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I. Introduction 

         In fuzzy set theory, the membership degrees of elements range over the interval [0, 1].      The membership 

degree expresses the degree of belongingness of elements to a fuzzy set.  The membership degree 1 indicates 

that an element completely belongs to its corresponding fuzzy set, and the membership degree 0 indicates an 

element does not belong to the fuzzy set.  The membership degrees on the interval (0, 1) indicate the partial 

membership to the fuzzy set .   Sometimes, the membership degree means the satisfaction degree of elements to 

some property or constraint corresponding to a fuzzy set[2, 9].  In the viewpoint of satisfaction degree , the 

membership degree 0 is assigned to elements which do not satisfy some property.  The elements with 

membership degree 0 are usually regarded as having the same characteristics in the fuzzy set representation.  By 

the way, among such elements, some have irrelevant characteristics to the property corresponding to a fuzzy set 
and the others have contrary contrary characteristics to the property.  The traditional fuzzy set representation 

cannot tell apart contrary elements from irrelevant elements.  Only with membership degrees ranged on the 

interval [0, 1], it is difficult to express the difference of the irrelevant elements from the contrary elements in 

fuzzy sets.  If a set representation could express this kind of difference , it would be more informative than the 

traditional fuzzy set representation.  Based on these observations, Lee[6] introduced an extension of fuzzy sets 

named bipolar-valued fuzzy sets.  He gave two kinds of representations of the notion of bipolar-valued fuzzy 

sets.  Malik.et.al [8] introduced the notions of submachine of a fuzzy finite state machine, retrievable, separated 

and connected fuzzy finite state machines and discussed their basic properties.  They also initiated a 

decomposition theorem for fuzzy finite state machines in terms of primary submachines.  On the otherhand, 

Kumbhojkar and Chaudhari [5] provided several ways of constructing products of fuzzy finite state machines 

and their mutual relationship, through isomorphism and coverings.  Li and Pedrycz [7] indicated that fuzzy 
finite state automata can be viewed as a mathematical model of computation in fuzzy systems.  Recently, a 

higher order set with imprecision has been extended to automata.  Based on Atanassov intuitionistic fuzzy sets 

[1] Jun proposed intuitionistic fuzzy finite state machines in [3] and also intuitionistic fuzzy finite switchboard 

machines in [4].  In this paper, using the notion of bipolar vague valued sets concepts of bipolar submachines, 

bipolar connected, bipolar retrievable, bipolar homomorphism, bipolar strong homomorphism and bipolar vague 

finite switchboard state machines (bvfssm) are introduced and related properties are investigated. 

II. Preliminaries 

Definition 2.7:[6] 

Let X be the universe of discourse.  A bipolar-valued fuzzy set A in X is an object having the form A = {(x, 

𝑡+
𝐴(x), 𝑡−

𝐴(x)) / x  X} where  𝑡+
𝐴 : X  [0, 1] and 𝑡−

𝐴 : X  [-1, 0] are mappings.  The positive membership 

degree  𝑡+
𝐴(x) denotes the satisfaction degree of an element x to the property corresponding to a bipolar-valued 

fuzzy set A = {(x, 𝑡+
𝐴(x), 𝑡−

𝐴(x)) / x  X} , and the negative membership degree 𝑡−
𝐴(x) denotes the satisfaction 

degree of x to some implicit counter-property of A = {(x, 𝑡+
𝐴(x), 𝑡−

𝐴(x)) / x  X}. 
 

Remark 2.8:[6] 

If  𝑡+
𝐴(x) ≠ 0 and 𝑡−

𝐴(x) = 0, it is the situation that x is regarded as having only positive satisfaction for A = {(x, 

𝑡+
𝐴(x), 𝑡−

𝐴(x)) / x  X}.  If  𝑡+
𝐴(x) = 0 and 𝑡−

𝐴(x) ≠ 0 , it is the situation that x does not satisfy the property of 

A = {(x, 𝑡+
𝐴(x), 𝑡−

𝐴(x)) / x  X} but somewhat satisfies the counter-property of A = {(x, 𝑡+
𝐴(x), 𝑡−

𝐴(x)) / x  

X}.  It is possible for an element x to be  𝑡+
𝐴(x) ≠ 0 and 𝑡−

𝐴(x) ≠ 0 when the membership function of the 

property overlaps that of its counter-property over some portion of the domain. 
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III. Bipolar vague finite state machines 

Definition 3.1: 

Let X be the universe of discourse.  A bipolar-valued vague  set A in X is an object having the form A ={(x, 

[𝑡+
𝐴(x), 1 − 𝑓+

𝐴
(x)], [𝑡−

𝐴(x), 1 − 𝑓−
𝐴

(x)]) / xX} where                              𝑡+
𝐴, 1 − 𝑓+

𝐴
:X [0, 1] and 𝑡−

𝐴, 

1 − 𝑓−
𝐴

 : X [-1, 0] are mappings and 𝑡+
𝐴+1 − 𝑓+

𝐴
 ≤ 1 , 𝑡−

𝐴+1 − 𝑓−
𝐴

 ≤ -1.  The positive membership degree 

[𝑡+
𝐴(x), 1 − 𝑓+

𝐴
(x)]  denotes the satisfaction region of an element x to the property corresponding to a bipolar-

valued vague set A ={(x, [𝑡+
𝐴(x), 1 − 𝑓+

𝐴
(x)],                   [ 𝑡−

𝐴(x), 1 − 𝑓−
𝐴

(x)]) / xX}, and the negative 

membership degree [𝑡−
𝐴(x), 1 − 𝑓−

𝐴
(x)] denotes the satisfaction region of x to some implicit counter-property 

of A ={(x, [𝑡+
𝐴(x), 1 − 𝑓+

𝐴
(x)], [ 𝑡−

𝐴(x), 1 − 𝑓−
𝐴

(x)]) / xX}.  

 

Remark 3.2: 

If  𝑡+
𝐴(x) ≠ 0 and 1 − 𝑓+

𝐴
(x) ≠ 0,  𝑡−

𝐴(x) and 1 − 𝑓−
𝐴

(x) = 0, it is the situation that x is regarded as having 

only positive satisfaction for A ={(x, [𝑡+
𝐴(x), 1 − 𝑓+

𝐴
(x)], [ 𝑡−

𝐴(x), 1 − 𝑓−
𝐴

(x)]) / xX}.  If  𝑡+
𝐴(x) = 0 and 

1 − 𝑓+
𝐴

(x) = 0,  𝑡−
𝐴(x) ≠ 0 and 1 − 𝑓−

𝐴
(x) ≠ 0 , it is the situation that x does not satisfy the property of A ={(x, 

[𝑡+
𝐴(x), 1 − 𝑓+

𝐴
(x)], [ 𝑡−

𝐴(x), 1 − 𝑓−
𝐴

(x)]) / xX}but somewhat satisfies the counter-property of  

A ={(x, [𝑡+
𝐴(x), 1 − 𝑓+

𝐴
(x)], [ 𝑡−

𝐴(x), 1 − 𝑓−
𝐴

(x)]) / xX}.  It is possible for an element x to be  𝑡+
𝐴(x) ≠ 0, 

1 − 𝑓+
𝐴

(x) ≠ 0 and 𝑡−
𝐴(x) ≠ 0, 1 − 𝑓−

𝐴
(x) ≠ 0 when the membership function of the property overlaps that of 

its counter-property over some portion of the domain. 

 

Note 3.3: 

For the sake of simplicity, we shall use the symbol A  = (X, 𝑉+
𝐴 , 𝑉−

𝐴) for the bipolar-valued vague set A = A 

={(x, [𝑡+
𝐴(x), 1 − 𝑓+

𝐴
(x)], [ 𝑡−

𝐴(x), 1 − 𝑓−
𝐴

(x)]) / xX}, and use the notion of bipolar vague sets instead of 

the notion of bipolar-valued vague sets, where                       𝑉+
𝐴 = [𝑡+

𝐴, 1 − 𝑓+
𝐴

] and  𝑉−
𝐴  = [𝑡−

𝐴, 1 − 𝑓−
𝐴

]. 

 

Definition 3.4: 

A bipolar vague finite state machine (bvfsm, for short) is a triple M = (Q, X , A), where Q and X are finite 

nonempty sets, called the set of states and set of input symbols, respectively, and A  = (X, 𝑉−
𝐴, 𝑉+

𝐴) is a bipolar 

vague set in Q x X x Q. 

Remark 3.5: 

Let 𝑋∗ denote the set of all words of elements of X of finite length.  Let  denote the empty word in 𝑋∗ and  𝑥  
denote the length of x for every x  𝑋∗. 

Definition 3.6: 

Let M = (Q, X , A) be a bvfsm.  Define a bipolar vague set 𝐴∗  = (X, 𝑉−
𝐴∗

, 𝑉+
𝐴∗

) in                                  Q x 𝑋∗ 

x Q by 𝑉−
𝐴∗

(q, , p) =  
−1 𝑖𝑓 𝑞 = 𝑝

  0  𝑖𝑓 𝑞 ≠ 𝑝  
      , 𝑉+

𝐴∗
(q, , p) =  

1 𝑖𝑓 𝑞 = 𝑝
   0  𝑖𝑓 𝑞 ≠ 𝑝  

    

𝑉−
𝐴∗

(q, xa, p) = [𝑟∈𝑄
𝑖𝑛𝑓

𝑉−
𝐴∗

(q, x, r)  𝑉−
𝐴(r, a, p)],  

𝑉+
𝐴∗

(q, xa, p) = [𝑟∈𝑄
𝑠𝑢𝑝

𝑉+
𝐴∗

(q, x, r)  𝑉+
𝐴(r, a, p)] for all p, q  Q, x  𝑋∗ and a  X. 

Remark 3.7: 

Let M = (Q, X , A) be a bvfsm.  Then 𝑉−
𝐴∗

(q, xy, p) = [𝑟∈𝑄
𝑖𝑛𝑓

𝑉−
𝐴∗

(q, x, r)  𝑉−
𝐴∗

(r, y, p)],  

𝑉+
𝐴∗

(q, xy, p) = [𝑟∈𝑄
𝑠𝑢𝑝

𝑉+
𝐴∗

(q, x, r) 𝑉+
𝐴∗

(r, y, p)] for all p, q  Q, x, y  𝑋∗. 

Definition 3.8: 

Let  M = (Q, X , A)  be a bvfsm and let p, q  Q.  Then p is called a bipolar immediate successor of q if the 
following conditions holds: 

(a  X)( 𝑉−
𝐴(q, a, p)  0, 𝑉+

𝐴(q, a, p)  0).  We say  that p is a  bipolar successor of q        if  the following 
holds: 
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(x  𝑋∗)( 𝑉−
𝐴∗

(q, x, p)    0, 𝑉+
𝐴∗

(q, x, p)   0).  We  denote by S(q) the set of all bipolar successors  of q. For 

any subset T  of Q, the set of all bipolar successors of T, denoted by S(T),  is defined to be the set  S(T) = 

{S(q) / q  T}. 

Definition 3.9:  

Let M = (Q, X , A) be a bvfsm.  Let (T  Q).  Let 𝐴𝑄  = (𝑉−
𝐴𝑄

, 𝑉+
𝐴𝑄

) be bipolar vague set in T x X x T and N 

= (T, X, 𝐴𝑄) be a bvfsm.  Then N is called a bipolar submachine of M,     if  

1. A / T x X x T = 𝐴𝑄, i.e., 𝐴− / T x X x T = 𝐴−
𝑄  and 𝐴+ / T x X x T = 𝐴+

𝑄 . 

2. S(T)  T. 

We assume that B = (B, X , A) is a bvfsm M.  Obviously if K is a bipolar submachine of N and N is a 

bipolar submachine of M, then K is a bipolar submachine of M. 

Definition 3.10: 

A bvfsm M = (Q, X , A) is said to be strongly bipolar connected if p  S(q) for every                  p, q Q.  A 

bipolar submachine N = (T, X, 𝐴𝑄) of a bvfsm M = (Q, X , A) is said to be proper if T ≠ B and T ≠ Q. 

Theorem 3.11: 

A bvfsm M = (Q, X , A) is strongly bipolar connected if and only if M = (Q, X , A) has a proper bipolar 

submachines. 

Proof: 

Suppose that M = (Q, X , A) is strongly bipolar connected.  Let N = (T, X, 𝐴𝑄) be a bipolar submachine of M 

such that T ≠ .  Then there exists q  T.  If p  Q then p  S(q) since M is strongly bipolar connected.  It 

follows that p  S(q)  S(T)  T so that T = Q.              Hence M = N, i.e., M has no proper bipolar 

submachines.  Let p, q Q and                                          let N = (S(q), X , 𝐴𝑄) where 𝐴𝑄  = (𝑉−
𝐴𝑄

, 𝑉+
𝐴𝑄

) is 

given by  

 𝑉−
𝐴𝑄

 = 𝑉−
𝐴  / S(q) x X x S(q) and  𝑉+

𝐴𝑄
 = 𝑉+

𝐴 / S(q) x X x S(q) Then  N is a bipolar submachine of M and 

S(q) ≠ , and so S(q) = Q.  Thus p  S(q), and therefore M is strongly bipolar connected.  

Definition 3.12: 

 For a bvfsm A = (𝑉−
𝐴 , 𝑉+

𝐴) in a set X, the bipolar support of A is defined to be the set Supp(A) = {x  X / 

𝑉−
𝐴(x)  0, 𝑉+

𝐴(x)  0}. 

Definition 3.13: 

For a bipolar vague set A = {(x, (𝑉−
𝐴(x), 𝑉+

𝐴(x)) / x  X} and (, )  [-1,0] x [0, 1],                   we define  

𝑉−
𝐴

  = {x  X / 𝑉−
𝐴(x) ≤ },  𝑉+

𝐴 
  = {x  X / 𝑉+

𝐴(x) ≥ } which are called  the negative - cut of A and the 

positive -cut of A, respectively.                                                     The set V(A, (, ) ) = {x  X / 𝑉+
𝐴(x) ≥  

and 𝑉−
𝐴(x) ≤  } is called a (, )-level subset of A. 

Definition 3.14: 

Let 𝑀1 = (𝑄1, 𝑋1, 𝐴1) and 𝑀2 = (𝑄2, 𝑋2, 𝐴2) bvfsms.  A pair (, ) of mappings : 𝑄1𝑄2 and : 𝑋1𝑋2 is 

called a homomorphism written (, ) : 𝑀1𝑀2 if 

𝑉𝐴1 

–(q, x, p) ≤ 𝑉𝐴2 

–((q), (x), (p)), 𝑉𝐴1 

+(q, x, p) ≤ 𝑉𝐴2 

+((q), (x), (p)) q, p 𝑄1 and x𝑋1 . 

 

Example 3.15: 

Let 𝑀1 = (𝑄1, 𝑋1, 𝐴1) and 𝑀2 = (𝑄2, 𝑋2, 𝐴2) be bvfsms, where 𝑄1 = {𝑞1, 𝑞2, 𝑞3} ,                           𝑋1 = {a, b}, 

𝑄2 = {𝑝1, 𝑝2}, 𝑋2 = {a, b} and 𝐴1, 𝐴2 are defined as follows.  
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Define  : 𝑄1𝑄2 and  : 𝑋1𝑋2 as follows (𝑞1) = (𝑞2) = 𝑝1 , (𝑞3) = 𝑝2 , (a) = a and (b)  = b 
 

 

 

M

 

 
 

𝑴𝟏 

 

 
 

𝑴𝟐(A homomorphic image of 𝑴𝟏) 

 

Definition 3.16: 

Let 𝑀1 = (𝑄1, 𝑋1, 𝐴1) and 𝑀2 = (𝑄2, 𝑋2, 𝐴2) be bvfsms.  A pair (, ) of mappings                       : 𝑄1𝑄2 and 

: 𝑋1𝑋2 is called a strong homomorphism written if  

𝑉𝐴2 

–((q), (x), (p)) = {𝑉𝐴1 

−(q, x, t) / t 𝑄1 ,(t) = (p)} and  

 𝑉𝐴2 

+((q), (x), (p)) = {𝑉𝐴1 

+(q, x, t) / t 𝑄1,(t) = (p)}  q, p 𝑄1 and x𝑋1 . 

 

Example 3.17: 

 Let 𝑀1 = (𝑄1, 𝑋1, 𝐴1) and 𝑀2 = (𝑄2, 𝑋2, 𝐴2) be bvfsms, Where  𝑄1 = {𝑞1, 𝑞2, 𝑞3} ,                           𝑋1 = {a, b}, 

𝑄2 = {𝑝1, 𝑝2}, 𝑋2 = {a, b} and 𝐴1, 𝐴2 are defined as follows.  
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Define  : 𝑄1𝑄2 and  : 𝑋1𝑋2 as follows (𝑞1) = (𝑞3) = 𝑝1 , (𝑞2) = 𝑝2 , (a) = a and (b) = b. 
 

𝑴𝟏 

 

 

 
𝑴𝟐(A strong homomorphic image of 𝑴𝟏) 

 

Definition 3.18: 

Let 𝑀1 = (𝑄1, 𝑋1, 𝐴1) and 𝑀2 = (𝑄2, 𝑋2, 𝐴2) be two bvfsms.  Let  (, ) : 𝑀1𝑀2 be bipolar homomorphism.  

Define 𝛽∗ : 𝑋1
∗𝑋2

∗ by 𝛽∗() =  and 𝛽∗(ua)  = 𝛽∗(u)(a)                                  u 𝑋1
∗ , a 𝑋1. 

 

Proposition 3.19: 

Let 𝑀1 = (𝑄1, 𝑋1, 𝐴1) and 𝑀2 = (𝑄2, 𝑋2, 𝐴2) be two bvfsms.  Let (, ) : 𝑀1𝑀2 be a strong homomorphism .  

Then q, r 𝑄1 and x 𝑋1if  𝑉𝐴2 

–
((q), (x), (r))  0 and 𝑉𝐴2 

+
((q), (x), (r))  0 then there exist t 𝑄1 

such that 𝑉𝐴1 

–(q, x, t)  0 ,  𝑉𝐴1 

+(q, x, t)  0 and               (t) = (r).Furthermore p 𝑄1 if (p) = (q) then 

𝑉𝐴1 

–(q, x, t) ≥ 𝑉𝐴1 

–(p, x, r) and                𝑉𝐴1 

+(q, x, t) ≥ 𝑉𝐴1 

+(p, x, r). 

Proof: 

Let p, q, r 𝑄1 and x 𝑋1, 𝑉𝐴2 

–((q), (x), (r)) = {𝑉𝐴1 

−(q, x, s) / s𝑄1 ,(s)= (r)}  0 and  𝑉𝐴2 

+((q), (x), 

(r)) = {𝑉𝐴1 

+(q, x, s) / s 𝑄1,(s) = (r)}  0.  Since 𝑄1 is finite there exist t 𝑄1 such that (t) = (r) and 

𝑉𝐴1 

–(q, x, t) = {𝑉𝐴1 

−(q, x,s) /s𝑄1 ,(s) = (r)} 0  and  𝑉𝐴1 

+ (q, x, t) = {𝑉𝐴1 

+(q, x, s) / s 𝑄1,(s) = (r)}  

0.  Suppose (p) = (q) then 𝑉𝐴1 

–(q, x, t) = 𝑉𝐴2 

–((q), (x), (r)) = 𝑉𝐴2 

–((p), (x), (r)) ≥ 𝑉𝐴1 

–(p, x, r)  

𝑉𝐴1 

+(q, x, t) = 𝑉𝐴2 

+((q), (x), (r)) = 𝑉𝐴2 

+((p), (x), (r)) ≥ 𝑉𝐴1 

+(p, x, r). 

 

Proposition 3.20: 

Let 𝑀1 = (𝑄1, 𝑋1, 𝐴1) and 𝑀2 = (𝑄2, 𝑋2, 𝐴2) be two bvfsms.  Let (, ) : 𝑀1𝑀2 be a homomorphism.  Define 

𝛽∗ ; 𝑋1
∗
𝑋2

∗
.  Then 𝛽∗(uv) = 𝛽∗(u)𝛽∗(v) u, v 𝑋1

∗
. 

Proof: 

Let u, v 𝑋1
∗ and  𝑣  = n.  If n = 0 then v =  and hence 𝛽∗(uv) = 𝛽∗(u) = 𝛽∗(u) 𝛽∗(v).  Suppose now the result 

is true y 𝑋1
∗ such that  𝑦  = n – 1, n  0.  Let v = ya where                 y 𝑋1

∗, a 𝑋1 and  𝑦  = n-1.   



International Journal of Mathematics Trends and Technology (IJMTT) – Volume 65 Issue 7 - July 2019 
 
 

ISSN: 2231-5373                               http://www.ijmttjournal.org                                     Page 36 

Then 𝛽∗(uv) = 𝛽∗(uya) = 𝛽∗(uy)𝛽∗(a) = 𝛽∗(u)𝛽∗(y) 𝛽∗(a) = 𝛽∗(u)𝛽∗(ya) = 𝛽∗(u)𝛽∗(v).  Therefore 𝛽∗(uv) = 𝛽∗(u) 

𝛽∗(v), u, v 𝑋1
∗. 

 

Proposition 3.21: 

Let 𝑀1 = (𝑄1, 𝑋1, 𝐴1) and 𝑀2 = (𝑄2, 𝑋2, 𝐴2) be two bvfsms.  Let (, ) : 𝑀1𝑀2 be a homomorphism.  Then 

𝑉𝐴1∗
–(q, x, p) ≤ 𝑉𝐴2 

–((q), 𝛽∗(x), (p)) and 

 𝑉𝐴1∗
+(q, x, p) ≤ 𝑉𝐴2 

+((q), 𝛽∗(x), (p))  q, p 𝑄1 and x 𝑋1
∗. 

Proof: 

Let q, p 𝑄1 and x 𝑋1
∗.  We prove the result by induction on  𝑥 = n.  If n = 0 then x =  and 𝛽∗(x) = 𝛽∗() =  

𝑉𝐴1∗
–(q, , p)= -1 = 𝑉𝐴2 

–((q), 𝛽∗(), (p)) if q = p 

𝑉𝐴1∗
–(q, , p)= 0 = 𝑉𝐴2 

–((q), 𝛽∗(), (p)) if q ≠ p 

𝑉𝐴1∗
+(q, , p) = 1 = 𝑉𝐴2 

+((q), 𝛽∗(), (p)) if q = p 

𝑉𝐴1∗
+(q, , p) = 0 = 𝑉𝐴2 

+((q), 𝛽∗(), (p)) if q ≠ p.  Suppose now the result is true  y 𝑋∗ such that  𝑦 = n – 

1, n  0.  Let x = ya where y 𝑋1
∗, a 𝑋1 and  𝑦  = n-1.  

𝑉𝐴1∗
–(q, x, p) = 𝑉𝐴1∗

–(q, ya, p) =  {𝑟∈𝑄1
𝑉𝐴1∗

–(q, y, r) 𝑉𝐴1∗
–(r, a, p)}≤  {𝑟∈𝑄1

𝑉𝐴2∗
–((q), 𝛽∗(y), (r)) 

𝑉𝐴2 

–
((r), (a), (p)) (by homomorphism) ≤  {𝑟 ,∈𝑄2

𝑉𝐴2∗
–
((q), 𝛽∗(y), 𝑟 ′) 𝑉𝐴2 

–
(𝑟 ′, (a), (p))} = 

𝑉 𝐴
2∗

–((q), 𝛽 ∗(y)(a), (p)) = 𝑉 𝐴
2∗

–((q), 𝛽 ∗(ya), (p)) = 𝑉 𝐴
2∗

–((q), 𝛽 ∗(x), (p)).  Hence 𝑉 𝐴
1∗

–(q, x, p) ≤ 

𝑉 𝐴
2∗

–((q), 𝛽 ∗(x), (p)).  Now, 𝑉 𝐴
1∗

+(q, x, p) = 𝑉 𝐴
1∗

+(q, ya, p) = {𝑟 ∈𝑄1
𝑉 𝐴

1∗
+(q, y, r) 𝑉 𝐴

1∗
+(r, a, p)}≤ 

 {𝑟 ∈𝑄1
𝑉 𝐴

2∗
+((q), 𝛽 ∗(y), (r)) 𝑉 𝐴 2 

+((r), (a), (p)) (by homomorphism) ≤  {𝑟 ′∈𝑄2
𝑉 𝐴

2∗
+((q), 𝛽 ∗(y), 𝑟 ′) 

𝑉 𝐴 2 

+(𝑟 ′, (a), (p))}                    = 𝑉 𝐴
2∗

+((q), 𝛽 ∗(y)(a), (p)) = 𝑉 𝐴
2∗

+((q), 𝛽 ∗(ya), (p)) = 𝑉 𝐴
2∗

+((q), 

𝛽 ∗(x), (p)).                      Hence 𝑉 𝐴
1∗

+(q, x, p) ≤ 𝑉 𝐴
2∗

+((q), 𝛽 ∗(x), (p)). 

 

Proposition 3.22: 

Let 𝑀1 = (𝑄 1, 𝑋 1, 𝐴 1) and 𝑀2 = (𝑄 2, 𝑋 2, 𝐴 2) be two bvfsms.  Let (, ) : 𝑀1𝑀2 be a homomorphism. Then  

is one-one if and only if 𝑉 𝐴
1∗

–(q, x, p) = 𝑉 𝐴
2∗

–((q), 𝛽 ∗(x), (p)), 𝑉 𝐴
1∗

+(q, x, p) = 𝑉 𝐴
2∗

+((q), 𝛽 ∗(x), (p))  

q, p 𝑄 1 and x 𝑋 1
∗. 

Proof: 

Suppose  is one – one.  Let p, q 𝑄 1 and  𝑋 1
∗.  Let  𝑥    =  n.  We prove the result by induction on n.   Let n 

= 0 then x =  and  𝛽 ∗() =   Now (q) = (p) if and only if q = p.  Hence 𝑉 𝐴
1∗

–(q, x, p)  = -1 if and only if 

𝑉 𝐴
2∗

–((q), (), (p)) = -1 and 𝑉 𝐴
1∗

+(q, x, p)  = 1 if and only if 𝑉 𝐴
2∗

+((q), (), (p)) = 1 (By Strong 

homomorphism).  Suppose the result is true y 𝑋 1
∗ ,  𝑦   = n-1, n  0.  Let x = ya,  𝑦   = n-1, y 𝑋 1

∗, a 𝑋 1 .  

Then                      𝑉 𝐴
2∗

–((q), 𝛽 ∗(x), (p)) = 𝑉 𝐴
2∗

–((q), 𝛽 ∗(ya), (p)) = 𝑉 𝐴
2∗

–((q), 𝛽 ∗(y)(a), (p))                              

=  {𝑟 ∈𝑄1
𝑉 𝐴

2∗
–((q), 𝛽 ∗(y), (r)) 𝑉 𝐴 2

−((r), (a), (p))} =  {𝑟 ∈𝑄1
𝑉 𝐴

1∗
–(q, y, r)𝑉 𝐴 1

−(r,a, p)} = 𝑉 𝐴
1∗

–(q, 

ya, p) = 𝑉 𝐴
1∗

–(q, x, p) .  Now 𝑉 𝐴
2∗

+((q), 𝛽 ∗(x), (p)) = 𝑉 𝐴
2∗

+((q), 𝛽 ∗(ya), (p))                 = 𝑉 𝐴
2∗

+((q), 

𝛽 ∗(y)(a), (p)) =  {𝑟 ∈𝑄1
𝑉 𝐴

2∗
+((q), 𝛽 ∗(y), (r))𝑉 𝐴 2

+((r), (a), (p))}                        =  {𝑟 ∈𝑄1
𝑉 𝐴

1∗
+(q, 

y, r)𝑉 𝐴 1

+(r,a, p)} = 𝑉 𝐴
1∗

+(q, ya, p) = 𝑉 𝐴
1∗

+(q, x, p).   

Conversely, Let q, p  ∈ 𝑄 1 and let (q) = (p).  Then 𝑉 𝐴
2∗

–((q), , (p)) = 𝑉 𝐴
1∗

–(q, , p)  and 𝑉 𝐴
2∗

+((q), , 

(p)) = 𝑉 𝐴
1∗

+(q, , p).  Hence q = p.  Hence  is one-one.  

 

Definition 3.23: 

Let M = (Q, X, A) be a bvfsm.  M is said to be retrievable if qQ, y𝑋 ∗ if u  Q such that 𝑉 𝐴 ∗
(q, y, u) = 

[𝑉 −
𝐴 ∗

(q, y, u)  0, 𝑉 +
𝐴 ∗

(q, y, u)   0], then x𝑋 ∗ such that                             𝑉 𝐴 ∗
(q, yx, q) = [𝑉 −

𝐴 ∗
(q, yx, q) 

 0, 𝑉 +
𝐴 ∗

(q, yx, q)  0].   
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Definition 3.24: 

Let M = (Q, X, A) be a bvfsm.  M is said to be quasi-retrievable if q Q, y 𝑋 ∗ if  t  Q such that  𝑉 𝐴 ∗
(q, 

y, t) = [𝑉 −
𝐴 ∗

(q, y, t)  0, 𝑉 +
𝐴 ∗

(q, y, t)   0], then x𝑋 ∗ such that                  𝑉 𝐴 ∗
(q, yx, q) = [𝑉 −

𝐴 ∗
(q, x, q)  

0, 𝑉 +
𝐴 ∗

(t, x, q)  0].  

Where  𝑉 −
𝐴 ∗

(q, yx, p) = [𝑢 ∈𝑄
𝑖𝑛𝑓 𝑉 −

𝐴 ∗
(q, y, u) 𝑉 −

𝐴 ∗
(u, x, q)]  0,  

𝑉 +
𝐴 ∗

(q, yx, p) = [𝑢 ∈𝑄
𝑠𝑢𝑝 𝑉 +

𝐴 ∗
(q, y, u) 𝑉 +

𝐴 ∗
(u, x, q )]  0. 

Definition 3.25: 

Let M = (Q, X , A) be a bvfsm and let q, r, s  Q. Then r and s are said to be bipolar                  q-related if 

there exists y 𝑋 ∗ such that 𝑉 𝐴 ∗
(q, y, r) =  [𝑉 −

𝐴 ∗
(q, y, r)  0, 𝑉 +

𝐴 ∗
(q, y, r)  0] and 𝑉 𝐴 ∗

(q, y, s) =  

[𝑉 −
𝐴 ∗

(q, y, s)  0, 𝑉 +
𝐴 ∗

(q, y, s)  0] .  We say that r and s are bipolar    q-twins if 

1. r and s are q-related. 

2. S(r) = S(s). 

Definition 3.26: 

Let M = (Q, X, A) be a bvfsm.  We say that M satisfies the exchange property if the following condition holds: 

Let p, q  Q and let T  Q.  Suppose that if p  S(T  {q}), p does not belong to S(T), then q  S(T  {p}). 

IV. Bipolar Retrievable 

Definition 4.1:    

A bvfsm M = (Q, X , A) is said to be bipolar retrievable if  (q  Q) (y  𝑋 ∗)(u  Q) (𝑉 −
𝐴𝑄∗(q, y, u)  

0, 𝑉 +
𝐴𝑄∗(q, y, u)  0)  

 ( x 𝑋 ∗) (𝑉 −
𝐴𝑄∗(u, x, q)  0,  𝑉 +

𝐴𝑄∗(u, x, q)  0 ) . 

Definition 4.2:  

Let M = (Q, X , A) be a bvfsm and let q, r, s  Q. Then r and s are said to be bipolar q-related if there exists 

y  𝑋 ∗ such that 𝑉 −
𝐴𝑄∗(q, y, r)  0, 𝑉 −

𝐴𝑄∗(q, y, s)  0,            𝑉 +
𝐴𝑄∗(q, y, r)  0 and 𝑉 +

𝐴𝑄∗(q, y, s)  0.  

We say that r and s are bipolar q-twins if 

3. r and s are bipolar q-related. 

4. S(r) = S(s). 

 Proposition 4.3:   

Let M = (Q, X , A) be a bvfsm.  Then the following assertions are equivalent. 

1. q, r, s  Q, if r and s are bipolar q-related, then  r and s are bipolar q-twins. 

2. (p, q, r  Q) (x, y  𝑋 ∗) (𝑉 −
𝐴𝑄∗(q, y, r)  0, 𝑉 −

𝐴𝑄∗(q, yx, p)  0, 𝑉 +
𝐴𝑄∗(q, y,r)  0,  𝑉 +

𝐴𝑄∗(q, yx, 

p)  0   p  S(r)). 

Proof:   

(1)(2) Since r and s are bipolar q-twins so that pS(s) = S(r). 

(2)(1) Suppose that (2) is valid.  Let q, r, s  Q be such that r and s are bipolar q-related .  Then there exists y 

 𝑋 ∗ such that 𝑉 −
𝐴𝑄∗(q, y, r)  0, 𝑉 −

𝐴𝑄∗(q, y, s)  0, 𝑉 +
𝐴𝑄∗(q, y, r)  0 and 𝑉 +

𝐴𝑄∗(q, y, s)  0 .  If p  S(s), 

then there exists x  𝑋 ∗ such that 𝑉 −
𝐴𝑄∗(s, x, p)  0 and 𝑉 +

𝐴𝑄∗(s, x, p)  0.  Then 𝑉 −
𝐴𝑄∗(q, xy, p) = 

[𝑢 ∈𝑄
𝑖𝑛𝑓 𝑉 −

𝐴𝑄∗(q, y, u)  𝑉 −
𝐴𝑄∗(u, x, p)]  0 and   
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𝑉 +
𝐴𝑄∗(q, xy, p) = [𝑢 ∈𝑄

𝑠𝑢𝑝 𝑉 +
𝐴𝑄∗(q, y, u)  𝑉 +

𝐴𝑄∗(u, x, p)]  0.  Thus p  S(r)  by  hypothesis.  Similarly if p  

S(r) then p  S(s).  Therefore r and s are bipolar q-twins. 

Proposition 4.4: 

A bvfsm M = (Q, X, A) is a bipolar retrievable if and only if it satisfies  

1. (q Q) (y  𝑋 ∗)(u  Q) (𝑉 −
𝐴𝑄∗(q, y, u)  0, 𝑉 +

𝐴𝑄∗(q, y, u)  0)  (x  𝑋 ∗) (𝑉 −
𝐴𝑄∗(q, yx, q)  

0,  𝑉 +
𝐴𝑄∗(q, yx,q)  0). 

2. q, r, s  Q, if r and s are bipolar q-related then r and s are bipolar q-twins. 

Proof: Obvious. 

V. Bipolar vague finite swithchboard state machines 

Definition 5.1: 

A bvfsm M = (Q, X, A) is said to be switching if it satisfies 

𝑉 −
𝐴 ∗

(q, a, p) = 𝑉 −
𝐴 ∗

(p, a, q),  𝑉 +
𝐴 ∗

(q, a, p) = 𝑉 +
𝐴 ∗

(p, a, q) for all p, q  Q, and a  X. 

Definition 5.2: 

A bvfsm M = (Q, X, A) is said to be commutative if it satisfies 

 𝑉 −
𝐴 ∗

(q, ab, p) = 𝑉 −
𝐴 ∗

(p, ba, q),  𝑉 +
𝐴 ∗

(q, ab, p) = 𝑉 +
𝐴 ∗

(p, ba, q) for all p, q  Q, and                    a, b  X. 

Definition 5.3: 

f a bvfsm M = (Q, X, A) is both swiching and commutative, we say that M is a bipolar vague finite switchboard 

state machine (bvfssm, for short)  

Example 5.4: 

Let M = (Q, X, A) is a bvfsm, where Q = {p, q, r}, X = {a, b} and let 𝐴 𝑄   = (𝑉 −
𝐴𝑄

, 𝑉 +
𝐴𝑄

) is defined as 

follows:  

 

It is easy to see that M = (Q, X, A) is bvfssm. 

Proposition 5.5: 

If M = (Q, X, A) is a commutative bvfsm, then 𝑉 −
𝐴 ∗

(q, xa, p) = 𝑉 −
𝐴 ∗

(q, ax, p),  
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 𝑉 +
𝐴 ∗

(q, xa, p) = 𝑉 +
𝐴 ∗

(q, ax, p) for all p, q  Q, and a  X and x  𝑋 ∗. 

Proof: 

Let p, q  Q, a  X and x  𝑋 ∗.  Suppose  𝑥   = n.  If n = 0, then x = .   

Thus 𝑉 −
𝐴 ∗

(q, xa, p) = 𝑉 −
𝐴 ∗

(q, a, p) =   𝑉 −
𝐴 ∗

(q, a, p) = 𝑉 −
𝐴 ∗

(q, a, p) = 𝑉 −
𝐴 ∗

(q, xa, p) and 𝑉 +
𝐴 ∗

(q, xa, p) = 

𝑉 +
𝐴 ∗

(q, a, p) =   𝑉 +
𝐴 ∗

(q, a, p) = 𝑉 +
𝐴 ∗

(q, a, p) = 𝑉 +
𝐴 ∗

(q, ax, p).  Suppose the result is true for all u  𝑋 ∗  

with  𝑢   = n-1, n  0.  Let b  X be such that x = ub.  Then 𝑉 −
𝐴 ∗

(q, xa, p) = 𝑉 −
𝐴 ∗

(q, uba, p) =  [𝑟 ∈𝑄
𝑖𝑛𝑓 𝑉 −

𝐴 ∗
(q, u, 

r)  𝑉 −
𝐴 ∗

(r, ba, p)] = [𝑟 ∈𝑄
𝑖𝑛𝑓 𝑉 −

𝐴 ∗
(q, u, r)  𝑉 −

𝐴 ∗
(r, ab, p)] = 𝑉 −

𝐴 ∗
(q, uab, p) = [𝑟 ∈𝑄

𝑖𝑛𝑓 𝑉 −
𝐴 ∗

(q, ua, r)  𝑉 −
𝐴 (r, b, 

p)] = [𝑟 ∈𝑄
𝑖𝑛𝑓 𝑉 −

𝐴 ∗
(q, au, r)  𝑉 −

𝐴 (r, b, p)] = 𝑉 −
𝐴 ∗

(q, aub, p) = 𝑉 −
𝐴 ∗

(q, ax, p) and 𝑉 +
𝐴 ∗

(q, xa, p) = 𝑉 +
𝐴 ∗

(q, uba, 

p)                       =  [𝑟 ∈𝑄
𝑠𝑢𝑝 𝑉 +

𝐴 ∗
(q, u, r)  𝑉 +

𝐴 ∗
(r, ba, p)] = [𝑟 ∈𝑄

𝑠𝑢𝑝 𝑉 +
𝐴 ∗

(q, u, r)  𝑉 +
𝐴 ∗

(r, ab, p)] = 𝑉 +
𝐴 ∗

(q, uab, p)                    

= [𝑟 ∈𝑄
𝑠𝑢𝑝 𝑉 +

𝐴 ∗
(q, ua, r)  𝑉 +

𝐴 (r, b, p)] = [𝑟 ∈𝑄
𝑠𝑢𝑝 𝑉 +

𝐴 ∗
(q, au, r)  𝑉 +

𝐴 (r, b, p)] = 𝑉 +
𝐴 ∗

(q, aub, p)                       = 

𝑉 +
𝐴 ∗

(q, ax, p).  This completes the proof. 

 Proposition 5.6: 

If M = (Q, X, A) is a bvfssm, then 𝑉 −
𝐴 ∗

(q, x, p) = 𝑉 −
𝐴 ∗

(p, x, q) , 𝑉 +
𝐴 ∗

(q, x, p) = 𝑉 +
𝐴 ∗

(p, x, q) for all p, q  Q 

and x  𝑋 ∗. 

Proof: 

Let p, q  Q and x  𝑋 ∗.  We prove the result by induction on  𝑥   = n.  Since x =  whenever n = 0, we have  

𝑉 −
𝐴 ∗

(q, x, p) = 𝑉 −
𝐴 ∗

(q, , p) =  𝑉 −
𝐴 ∗

(p, , q) = 𝑉 −
𝐴 ∗

(p, x, q) and                       𝑉 +
𝐴 ∗

(q, x, p) = 𝑉 +
𝐴 ∗

(q, , p) 

=  𝑉 +
𝐴 ∗

(p, , q) = 𝑉 +
𝐴 ∗

(p, x, q).  Hence the result is true for                  n = 0.  Assume that the result is valid 

for all u  𝑋 ∗ with  𝑢   = n-1, n  0, that is                          𝑉 −
𝐴 ∗

(q, u, p) = 𝑉 −
𝐴 ∗

(p, u, q) ,  𝑉 +
𝐴 ∗

(q, u, p) = 

𝑉 +
𝐴 ∗

(p, u, q).  Let a  X and x  𝑋 ∗ be such that x = ua.  Then 𝑉 −
𝐴 ∗

(q, x, p) = 𝑉 −
𝐴 ∗

(q, ua, p) = [𝑟 ∈𝑄
𝑖𝑛𝑓 𝑉−

𝐴 ∗
(q, 

u, r)  𝑉 −
𝐴 (r, a, p)]                              = [𝑟 ∈𝑄

𝑖𝑛𝑓 𝑉 −
𝐴 ∗

(r, u, q)  𝑉 −
𝐴 (p, a, r)] = [𝑟 ∈𝑄

𝑖𝑛𝑓 𝑉 −
𝐴 ∗

(r, u, q)  𝑉 −
𝐴 ∗

(p, a, r)] 

= [𝑟 ∈𝑄
𝑖𝑛𝑓 𝑉 −

𝐴 ∗
(p, a, r)  𝑉 −

𝐴 ∗
(r, u, q)] =  𝑉 −

𝐴 ∗
(p, au, q) = 𝑉 −

𝐴 ∗
(q, ua, p) = 𝑉 −

𝐴 ∗
(p, x, q) and 𝑉 +

𝐴 ∗
(q, x, p)                               

=                𝑉 +
𝐴 ∗

(q, ua, p) = [𝑟 ∈𝑄
𝑠𝑢𝑝 𝑉 +

𝐴 ∗
(q, u, r)  𝑉 +

𝐴 (r, a, p)] = [𝑟 ∈𝑄
𝑠𝑢𝑝 𝑉 +

𝐴 ∗
(r, u, q)  𝑉 +

𝐴 (p, a, r)]                            

= [𝑟 ∈𝑄
𝑠𝑢𝑝 𝑉 +

𝐴 ∗
(r, u, q)  𝑉 +

𝐴 ∗
(p, a, r)] = [𝑟 ∈𝑄

𝑠𝑢𝑝 𝑉 +
𝐴 ∗

(p, a, r)  𝑉 +
𝐴 ∗

(r, u, q)] =  𝑉 +
𝐴 ∗

(p, au, q)                           = 

𝑉 +
𝐴 ∗

(q, ua, p) = 𝑉 +
𝐴 ∗

(p, x, q).  This shows that the result is true for  𝑢   = n.  This completes the proof. 

Proposition 5.7:     

If M =  (Q, X, A) is a bvfssm, then 𝑉 −
𝐴 ∗

(q, xy, p) = 𝑉 −
𝐴 ∗

(q, yx, p),                                             𝑉 +
𝐴 ∗

(q, xy, p) 

= 𝑉 +
𝐴 ∗

(q, yx, p) for all p, q Q and x, y  𝑋 ∗. 

Proof: 

Let p, q  Q  and x, y 𝑋 ∗.  Assume that  𝑦   = n.  If n = 0, then y =  and so  𝑉 −
𝐴 ∗

(q, xy, p) = 𝑉 −
𝐴 ∗

(q, x, p) 

= 𝑉 −
𝐴 ∗

(q, x, p) = 𝑉 −
𝐴 ∗

(q, yx, p) and 𝑉 +
𝐴 ∗

(q, xy, p) = 𝑉 +
𝐴 ∗

(q, x, p)                        = 𝑉 +
𝐴 ∗

(q, x, p) = 

𝑉 +
𝐴 ∗

(q, yx, p).  Suppose that 𝑉 −
𝐴 ∗

(q, xu, p) = 𝑉 −
𝐴 ∗

(q, ux, p) and          𝑉 +
𝐴 ∗

(q, xu, p) = 𝑉 +
𝐴 ∗

(q, ux, p).  Let 

 𝑢   = n, n  0.  Let y = ua where a  X and u  𝑋 ∗ with   𝑢   = n-1, n  0.  Then 𝑉 −
𝐴 ∗

(q, xy, p) = 𝑉 −
𝐴 ∗

(q, xua, 

p) = [𝑟 ∈𝑄
𝑖𝑛𝑓 𝑉 −

𝐴 ∗
(q, xu, r)  𝑉 −

𝐴 (r, a, p)]            = [𝑟 ∈𝑄
𝑖𝑛𝑓 𝑉 −

𝐴 ∗
(q, ux, r)  𝑉 −

𝐴 (r, a, p)] = [𝑟 ∈𝑄
𝑖𝑛𝑓 𝑉 −

𝐴 ∗
(r, ux, q)  

𝑉 −
𝐴 (p, a, r)] = [𝑟 ∈𝑄

𝑖𝑛𝑓 𝑉−
𝐴 (p, a, r)  𝑉 −

𝐴 ∗
(r, ux, q)] =  𝑉 −

𝐴 ∗
(p, aux, q) = [𝑟 ∈𝑄

𝑖𝑛𝑓 𝑉 −
𝐴 ∗

(p, au, r)  𝑉 −
𝐴 (r, x, q)] = 

[𝑟 ∈𝑄
𝑖𝑛𝑓 𝑉 −

𝐴 ∗
(p, ua, r)  𝑉 −

𝐴 (r, x, q)] = 𝑉 −
𝐴 ∗

(p, uax, q) = 𝑉 −
𝐴 ∗

(q, uax, p) = 𝑉 −
𝐴 ∗

(q, yx, p) and 𝑉 +
𝐴 ∗

(q, xy, p)                           

= 𝑉 +
𝐴 ∗

(q, xua, p) = [𝑟 ∈𝑄
𝑠𝑢𝑝 𝑉 +

𝐴 ∗
(q, xu, r)  𝑉 +

𝐴 (r, a, p)] = [𝑟 ∈𝑄
𝑠𝑢𝑝 𝑉 +

𝐴 ∗
(q, ux, r)  𝑉 +

𝐴 (r, a, p)]                  = 

[𝑟 ∈𝑄
𝑠𝑢𝑝 𝑉 +

𝐴 ∗
(r, ux, q)  𝑉 +

𝐴 (p, a, r)] = [𝑟 ∈𝑄
𝑠𝑢𝑝 𝑉 +

𝐴 (p, a, r)  𝑉 +
𝐴 ∗

(r, ux, q)] =  𝑉 +
𝐴 ∗

(p, aux, q)               = 

[𝑟 ∈𝑄
𝑠𝑢𝑝 𝑉 +

𝐴 ∗
(p, au, r)  𝑉 +

𝐴 (r, x, q)] = [𝑟 ∈𝑄
𝑠𝑢𝑝 𝑉 +

𝐴 ∗
(p, ua, r)  𝑉 +

𝐴 (r, x, q)] = 𝑉 +
𝐴 ∗

(p, uax, q)                      = 

𝑉 +
𝐴 ∗

(q, uax, p) = 𝑉 +
𝐴 ∗

(q, yx, p).  This completes the proof. 
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