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Abstract— Galois Theory, a wonderful part of mathematics with historical roots date back to the solution of 

cubic and quantic equations in the sixteenth century. However, besides understanding the roots of polynomials, 

Galois Theory also gave birth too many of the central concepts of modern algebra, including groups and fields. 
In particular, this theory is further great due to primarily for two factors: first, its surprising link between the 

group theory and the roots of polynomials and second, the elegance of its presentation. This theory is often 

described as one of the most beautiful parts of mathematics. Here I have specially worked on field extensions. 

To understand the basic concept behind fundamental theory, some necessary Theorems, Lammas and 

Corollaries are added with suitable examples containing Lattice Diagrams and Tables. In principle, I have 

presented and solved a number of complex algebraic problems with the help of Galois theory which are 

designed in the context of various rational and complex numbers. 
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I. INTRODUCTION 

            In  algebra,  fields  are  one  of  the  important  objects  of  study. Since  they  provide  a  useful  

generalization  of  many  number  systems  such  as a the  rational   numbers. Fields also   appear in many other 
areas of mathematics. Fields  theory  considers sets, such  as  real  number  , on  which  all  the  usual  arithmetic  

hold,  those  governing  addition,  multiplication  and  division. The  study  of  fields  through  Galois  theory  is  

important  for  the  study  of   polynomial  equations  and  thus  has  application  to  number  theory.  

Specifically,  a  field  is  a commutative  ring  in  which  every  non  zero  element  is  assumed  to  have  a  

multiplicative  inverse. Algebraic  extensions  are  those  in  which  every  element  of   K  is  the  root  of  

polynomial  with  co  efficient  in  F,  elements  of  K  which  are  not  algebraic  are  trace  dental  over  fetus  C  

is  an  algebraic  extension  of  R,  and  the  field  of   rational   function  F(x)  is   one  variable  is  trace  dental  

over  F. the  most  significant  topic   in  field  theory  proper  involves  the  study  of  field  extensions  K/F,  in  

particular  Galois  theory. Galois  theory  arises  out  of  the   study  of  polynomials  over  fields  and  adjoining   

roots  of   polynomials  to  construct  new  fields.  An  algebraic  field  extension   by   looking  at  the  action  of  

group  of  auto orphisms   of  a  given  extension.  Galois Theory is the interplay between   fields and groups. 

II. BASIC  DEFINITIONS  AND  EXAMPLES 

Definition 1:1 

A non empty set G together with an operation   is called a group.  If the following conditions are satisfied. 

Closure axiom:   

For all a, b  ∊ G ⇒ a*b ∊ Ga 

Associative law 

(a*b) *c = a*(b*c) for all a, b, c ∊ G 

Existence  of  identity: 

There  exist  an  element  e ∊ G  called  identity  such  that a*e = e*a = a  for  all  a ∊ G. 
Existence  of  inverse: 

For  every  a ∊ G, there  exist  a-1  ∊ G  such  that a-1*a =  a* a-1 = e  an   element  a-1  is   called  inverse  of  ‗a‘ 

Definition 1:2 

Let  R  be  a  non  empty  set  and  a,b,c  ∊ R  be  arbitrary.  The  set  R  with  two  binary  operations  addition  

and   multiplication  is  called  a  ring. 

If the following conditions are satisfied. 

(R,+)  is  an  abelian  group, 

Closure axiom: a,b ∊ R  ⇒  a+b ∊ R   
Existence of identity:  

There  exist  0  R, called  additive  identity  or  zero  element  such that  a + 0 = 0+a = a. 

Existence   of  inverse : For  all  a ∊ R  ⇒ -a ∊ R,  called  additive  inverse  of  ‗a‘ such  that  -a + a = a + (-a) = 0   

Associative law: (a+b) +c = a + (b+c) 
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Commutative law: a + b = b+ a 

(R,) is semi group 

   Closure axiom: a,b ∊ R  ⇒  ab ∊ R 

   Associative law: (ab) c = a(bc) 

   Distributive law: ie., a (b+c)  = ab + ac 
                                     (b+c) a = ba + ca 

Definition 1:3 
A  field  is  a  commutative  ring  with  unit  element  in   which  every  non  zero  element  has  a  multiplicative  

inverse. 

Definition 1:4 

A   subset S of a field (F, +,) is said to be a subfield.  If  S is  closed  with   respect  to  addition  and  

multiplication  in   F and  is  itself  a  field  with  two  conditions. 

1)  a ∊ S , b ∊ S ⇒ a+b ∊ S 

2) a   ∊ S , b ∊ S (b ≠ 0)  ⇒ ab-1 ∊ S 

Definition 1:5 
Let  K  be  an   extension  field   of  a  field  F  then  K  is  a  vector  space  over  F.  The  dimension  of  the  

vector  space  K(F)  is  called  degree  of  K  over  F and  is  denoted  by  [ K:F]. 

Definition 1:6  

Let  F   be  a  given  field,  K  is  said   to  be  an  extension  of   field  F  if  F  is  a subfield  of  K.  ie, K  F. 

Definition 1:7  
         If  the  dimension  of   the  vector  space  K  over  F   is  finite  then  K  is a  finite  field extension  of   

the   field  F. 

Definition 1:8  
Let (F, +,) be a field.  Then  a  non  empty  set  V  together  with  two  binary  compositions  vector  addition  

and  scalar  multiplication. ie.,  external  composition  is  called  a  vector  space  over  the  field  F.  If the 
following conditions are satisfied. 

(V, +) is an aphelion group 

Any   u ∊ V, and a ∊ F ⇒ au ∊ V 

This law must satisfy the following conditions: 

Multiplication by scalar is distributive over vector addition 

 a(u+v)  = au + av  for  all  u,v ∊ V  and  a,b ∊ F 

 (ab) u = a(bu)    a,b ∊ F and  u ∊ V 

For the unit element, 1 ∊ F 

   1 u = u for all   u ∊ V. 

Definition: 1:9 
Let  v(F)  be  a  vector  space  and  a  vector  u  express  in  the  form  u = a1 u1 +  a2 u2 +……..+ an un  ie.,)  u = 

i ui  is  called  a  linear  combination  of  vectors  u1, u2, ….un   belonging  to  V,  where  ai ∊ F  for  all i. 

Definition: 1:10 

A  set   containing  the  vectors  u1, u2, ….ur  defined  over  a  field  F  is  said  to  be  linearly  

dependent.  If  there  exist  scalars  a1 , a2 …….ar ∊ R (not  all  zero )  such   that    a1 u1 +  a2 u2 +……..+ ar ur  = 

0. 

Definition: 1:11   
      A  set   containing  the  vectors  u1, u2, ….ur  defined  over  a  field  F  is  said  to  be  linearly 

independent.   If it is not linearly dependent. 

Definition: 1:12    

Let F be a field.  A one-to-one map   : F  F is called auto Orphism of the field F if 

i) (x +y) =  +  

ii)    =   

Definition: 1:13 

A  group  in   which  each  element  can  be  expressed  as  power  of  another  element  is  called  cyclic  

group. 

Definition: 1:14   

If  R  is  a  commutative  ring  then  a ≠ 0 ∊ R  is  said  to  be  a  zero  divisor.  if  there  exists  an  

element  b ∊ R, b ≠ 0  such  that  ab = 0. 

Definition: 1:15 
         A commutative ring is an integral domain.  If it has no zero divisors. 
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Definition: 1:16 

 A  mapping  :G    is  said  to  be   a  homomorphism.  If for all a,b ∊ G   then   (a) 

(b). 

Example: 1.1 

Let   : G     defined by (x) = 2x be a homomorphism. Where G be a group of integers under 

multiplication and   = G for integer x ∊ G. 

Proof: 

          (xy) = 2 (xy) 

                        = 2x. 2y 

                        = (x) (y)            

Therefore,  is a homomorphism 

Definition: 1:17   
    An   integral domain D is said to be of characteristic 0.  If the relation ma = 0. Where  a ≠ 0  is  in  D  and  

where  m  is  an  integer  can  hold  only  if  m = 0. 

Definition: 1:18       

A homomorphism    : G    is said to be an   isomorphism. If    is 1-1. 

Example: 1.2 

Let   : G    defined by    (x) = 2x is an isomorphism. Where  G  be  a  group  of  all  real  numbers  

under  addition  and    be  the  group  of  non  zero  real  numbers  with  ordinary  multiplication. 

Proof: 

Let x ∊ G, y ∊ G 

Now (x) = 2x 

        (y) = 2y 

       (x) = (y) 
           2x = 2y 

             x = y is one-to-one. 

Hence is isomorphism. 

III. GALOIS  THEORY 

Definition: 4.1 

Let  K  be  extension  field  of  F. so  that  F  is  a  subfield  of  K.  Then  group of  Automorphism  of  K relative  

to  F  is  called  Galois group  of  K  over  F  is  denoted  by G (K,F)  ie.,  an  automorphism    is  in   G (K,F)  

if  (x)  = x  x ∊ F. G (K,F)  is  a  subgroup  of  the  group  of  automorphism  of  K. 

Definition: 4.2 

 A  field  F  with  Pn   elements  is  called  a Galois field  and  is  denoted  by  GF (Pn)  P  being  a  prime  

positive  integer. 

Theorem: 4.1 

The multiplicative group of Galois field is cyclic. 

Proof: 
Let F be a finite field of characteristic P, where P is a prime number. 

Let  n  be  a positive  integer  and  K  be  the  splitting  field  for  the  polynomial  xq – x  Over  F. where  q =  Pn    

K is called Galois field and is denoted by GF (Pn)   

K contains Pn = q elements 

          The  elements  of  K   are  the  roots  of  the  polynomial   xq – x  in  K. 

Let   K'  denote  the  set  of  non-zero  elements  of  K. 

          xq – x  = x (xq-1  - 1) 

Hence elements of K‘ are the roots of the   polynomial, 

     xq-1 - 1=  xpn-1 – 1 

                     = xm – 1 

Where m = pn-1          

The   elements   of   K‘ form a multiplicative group 

To prove   K‘ is cyclic. 
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It  is  enough  to  prove  that  K'  has  an  element  of order  pn  - 1 = m. if  ‗a‘  and  ‗b‘ are  the  elements  of  a  

finite  abelian  group  such  that  0(a) = r  and  0(b) = s. 

Then  there  exist  an  element  C ∊ G  such  that  0(c) = least common  multiple  of  r and  s.  since order  of  

elements  of  K'   are  finite  and  hence  there exist  an  Element   in  K'. 

The  order  is  the  least  common  multiple  of  all  the  others. 
Let this order be m‘. 

Consider the polynomial xm‘ -1 

 Any  α ∊ K'. 

 ⇒   α  is  a  root of  xm'  -1 

 ⇒  α  satisfies   xm'  -1 

 ⇒  xm'  -1  has  m'  root. Where  m'   m 
Since  xm'  -1  cannot  have  more  than  m'  roots  in  the  field. 

Therefore  m = m', Hence  the  multiplicative  group  of  galois  field  is  cyclic, Hence  K  is  cyclic. 

Theorem: 4.2   

Let  K'  be  a  subfield  of  the  Galois  group  GF (Pn)   then  there  exists  an  Integer  m  such  that  K'   contains  

pm   elements  and   m/n. 

Proof: 
Given  that  K'  be  a  subfield  of  the  galois  group   GF (Pn)   

To  prove  then  there  exists  an  integer  m ∋ K'  contains  (pm)  element  and   m/n. And  K'  is  the  subfield  of  

GF (Pn)  and characteristic  of  GF (Pn)  is p. 

Hence characteristic    K' = p. 

Consequently K‘   contains pm elements for some positive integer m. 

GF (Pn) can be regarded as a vector   space over K‘.  

Since GF (Pn) is finite. 

Hence   GF (Pn)   is the finite dimensional vector space over K‘.   

Let  u1 , u2, …………us   as   a  basis  of  GF (Pn)   then  S  is a  finite  integer. 

Consider α ∊ K‘, x ∊ GF (Pn). then  the  scalar  product   αx  is  the  same  as   αa ∊ GF (Pn)  and  (pm)s  = pms  = 
number  of  elements  in GF (Pn)  =  Pn , pms  =   Pn, ms = n, m/n                                                                                                                                                                                                                              

Hence  K'   contains  pm   elements  and   m/n. 

Theorem: 4.3 
   Let  F  be  any  subfield  of  K  and  group  of  automorphism  of  K. then Fixed   field  of  G  is  a  subfield  

of  K  and  G  be  any  group  of  automorphism  of  K. 

Proof: 

  Given  that  F  be  any  subfield  of  K  and   G  be  any  group  of  automorphism  of  K . to  prove  fixed  

field  of  G  is  a  subfield  of  K. 

A  subset A  of   k  such  that,  A = (x ∊ K: (x)  = x     ∊ G )  is  called  fixed  of  field  of  G. 

To prove A is a subfield of   K. 

x,y  ∊ A 

⇒  x,y  ∊ K  such  that    (x) =  x  and    (y) = y     ∊ K. 

⇒  x-y  ∊ K  such  that   (x-y)  =   (x + (-y) ) 

                                                    =   (x ) +  (-y)  
By   the property of automorphism 

                                         (x-y)  =   (x ) +  (-y)  

                                                     =  (x ) -  (-y)  
                                                      = x-y 

                                          (x-y)  = x-y 

                                   x-y  ∊ K  ⇒  x-y ∊ A 

x,y ∊ A  such  that  y ≠ 0 

⇒    (x ) = x 

⇒   (y) = y 

                          ∊ G and x, y ∊ K ∋ y ≠ 0 

                                       ⇒ xy- 1 ∊ K 

  Since   is isomorphism 

     ⇒  xy-1 ∊ K   such  that   (xy-1 )  =  xy-1     ∊ G 
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                                           ⇒ xy-1 ∊ A 

                                           x-y ∊ A ⇒ x-y ∊ A 

                                And x, y ∊ A such that   y ≠ 0 

                                           ⇒ xy-1 ∊ A 

                                  Also A  K 

                        Hence A is a subfield of K.  

Theorem:  4.4   

Let  F  be  any   subfield  of  K  and  G  any  group  of  automorphism of  K then  G(K,F)  is  a  subgroup  of  the  

automorphism  group  of  K. 

Proof:   
Given  that  F  be  a  subfield  of  K,  so  that  F  itself  is a  field  and  G  be  the Group  of  automorphism  of  K. 

To  prove   G(K,F)  is  a   subgroup  of  the  automorphisms  group   of  K. 

G  is  the  group  of  mapping    such  that   : K  K  is  one-one  onto And    (x+y)  =   (x ) +  (y)  

           (x+y)  =   (x)  (y)  

Define G (K, F) = {  ∊ G:  (x) = x  x ∊ F} 

          G (K, F)   G. 

To prove G (K, F) is a subgroup of G 

Let f, g  ∊  G(K ,F)  be  arbitrary.  Then  f,g  are  automorphisms  of  K  such  that  f(x)  = x, g(x)  = x   x ∊ F f  
and  g  are  automorphisms  of  K. 

f: K  K and  g: K   K  are  one to one  onto  map 

f(x + y)  =  f(x) + f(y) 

f (xy)  = f(x) f(y)   x,y ∊ F 

 ⇒ fg: K  K  is  one-one  onto  map 

If   x, y ∊ K, then 

(fg) (x+y)  = f (g(x+y)) 
                        = f[g(x) +  g(y)] 

                        = f[g(x)]  +  f[g(y)] 
                        = (fg)(x)  +  (fg)(y) 

     Also (fg) (xy) = f [g(xy)]    

                       =f [g(x) g(y)] by (3) 

                       = f[g(x) ] f[g(y)] 

                       = (fg) (x) (fg) (y) 

To  show  that  fg : K  K  is  one  to  one  onto  map  such  that 

           (fg) (x +y)  = (fg) (x) + (fg) (y) 

           (fg) (xy) = (fg) (x) (fg) (y) 

This  proves  that  fg  is  an  automorphism  of  K  and  hence  fg  ∊ G: 
            (fg) (x)  = f [g(x)] = f(x) 

                          = x    x ∊ F 

               ie., (fg) (x) =   x    x ∊ F 

                                  ⇒ fg  ∊ G(K,F)        

⇒ f1: K  K is one to one onto map 

              Let   f(x) = x' 

                      f(y)  = y'   x,y ∊ F 

Then x‘, y' ∊ K and f1 (x') = x 

                     f1 (y') = y 

                 f(x+y) = f(x) + f(y) 

               f1 (x+y) =  x'  +y' 

This   ⇒  x+y =  f 1(x'  +y') 

⇒   f 
1
(x'  +y')  = x+y 

         f 1(x'  +y')  = f1 (x') +f1 (y')  

   ⇒  f 1(x'  +y')  = f1 (x') +f1 (y')  

         And   f(xy)  = f 1( xy) 

                       f(xy)  = x'y' 
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               ⇒  xy  =   f 1(  x'y') 

                  = f1 (x') f1 (y') 

               ⇒ f 1(  x'y')=  f1 (x') f1 (y') 

If   x ∊F , 
                 Then f(x) = x 

           So that  f1 (x') = x 

To   show that f1: K  K  is  one-one  onto  map                          

   and   f 1(x'  +y')   = f1 (x') +f1 (y')                

                   f 1(  x'y') =  f1 (x') f1 (y')  x', y' ∊ K   

                   f1 (x') = x  x ∊ F 

To prove that   f1 is an automorphism of K such that f1 (x') = x  x ∊ F 

Consequently   f1 ∊ G(K,F) 

                           fg  ∊ G(K,F)        

                     ⇒ fg, f1  ∊ G(K,F) 

                      ⇒   G(K,F)  is  a  subgroup  of  G. 
Hence  G(K,F)   is  a  subgroup  of   the  automorphisms  group   of  K  is  proved. 

Theorem:4.5 

         Let  K  be  a  field  and  let   1,   2   …………,   n  be distinct automorphisms  of  K.  Then it is 

impossible to find elements  
a1, a2, ……..an  not  all  zero,  in   K  such  That   

a1  1 (u) +  a2    2 (u) +  …….. +an   n(u)  = 0  u ∊ K. 

 

Proof: Given  that   K   be  a  field  and   1,   2   ……..,   n  be  distinct  automorphisms  of  K.  To  prove  it  is  

impossible  to  find  elements   

a1 , a2, ……..an  not  all  zero,  in   K  such  That  

 a1  1 (u) +  a2    2 (u) +  …….. +an   n(u)  = 0  u ∊ K. 
Suppose  if  possible, 

To  find  elements  a1 , a2, ……..an  not  all  zero,  in   K  such   that 

a1  1 (u) +  a2    2 (u) +  …….. +an   n(u)  = 0  u ∊ K  ……………(1) 
In   equation (1) , to  find  a  relation  which  has  a  few non  zero  terms  as  possible. 

Let  the  minimal  relation be  a1  1 (u) +  a2    2 (u) +  …….. +am    m(u)  = 0  

 u ∊ K……..(2) 

Where each  ar ≠ 0  for  1   r    m   
If  m=1, 

Then (2)       ⇒ a1  1 (u) = 0   u ∊ K. 

                     ⇒   a1  1 (1) = 0 

                     ⇒   a1 1  = 0 

                     ⇒    a1 = 0 

        It is contradiction to   a1 ≠ 0 

                 Hence m   1 

By   assumption   1   ≠   m     and  so  there  exist  an element  c ∊ K such  that 

 1(c)    ≠   m (c)  

                  Also c, u ∊ K 

                     ⇒ c u ∊ K 

Equ (2)  ⇒  a1  1 c (u) +  a2    2  c(u) +  …….. +am   m   c (u)  = 0  u ∊ K 

  ⇒  a1  1( c )  1( u ) +  a2   2 (c)  2 (u) +  …+am  m (c)  m (u) = 0……(3)                                         

Multiply   equ  (2)  by   1( c ) 

a1  1( c )  1( u ) +  a2    1  (c)   2 (u) +  …….. +am   1 (c)   m (u) = 0  u ∊ K  ………(4) From  (3) -  (4) 
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a1  1( c )  1( u ) +  a2    2  (c)   2 (u) +  …….. +am   m (c)    m (u)   

       -a1  1( c )  1( u ) +  a2    1  (c)   2 (u) +  …….. +am   1 (c)   m (u)  = 0  

  a2   2 (u) [  2 (c) -   1(c)] + …………   am  m (u) [  m(c) -   1 (c) ] = 0 

            set  bi = ai  [  i (c) -   1 (c) ]               for  i  =  1,2,…….m 

since  am  ≠ 0 ,   m(c)  ≠   1 (c)                                                                                   

⇒ b m  ≠ 0 

Also bi ∊ K 

Hence   b2  2 (u) + b3   3 (u) +….. +bm    m(u)  = 0  ……………(5) 

 

This is true    u ∊ K. Equation (5) contains m-1 terms such that b m ≠ 0. Now  it  is  possible  for  us  to  find  a  

relation  of  type  (1)  having  less  than  m  non  Zero  terms. It  is  contradiction  to  initial  assumption  equ  (2)  

is  a  minimal relation. Hence our initial assumption is wrong.  Hence  it  is  impossible to  find   Element   a1 , 

a2, ……..an  not  all zero ,  in   K  such  that  a1  1 (u) +  a2    2 (u) +  …….. +an   n(u)  = 0   u ∊ K. 

IV. CONCLUSIONS 

Finite   fields   are  used  in  application  of   coding   theory,   many    codes  are  Constructed   as  subspaces   

of   vector  spaces   over  finite   fields . counting   solutions  of  Equations  over  finite  fields   into  deep  

questions  in  algebraic  geometry. Galois Theory   uses   groups   to describe the symmetric   of the root of 

Polynomials.   The theory   being one of the historical   roots of group theory.  It  is  used to  yield  new   results  

in  areas  as  such  as  class  field  theory. One advantage   in   splitting is the save of space in some situations.  

Ex., a  long  Text  field  for  extra  comments  or  notes,  which  is  used  only  rarely,  its  economical  to 

Separable  it  to  a  different  table. Galois  theory  not  only  provides  a  beautiful   answer  to  this  question,  it  
also  Explains   in  detail  why  it  possible  to  solve  equations  of  degree four  or  lower  in  the  Above  

manner  and  why  their  solutions  take   the  form  that  they  do. Further, it  gives  a Conceptually  clear  and  

often  practical,  means  of  telling  when  some  particular   Equations  of  higher   degree  can  be  solved   in  

that  manner.  Galois  theory   originated  in  the  study  of  symmetric   functions  the  co-efficient  Of  a  monic  

polynomial   are  the  elementary  symmetric  polynomials  in  the  roots. Algebraic   extensions   involve   

splitting field of polynomials.  Field is algebraic Study of single polynomials.  The   general  algebraic  

extension  of  an  polynomial  could  Appropriately  occur   in  many  subfields  of  number  theory  or  field  

theory, for  example,  The  extension field  generates  in  algebraic  number theory. The  algebraic  study  of  

general   collections  of  polynomial  is  appropriate  for  ring  theory , specific families  of  polynomials. 
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