)x..xZ(v)

Proof:-
We will prove by induction
@) If M=1, the it is obvious
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()  Assume that equation (12) is true for some M>1.

Let us suppose

M 11 1
MZ" 2% = 3 (ka-v) 20 + - 2)
k=0

1 )

= @-v"iz™ (13)
(M —1)!
From equation (11) and equation(13), we get

ﬁ(l—v)MZ‘M’ =ZM1-v)Z2® =ZN (-2 + Z27) (14)

From equation (13) and equation (14), we have

M
Mt =zM +i(1—v)M zM :Zl(l_v)kz(k)
M! =Kl

Corollaryl. For ve Cwith v1 M e M,

Z(x,y) = elx_—vv e¥is solution of the
—1
Z"(x,y)= kzoﬁ(l—v)kz(k)(x, y) (15)
It is obvious proved from the fact that
ZM(x,y) = 2" (v)e” and Z%(xy) =2 dzﬁ")

IDENTITIES OF EULERIAN NUMBERS AND POLYNOMIALS OF HIGHER ORDER
Therom2. For M eM,meZ =M U{O}, we have

1w =3 Loy

—Kl dv
Proof :-

From equation (8) and equation (9), we get

1-v =
M = X.. I (v) =— (16)
v m; (v )
From equation (3) and equation (9), we get
700 _ d Z(v) Zd J (v)x a7
o m!

From equation (15) and comparing with coefficients of equation (16) and (17), we obtain the
required result of this theorem.

Corrolary2. For M e M,me Z, we have
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k d“J (V)
vk

2 ( ' }]il(V)Jiz(v)...JiN(V)=M 13( _

iy iy =m oo = k!
Proof. We have

© 1

ZJ(M)(V) 1X—v X...X 1X—v =137 (v)— X...X|
e e’ -V e’ -V !

Hence proved.
Corollary 3. For M e M,meZ_, we have
M-1 m /m L
JM(x/v) = zi(l—v)kZ( jxm" a4'J,v) J'“k(v)
k=0 kl i=0 \_i dV
Proof. From equation (4) and (17), we have

720 (x,y) = ZWe*

o kom(V) Xm 0 mem
=| 2% >
m=0 dV m' m=0 ml
_i Zm:(m)ym_.ko.(V) x"
m=0| i=o \Ui de mI
From equation (8),(15) and (19).
Hence proved.
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