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ABSTRACT : This paper is on the study of continuous acceptance sampling plans for Truncated Lindley 

distribution and optimization of CUSUM Schemes by using Gauss- Chebyshev integration method.  In most of the 

life test experiments, the Truncated failure models are used to determine an optimal Truncated point.  In the present 
study, we assume that the life of the units produced is distributed according to Truncated Lindley distribution.  In a 

situation where there is a constraint on the lower part and upper part of the lifetime of units, Truncated failure 

models can be employed to study lifetime behavior of the items. Thus we study the lifetime of the units by using 

Truncated Lindley failure model.  The objective of this paper is to optimize CASP – CUSUM Schemes through 

Truncated Lindley distribution.  Solving integral equations by the Method of Gauss – Chebyshev integration we 

determine the probability of acceptance at various hypothetical values of the parameters. Finally based on the 

obtained results we determine the maximum values of Average Run Length and Probability of Acceptance.  

 

Keywords: CASP – CUSUM Schemes, Optimal Truncated Point, optimal lower Truncated Point, Optimal upper 

Truncated Point, Truncated Lindley distribution.   

 
I. INTRODUCTION 

                    In modern days consumers are sensitive with regard to the quality and reliability of the products. In 

ordered to meet consumer‟s satisfaction or demand, the manufacturer has to produce the items with high quality and 

reliability. Further, they have to make sure that the process should be free from assignable causes and eliminate 

assignable causes from the production process. For this statistical devices have been introduced by many 

researchers. In the beginning, Dodge and Roming introduced acceptance sampling plans for product control. Quality 

of the products is being maintained in two distinct phases namely 1. Process control 2. Product control. Maintaining 

the quality of the products by using quality control charts is called process control while maintaining the quality of 

the products by the sampling inspection method is called product control. As per as product control is concerned 
much research work has been carried out by Hawkins[4], verdeman[9] etc.   

 

                 The acceptance sampling plan was first applied in the US military for testing the bullets during World 

War II. For instance, if every bullet tested in advance, no bullets are available for shipment, and on the other hand, if 

no bullets are tested, then disaster may occur in the battlefield at the crucial time.  An acceptance sampling plan is a 

middle path between 100% inspection and no inspection.  

 

                  An acceptance sampling plan is an essential device in Statistical Quality Control. In most of the statistical 

quality control experiments, it 100 % inspection of the items produced is not possible due to various reasons.  For 

instance, 100% inspection involves, more time, more money, manpower, material, machinery etc. even the sample is 

finite, 100% inspection practically not feasible in case of explosive type materials like crackers, bombs, batteries, 

bulbs etc. The test can be performed without waiting until all the products fail, and then testing time can be reduced 
significantly. For the purpose of reduces test time and cost, obviously truncated life model is used.   

 

                  The item which is confirming the quality specifications required by the consumer is referred to as quality 

items.  Quality of an item is subjected to the reliability; one should adopt certain measures such as life testing 

through various probability models, preventing measures, sampling inspection CUSUM Schemes etc.  In the process 

of improving the quality of products, it should be examined whether the items produced performing their intended 

duties or not.  The items are available up to the warranty time, and how best they satisfy the consumer needs.   
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                Life tests experiments are carried out in order to obtain the lifetime of an item (i.e. time to its failure or the 

stops working satisfactorily).  Sometimes, it may time consuming process as we have to wait until all the products 

fail in a life test if the lifetimes of products are high.   

 

                Hawkins, D. M. [4] Proposed a fast accurate approximation for ARL‟s of a CUSUM Control Charts. This 

approximation can be used to evaluate the ARL‟s for Specific parameter values and the out of control ARL‟s of 
location and scale CUSUM Charts.     

 

                Kakoty. S., Chakravarthy A.B. [6] Determined CASP-CUSUM charts under the assumption that the 

variable under study follows a Truncated Normal Distribution. Generally, truncated distributions are employed in 

many practical phenomena where there is a constraint on the lower and upper limits of the variable under study. For 

example, in the production engineering items, the sorting procedure eliminates items above or bellows designated 

tolerance limits.  It is worthwhile to note that any continuous variable is first approximated as an exponential 

variable.   

 

                Vardeman.S, Di-ou Ray [9] was introduced CUSUM control charts under the restriction that the values are 

regard to quality is exponentially distributed. Further, the phenomena under study are the occurrence of the rate of 

rare events and the inter-arrival times for a homogenous poison process are identically independently distributed 
exponential random variables. 

 

                Lonnie. C. Vance [7], considered Average Run Length of Cumulative Sum Control Charts for controlling 

for normal means and to determine the parameters of a CUSUM Chart. To determine the parameters of the CUSUM 

Chart the acceptable and unacceptable quality levels along with the desired respective ARL's are considered.   

 

                Mohammed Akhtar. P and Sarma K.L.A.P [1] analyzed and Optimization of CASP-CUSUM Schemes 

based on truncated two parametric Gamma distribution and evaluate L (0), L' (0) and the probability of Acceptance 

and also Optimized CASP-CUSUM Schemes based numerical results.     

 

                 Narayana Murthy, B.R. and Mohammed Akhtar.P[10] proposed an Optimization of CASP CUSUM 
Schemes based on Truncated Log-logistic distribution and evaluate the probability of acceptance for different 

parameter values.   

 

                 Sainath.B and Mohammed Akhtar .P [12] studied an Optimization of CASP-CUSUM Schemes based on 

truncated Burr distribution and the results were analyzed at different values of the parameters.   

 

                 Venkatesulu.G and Mohammed Akhtar.P[13] Determined Truncated Gompertz Distribution and its 

Optimization of CASP-CUSUM Schemes by changing the values of the parameters and finally, critical comparisons 

are drawn based on the obtained numerical results.   

 

                Venkatesulu.G and Mohammed Akhtar.P[17] Determined Continuous Acceptance Sampling Plans for  

Truncated Lomax Distribution Based on CUSUM schemes by changing the values of the parameters and finally, 
critical comparisons are drawn based on the obtained numerical results.   

 

                 In the present paper, it is determined type-C OC Curves of CASP-CUSUM Schemes when the variable 

under study follows truncated Lindley Distribution. Thus it is more worthwhile to study some interesting 

characteristics of Type-C OC Curves based on this distribution.   

 

II. LINDLEY DISTRIBUTION 

                A continuous random variable X assuming non-negative values is said to have Lindley distribution with 

parameters θ > 0 and its probability density function is given by 

                      𝑓 𝑥 =
𝜃2

𝜃+1
(1 + 𝑥) 𝑒−𝜃𝑥   ; 𝑥 > 0, 𝜃 > 0                                                               ……. (2.1)  

              Lindley distribution is the mixture of the exponential (θ) and gamma (2, θ) distribution with pdfs f(x) = 

θ𝑒−𝜃𝑥  and f(x) =  𝜃2𝑥𝑒−𝜃𝑥     respectively. Also, the mixing proportions are 
𝜃

1 +𝜃
 and 

1

1 +𝜃
 respectively.    
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               In the lifetime theory, we study the life of a system or an item. The word system (or item or component) is 

defined as an arbitrary device performing its intended task. A system can be an electrical, electronic, mechanical or 

chemical device. Apart from manmade systems such as human beings, plants, animals, etc. that are included in the 

lifetime analysis.   

 
               A lifetime distribution represents an attempt to describe, mathematically, the length of the life of a system 

or device, with the advancement in technology new and complex types of consumable items are being produced 

every day. To model the failure data of such types of new devices we need more possible statistical distributions to 

be considered as lifetime models.   

 

               The Lindley distribution was first proposed by Lindley[15]in connection with the fiducial distribution was 

also compounded with Poisson distribution, by shankaran[16]. In a recent study, Ghitany et.al.[14] have discussed 

Lindley distribution in detail with its applications and real data example. In reliability studies, a sample of n items is 

put on the test and the experiment is terminated when all of them fail. This procedure may take a long time when the 

lifetime distribution of items has a thick tail. Moreover, if the items are expensive such as medical equipment‟s, it is 

costly to gather the whole sample information.  There are many situations where experimental units are lost or 

removed from the test, before the complete failure.   
 

                 In view of the above, truncation is used in life testing to save time and cost testing units. The removal of 

units in a test may be pre-planned. Data obtained from such experiments are called Truncated sample. Life data are 

collected for estimating the parameters and reliability functions when complete sample information is not available, 

we use the information that “the Truncated experimental units –did not fail up to a specific time” in the estimation 

procedure.     

 

PDF of the Lindley distribution graph is given by 

 Fig. 2.1 

PDF of the Lindley distribution  

 

                                                   
 

A. Truncated Lindley Distribution 

 

  It is the ratio of the probability density function of the Lindley distribution to their corresponding 

cumulate distribution function at point B. 

 

                        The random variable X is said to follow a truncated Lindley Distribution as 

 

 

                  fB(X) =
𝜃2

𝜃+1
(1+𝑥) 𝑒−𝜃𝑥

1−
𝜃+1+𝜃𝐵

𝜃+1
𝑒−𝜃𝐵

, θ>0,x>0                                                                            ……….(2.2) 

 

    Where ‟B’  is the Truncated point of the Lindley Distribution.   



International Journal of Mathematics Trends and Technology (IJMTT) – Volume 65 Issue 7 - July 2019 

 

 

ISSN: 2231-5373                             http://www.ijmttjournal.org                             Page 120 

 

                    A new distribution with one parameters named a Truncated Lindley distribution is proposed which is 

more flexible than many well-known heavily tailed distributions.  The importance of Truncated Lindley distribution 

is illustrated by means of the two real datasets is evaluated.  The results indicate that the new distribution can 

provide better fits than Exponential, Weibull, Gamma, Log-normal, Log-logistic and generalized extreme value 

distribution in insurance.  Therefore, Truncated Lindley distribution can be an alternative for modeling the 
catastrophe loss in insurance applications.   

III. DESCRIPTION OF THE PLAN AND TYPE- C OC CURVE 

 

                  Battie [2] has suggested the method for constructing continuous acceptance sampling plans. The 

procedure, suggested by him consists of a chosen decision interval namely, “Return interval” with the length h‟, 

above the decision line is taken. We plot on the chart the sum ........)3,2,1(')( 1  isXkXS iim  are 

distributed independently and k1 is the reference value. If the sum lies in the area of the normal chart, the product is 

accepted and if it lies on the return chart, then the product is rejected, subject to the following assumptions.     

 

1. When the recently plotted point on the chart touches the decision line, then the next point to be plotted at 

the maximum, i.e., h+h‟.   

2. When the decision line is reached or crossed from above, the next point on the chart is to be plotted from 
the baseline.   

When the CUSUM falls in the return chart, network or a change of specification may be employed rather 

than outright rejection.   

The procedure, in brief, is given below.    

1. Start plotting the CUSUM at 0.    

2. The product is accepted ;)( hkXS im   when Sm< 0, return cumulative to 0.     

3. When h <Sm<h+h‟ the product is rejected: when Sm crossed h, i.e., when Sm>h+h‟ and continue rejecting 

product until Sm>h+h‟ return cumulative to h+h‟.      

                   The Type-C, OC function, which is defined as the probability of acceptance of an item as a 

function of incoming quality, when the sampling rate is the same in acceptance and rejection regions. Then 

the probability of acceptance P (A) is given by   

                   
)0(')0(

)0(
)(

LL

L
AP


                                                              ……   (3.1) 

Where L (0) = Average Run Length in acceptance zone and  

           L‟ (0) = Average Run Length in rejection zone. 

Page E.S. [8] has introduced the formulae for L (0) and L‟ (0) as  

                              
)0(1

)0(
)0(

P

N
L


                            …… (3.2) 

                
)0('1

)0('
)0('

P

N
L


                            …… (3.3) 

 Where P (0) =Probability for the test starting from zero on the normal chart, 
             N (0) = ASN for the test starting from zero on the normal chart, 

            P‟ (0) = Probability for the test on the return chart and 

            N‟ (0) = ASN for the test on the return chart  

           He further obtained integral equations for the quantities 

             P (0), N (0), P‟ (0), N‟ (0) as follows 

 

h

dyzkyfyPzkFzP
0

11 )()()()( ,                                            ... (3.4) 

 

h

dyzkyfyNzN
0

1 )()(1)( ,                                                                                      …… (3.5) 
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B

zk

h

dyzkyfyPdyyfzP

1 0

1 )()(')()('                                              .….. (3.6) 

,)()('1)(' 1

0

dyzkyfyNzN

h

                    …… (3.7) 



h

A

dxxfxF :)(1)(  

dyyfzkF

zk

A





1

)(1)( 1
 

and z is the distance of the starting of the test in the normal chart from zero. 

 

 

 

IV. METHOD OF SOLUTION 

 

              We first express the integral equation (3.4) in the form  



d

c

dttFtxRXQXF )(),()()(                                …… (4.1) 

Where 

)(),(

),()(

),()(

zkyftXR

zkFXQ

zPXF







 

            Let the integral 
d

c

dxxfI )(   be transformed to  

 

   

                                                                                                                       

.                                                             .  …. (4.2) 

 

 

               Where 
cd

dcx
y






)(2
ai‟s and ti‟s respectively the weight factor and abscissa for the Gauss-Chebyshev 

polynomial, given in Jain M.K. and et al [4] using (4.1) and (4.2),(3.4) can be written as 

 

                                                                          ..…. (4.3) 
 

 

                  Since equation (4.3) should be valid for all values of x in the interval (c, d), it must be true for x=t i, i = 0 

to n then obtain. 

              ….. (4.4) 

J=0 to  n 

 

Substituting 
 

),4.4(,)(0,)(,)( inntoiQtQFtF iiii  we get  

)]),(...........),(),([
2

01101000000 nnn FttRaFttRaFttRa
cd

QF 


  

)(
2

)(
2

ii

d

c

tfa
cd

dyyf
cd

I 







)(),(
2

)()( iii tFtxRa
cd

XQXF 




)(),(
2

)()( iijiii tFttRa
cd

tQtF 
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)]),(...........),(),([
2

11111001011 nnn FttRaFttRaFttRa
cd

QF 


  

…………                          …………           ………..                      ……… 

…………                          ………….          ………..                      ………. 

)]),(...........),(),([
2

111000 nnnnnnnn FttRaFttRaFttRa
cd

QF 


                           …… (4.5) 

 

                  In the system of equations except for Fi, i= 0,1,2……………n are known and hence can be solved for Fi, 

we solved the system of equations by the method of Iteration. For this, we write the system (4.5) as 

 

)]),(.........),(),([)],(1[ 01101000000000 nnn FttRaFttRaFttRaTQFttRTa   

)]),(.........),(),([)],(1[ 11111001011111 nnn FttRaFttRaFttRaTQFttRTa   

…………….              …………….              …………..            ………… 

…………….              ……………..             ..…………             ………… 

)]),(.........),(),([)],(1[ 111000 nnnnnnnnnnn FttRaFttRaFttRaTQFttRTa 
 
.. (4.6) 

Where 
2

cd
T


  

 

                 To start the Iteration process, let us put 0....21  nFFF in the first equation of (3.6), we then 

obtain a rough value of 0F . Putting this value of 0F  and 0....21  nFFF on the second equation, we get 

the rough value
1F  and so on. This gives the first set of values iF = 0,1,2,...,n which are just the refined values of  

iF = 0,1,2,…,n. The process is continued until two consecutive sets of values are obtained up to a certain degree of 

accuracy. In a similar way solutions P(0), P‟ (0), N (0) and  N‟ (0) can be obtained. 

 

 

V. COMPUTATION OF ARL’s AND P (A) 

 

 

 

                      TABLE – 5.1                                                                                                    TABLE – 5.2 

 

Values of ARL‟s and TYPE – C OC curves  when                                    Values of ARL‟s and TYPE –C OC curves  

when 

    k=1, 𝜃 = 0.5, h=0.10, h‟ = 0.10                                                                       k=1, 𝜃 = 0.5, h=0.12, h‟ = 0.12 

B L(0) L’(0) P(A) 

1.5 3.02319 1.1241715 0.7289429 

1.4 3.57124 1.1351991 0.7587990 

1.3 4.53633 1.1484455 0.7979789 

1.2 6.67966 1.1646085 0.8515338 

1.1 15.48778 1.1847011 0.9289427 

 

           

 

 

 

 

 

B L(0) L’(0) P(A) 

1.5 3.05045 1.1505792 0.726195 

1.4 3.61720 1.1640782 0.7565343 

1.3 4.6265 1.1803154 0.7967451 

1.2 6.92258 1.2001573 0.8522472 

1.1 17.20912 1.2248648 0.9335540 
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                         TABLE – 5.3                                                                                                    TABLE – 5.4 

Values of ARL‟s and TYPE – C OC curves  when                                   Values of ARL‟s and TYPE –C OC curves  

when 

k=1, 𝜃 = 0.5, h=0.15, h‟ = 0.15                                                                       k=1, 𝜃 = 0.5, h=0.18, h‟ = 0.18 
      

 

 

 

 

 

 

 

 

                            TABLE – 5.5                                                                                                   TABLE – 5.6 

Values of ARL‟s and TYPE – C OC curves  when                                   Values of ARL‟s and TYPE –C OC curves  

when 

 k=1, 𝜃 = 1, h=0.10, h‟ = 0.10                                                                          k=1, 𝜃 = 1, h=0.12, h‟ = 0.12 

B L(0) L’(0) P(A) 

1.5 3.75474 1.1321192 0.7683339 

1.4 4.45785 1.1405776 0.7962682 

1.3 5.73442 1.1507558 0.8328648 

1.2 8.7489 1.1631787 0.8826514 

1.1 24.41226 1.1786009 0.9539444 

 

                         

TABLE – 5.7                                                                                                  TABLE – 5.8 

Values of ARL‟s and TYPE – C OC curves  when                                    Values of ARL‟s and TYPE –C OC curves  

when 

k=1, 𝜃= 1, h=0.15, h‟ = 0.15                                                                               k=1, 𝜃= 1, h=0.18, h‟ = 0.18 

B L(0) L’(0) P(A) 

1.5 3.77081 1.2020680 0.7582753 

1.4 4.53356 1.2151002 0.7886289 

1.3 5.97544 1.2307678 0.8292072 

1.2 9.70186 1.2498605 0.8858754 

1.1 41.12255 1.2734979 0.9699619 
 

                        TABLE – 5.9                                                                                                    TABLE – 5.10 

Values of ARL‟s and TYPE – C OC curves  when                                    Values of ARL‟s and TYPE –C OC curves  

when 

k=1, 𝜃= 1.5, h=0.10, h‟ = 0.10                                                                       k=1, 𝜃= 1.5, h=0.12, h‟ = 0.12 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

B L(0) L’(0) P(A) 

1.5 3.09465 1.1911361 0.7220730 

1.4 3.69184 1.2084924 0.7533858 

1.3 4.77500 1.294028 0.7967451 

1.2 7.33418 1.2549989 0.8538861 

1.1 20.72701 1.2869266 0.9415404 

B L(0) L’(0) P(A) 

1.5 3.14317 1.2327865 0.7182821 

1.4 3.77406 1.2541620 0.7505755 

1.3 4.94052 1.2799416 0.7942368 

1.2 7.81495 1.3115269 0.8562942 

1.1 26.20148 1.350948 0.9509681 

B L(0) L’(0) P(A) 

1.5 3.75892 1.1598797 0.7641948 

1.4 4.48498 1.1701622 0.7930799 

1.3 5.82453 1.1825358 0.8312366 

1.2 9.10058 1.1976364 0.8837045 

1.1 29.14358 1.2163759 0.9599348 

B L(0) L’(0) P(A) 

1.5 3.78960 1.2446542 0.7527629 

1.4 4.59221 1.2603865 0.7846450 

1.3 6.14763 1.2792554 0.8277534 

1.2 10.41283 1.3021698 0.8888459 

1.1 69.95697 1.3303918 0.9813376 

B L(0) L’(0) P(A) 

1.5 4.12908 1.149316 0.7822580 

1.4 4.89669 1.1558272 0.8090336 

1.3 6.33187 1.167169 0.8447465 

1.2 9.92030 1.1734143 0.8942271 

1.1 34.17790 1.1855054 0.9664765 

B L(0) L’(0) P(A) 

1.5 4.00527 1.1794261 0.7725178 

1.4 4.77208 1.1871680 0.8007857 

1.3 6.22860 1.1965553 0.8388511 

1.2 10.00447 1.2080662 0.8922575 

1.1 41.81927 1.2223725 0.971602 
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TABLE – 5.11                                                                                             TABLE – 5.12 
Values of ARL‟s and TYPE – C OC curves  when                                    Values of ARL‟s and TYPE –C OC curves  

when 

k=1, 𝜃= 1.5, h=0.15, h‟ = 0.15                                                                         k=1, 𝜃= 1.5, h=0.18, h‟ = 0.18 

 

 

 

 

 

 

 

 

                     

 

TABLE – 5.13                                                                                            TABLE – 5.14 

Values of ARL‟s and TYPE – C OC curves  when                                   Values of ARL‟s and TYPE –C OC curves  

when 

k=2, 𝜃= 0.5, h=0.10, h‟ = 0.10                                                                             k=2, 𝜃= 0.5, h=0.12, h‟ = 0.12 

 

 

 

 

 
 

 

 
 

                   

 

 

 

TABLE – 5.15                                                                                             TABLE – 5.16 

Values of ARL‟s and TYPE – C OC curves  when                                   Values of ARL‟s and TYPE –C OC curves  

when 

k=2, 𝜃= 0.5, h=0.15, h‟ = 0.15                                                                                     k=2, 𝜃= 0.5, h=0.18, h‟ = 0.18 

 
 

 

 

 

 

 

 

                    

 

 

 

 

 

 

 

B L(0) L’(0) P(A) 

1.5 3.72079 1.2655942 0.7461901 

1.4 4.49168 1.2762661 0.7787312 

1.3 6.01939 1.2890307 0.8236238 

1.2 10.41075 1.3043975 0.8886572 

1.1 127.10031 1.3230114 0.9896981 

B L(0) L’(0) P(A) 

1.5 3.84850 1.2235893 0.7587605 

1.4 4.61607 1.2329966 0.7891976 

1.3 6.10639 1.2443477 0.8307180 

1.2 10.17729 1.2581762 0.8899760 

1.1 62.91886 1.2752082 0.9801351 

B L(0) L’(0) P(A) 

2.5 5.54769 1.0704013 0.8382614 

2.4 6.68904 1.0733435 0.8617250 

2.3 8.64817 1.076094 0.8892921 

2.2 12.78743 1.0802507 0.9221030 

2.1 27.27292 1.0843309 0.9617618 

B L(0) L’(0) P(A) 

2.5 5.58003 1.0850230 0.8372070 

2.4 6.74212 1.0885978 0.8609837 

2.3 8.74869 1.0925672 0.8889809 

2.2 13.03798 1.0969955 0.9223914 

2.1 28.60192 1.1019602 0.9629018 

B L(0) L’(0) P(A) 

2.5 5.68440 1.1299587 0.8341798 

2.4 6.91345 1.1355158 0.8589240 

2.3 9.07523 1.1416944 0.8882545 

2.2 13.87187 1.1485962 0.9235312 

2.1 33.57642 1.1563451 0.9667073 

B L(0) L’(0) P(A) 

2.5 5.63079 1.1072912 0.8356666 

2.4 6.82544 1.1118413 0.8599216 

2.3 8.90706 1.1168973 0.8885772 

2.2 13.43850 1.1225415 0.9229079 

2.1 30.87776 1.1288743 0.9647300 
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TABLE – 5.17                                                                                            TABLE – 5.18 

Values of ARL‟s and TYPE – C OC curves  when                                    Values of ARL‟s and TYPE –C OC curves  

when 

k=3, 𝜃= 0.5, h=0.10, h‟ = 0.10                                                                                      k=3, 𝜃= 0.5, h=0.12, h‟ = 0.12 

 

B L(0) L’(0) P(A) 

3.5 9.18166 1.0519872 0.8972031 

3.4 11.18532 1.0532259 0.9139419 

3.3 14.61046 1.0545619 0.9326804 

3.2 21.79135 1.0560050 0.9537800 

3.1 46.35325 1.0575676 0.9776936 
 

                        TABLE-5.19                                                                                                  TABLE – 5.20  
 

Values of ARL‟s and TYPE – C OC curves  when                                    Values of ARL‟s and TYPE –C OC curves  
when 

k=3, 𝜃= 0.5, h=0.15, h‟ = 0.15                                                                             k=3, 𝜃= 0.5, h=0.18, h‟ = 0.18 

  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

                            TABLE – 5.21                                                                                        TABLE – 5.22 

Values of ARL‟s and TYPE – C OC curves  when                                    Values of ARL‟s and TYPE –C OC curves  

when 

k=3, 𝜃= 1, h=0.10, h‟ = 0.10                                                                                    k=3, 𝜃= 1, h=0.12, h‟ = 0.12 

 

 

 

 

 

 
 

 

                   

 

TABLE – 5.23                                                                                          TABLE – 5.24 

Values of ARL‟s and TYPE – C OC curves  when                                   Values of ARL‟s and TYPE –C OC curves  

when 

k=3, 𝜃= 1, h=0.15, h‟ = 0.15                                                                                  k=3, 𝜃= 1, h=0.18, h‟ = 0.18 

 

 

 
 

 

 

 

 

 

                           

 

 

B L(0) L’(0) P(A) 

3.5 9.23409 1.0626869 0.8967941 

3.4 11.26990 1.0641876 0.9137198 

3.3 14.76772 1.0658062 0.9326867 

3.2 22.17447 1.0675551 0.9540679 

3.1 48.28651 1.0694492 0.9783319 

B L(0) L’(0) P(A) 

3.5 9.31535 1.0789251 0.8962001 

3.4 11.40117 1.0808274 0.9134091 

3.3 15.01297 1.0828794 0.9327230 

3.2 22.78028 1.0850977 0.9545326 

3.1 51.52607 1.0875008 0.9793304 

B L(0) L’(0) P(A) 

3.5 9.39989 1.0953890 0.8956303 

3.4 11.53797 1.0977030 0.9131267 

3.3 15.27012 1.1002001 0.9327930 

3.2 23.42673 1.1029000 0.9550380 

3.1 55.25562 1.1058261 0.9803798 

B L(0) L’(0) P(A) 

3.6 23.70767 1.0954925 0.9558325 

3.5 28.86360 1.0963101 0.9634075 

3.4 37.92297 1.0972096 0.9718810 

3.3 57.90563 1.0981998 0.9813877 

3.2 137.85223 1.0992916 0.9920887 

B L(0) L’(0) P(A) 

3.6 22.81950 1.0791016 0.9548467 

3.5 27.46539 1.0797759 0.9621730 

3.4 35.37530 1.0805175 0.9703609 

3.3 51.76255 1.0813341 0.9795372 

3.2 105.58409 1.0822343 0.989540 

T L(0) L’(0) P(A) 

3.6 26.87087 1.145076 0.9591095 

3.5 34.09224 1.1468668 0.9674547 

3.4 48.37973 1.1482517 0.9768161 

3.3 38.75285 1.1497766 0.9873515 

3.2 1538.61462 1.1514577 0.9992522 

T L(0) L’(0) P(A) 

3.6 25.1551 1.1203860 0.9574093 

3.5 31.25661 1.1214228 0.9653647 

3.4 42.51689 1.1225630 0.9742764 

3.3 70.41337 1.1238186 0.9842904 

3.2 253.59004 1.1252029 0.9955825 
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   TABLE – 5.25                                                                                   TABLE – 5.26 

Values of ARL‟s and TYPE – C OC curves  when                                    Values of ARL‟s and TYPE –C OC curves  

when 

k=3, 𝜃= 1.5, h=0.10, h‟ = 0.10                                                                            k=3, 𝜃= 1.5, h=0.12, h‟ = 0.12 
 

B L(0) L’(0) P(A) 

4.2 138.87761 1.1124036 0.9920537 

4.1 168.65768 1.1125373 0.9934468 

4.0 223.35858 1.1126899 0.9950430 

3.9 354.76886 1.1128641 0.9968730 

3.8 1081.21545 1.1130632 0.9989716 

 

                           

TABLE – 5.27                                                                                       TABLE – 5.28 

Values of ARL‟s and TYPE – C OC curves  when                                  Values of ARL‟s and TYPE –C OC curves  

when 

k=3, 𝜃= 1.5, h=0.15, h‟ = 0.15                                                                           k=3, 𝜃= 1.5, h=0.18, h‟ = 0.18 

 

 

 

 

 
 

 

 

                            

 

TABLE – 5.29                                                                                          TABLE – 5.30 

Values of ARL‟s and TYPE – C OC curves  when                                        Values of ARL‟s and TYPE –C OC curves 

when 

k=4, 𝜃= 0.5, h=0.10, h‟ = 0.10                                                                           k=4, 𝜃= 0.5, h=0.12, h‟ = 0.12 

B L(0) L’(0) P(A) 

4.5 14.54626 1.0433494 0.9330741 

4.4 17.83912 1.0439847 0.9447135 

4.3 23.47789 1.0446600 0.9574000 

4.2 35.34037 1.0453786 0.9712695 

4.1 76.34338 1.0461441 0.9864821 

 

 

 
VI. NUMERICAL RESULTS AND CONCLUSIONS 

 

                     At the hypothetical values of the parameters, 𝜃, k, h and h‟ are given at the top of each table, we 

determine optimum truncated point B at which P (A) the probability of accepting an item is maximum and also 

obtained ARL's values which represent the acceptance zone L(0) and rejection zone L'(0) values.  The values of 

truncated point B of random variable X, L(0), L'(0) and the values for Type-C Curve, i.e. P (A) are given in columns 
I, II, III, and IV respectively. 

From the above tables 5.1 to 5.30 we made the following conclusions 

 

1. From the Table 5.1to 5.30, it is observed that the values of P (A) are increased as the value of truncated 

point decreases thus the Truncated point of the random variable and the various parameters for CASP-

CUSUM are related. 

B L(0) L‟(0) P(A) 

4.4 166.88481 1.1349635 0.9932451 

4.3 201.33347 1.1350864 0.99439938 

4.2 263.45517 1.1352270 0.9957095 

4.1 406.84796 1.1353873 0.9972171 

4.0 1075.17676 1.1355705 0.9989449 

B L(0) L’(0) P(A) 

4.7 274.26886 1.1685587 0.957575 

4.6 343.62500 1.1686609 0.9966105 

4.5 483.28925 1.1687777 0.9975874 

4.4 902.44604 1.1689112 0.9987064 

4.3 98418.44531 1.1690637 0.9999881 

B L(0) L’(0) P(A) 

5.3 499.15790 1.2013477 0.9975990 

5.2 604.76154 1.2014016 0.9980174 

5.1 797.84283 1.2014633 0.9984964 

5.0 1256.79907 1.2015336 0.9990449 

4.9 3671.85327 1.2016141 0.9996728 

B L(0) L’(0) P(A) 

4.5 14.64451 1.0522320 .9329649 

4.4 17.99573 1.0530005 0.9447207 

4.3 23.76588 1.0538173 0.9575411 

4.2 36.03692 1.0546868 0.9715654 

4.1 79.88206 1.0556132 0.9869577 
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2. From Table 5.1 to 5.30we observe that it can be maximized the Truncated point B by increasing the value 

of k. 

 

3. From Table 5.1 to 5.30, it is observed that at the maximum level of probability of acceptance P (A) the 

Truncated point B from 5.1to 1.1 as the value of h changes from 0.10 to 0.18. 
 

4. From the Table 5.1 to 5.30, it was observed that the value of L (0) and P (A) is increased as the value of 

Truncated point decreases thus the Truncated point of the random variable and the various parameters for 

CASP-CUSUM are related. 

 

5. From Table 5.1 to 5.30, it was observed that the Truncated point B changes from 3.0 to 1.1 and P (A) are as

15.0h  maximum i.e. 0.9999881.  Thus truncated point B and h are inversely related and hand P (A) 

are positively related. 

 

6. From Table 5.1 to 5.30 it is observed that the optimal Truncated point changes from 1.1 to 4.3 as

15.0h . 

 

7. It is observed that the Table -6.1 values of Maximum Probabilities increased as the increased values of „k‟ 

as shown below the Figure-6.1. 

 

 

 
 

8. It is observed that the Table-6.2 values of Maximum Probabilities increased as the values of h and h‟ as 

shown below the Figure-6.2 

 

 

 

 

  TABLE-6.2   

        θ = 0.5, B=3.1, k=3 

    
 

 h and h' P(A) 

 
 

0.1 0.97769 

 
 

0.12 0.97833 

 
 

0.15 0.97933 

      0.18 0.98038 

         
   

 

 

 
 

9. The various relations exhibited among the ARL's and Type-C OC Curves with the parameters of the CASP-

CUSUM based on the above table 5.1 to 5.30 are observed from the following Table.  

 

 

 

0.977
0.978
0.979

0.98
0.981

0 0.1 0.2

Figure-6.1

P(A)

0.977

0.978

0.979

0.98

0.981

0 0.1 0.2

Figure-6.2

P(A)

 
   TABLE-6.1   

 
            θ = 0.5, h =0.10, h’=0.10 

    

 
k P(A) 

 
 

1 0.92894 

 
 

2 0.96176 

 
 

3 0.97769 

 

 

4 0.98648 
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TABLE 6.3 

CONSOLIDATED TABLE 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

By observing the Table- 6.3, we can conclude that the optimum CASP-CUSUM Schemes which have the values of 

ARL and P (A) reach their maximum i.e., 98418, 0.9999881 respectively, is 

                                                                      
































15.0'

15.0

3

5.1

3.4

h

h

k

B



 
 

REFERENCES 

 
[1] Akhtar, P. Md. and Sarma, K.L.A.P. (2004). “Optimization of CASP-CUSUM Schemes based on Truncated Gamma Distribution”.                        

Bulletin of Pure and applied sciences, Vol-23E (No.2), pp215-223. 

[2] Beattie, B.W. (1962). “A Continuous Acceptance Sampling procedure based upon a Cumulative Sums Chart for a number of 

defective”. Applied Statistics, Vol. 11(No.2), pp137- 147. 

[3] Murphy, E.M., D.N.Nagpur (1972), “A Gompertz fit that fits: application to Canadian fertility patterns”, Demography, 9, pp35-50. 

[4] Hawkins, D.M. (1992). “A Fast Accurate Approximation for Average Lengths of CUSUM Control Charts". Journal of Quality 

Technology, Vol. 24(No.1), pp37-43. 

[5] Jain, M.K., Iyengar, S.R.K. and Jain, R.K. “Numerical Methods of Scientific and Engineering Computations”, Willy Eastern Ltd., 

New Delhi.  

[6] Kakoty,  S and Chakravaborthy, A.B., (1990), “A Continuous Acceptance Sampling  Plan for Truncated Normal distribution based 

on Cumulative Sums”, Journal of  National Institution for Quality and Reliability, Vol.2 (No.1), pp15 -18. 

[7] Lonnie, C. Vance. (1986). “Average Run Length of CUSUM Charts for Controlling Normal means”. Journal of Quality Technology, 

Vol.18, pp189-193. 

[8] Page, E.S., (1954) “Continuous Inspection Schemes”, Biometrika, Vol. XLI, pp104- 114. 

[9] Vardeman, S.  And Di-ou Ray. (1985). “Average Run Length for CUSUM schemes Where observations are Exponentially 

Distributed”, Technometrics, vol. 27 (No.2),  pp145- 150.  

B 𝜽 h h’ k P(A) 

1.1 0.5 0.10 0.10 1 0.9289427 

1.1 0.5 0.18 0.18 1 0.9509681 

1.1 1 0.18 0.18 1 0.9813376 

1.1 1.5 0.18 0.18 1 0.9896981 

2.1 0.5 0.12 0.12 2 0.9629018 

2.1 0.5 0.18 0.18 2 0.9667073 

2.1 1 0.15 0.15 2 0.9969658 

2.2 1 0.18 0.18 2 0.9699796 

2.2 1.5 0.10 0.10 2 0.9942008 

2.3 1.5 0.15 0.15 2 0.9855464 

2.3 1.5 0.18 0.18 2 0.9908022 

3.1 0.5 0.10 0.10 3 0.9776936 

3.1 0.5 0.15 0.15 3 0.9793304 

3.2 1 0.10 0.10 3 0.9898540 

3.2 1 0.18 0.18 3 0.9992522 

3.8 1.5 0.10 0.10 3 0.9989716 

4.3 1.5 0.15 0.15 3 0.9999881 

4.9 1.5 0.18 0.18 3 0.9993728 

4.1 0.5 0.12 0.12 4 0.9869577 

4.1 0.5 0.15 0.15 4 0.9876934 

4.3 1 0.10 0.10 4 0.9973230 



International Journal of Mathematics Trends and Technology (IJMTT) – Volume 65 Issue 7 - July 2019 

 

 

ISSN: 2231-5373                             http://www.ijmttjournal.org                             Page 129 

[10] Narayana Muthy, B. R, Akhtar, P. Md and Venkataramudu, B.(2012) “Optimization of CASP-CUSUM Schemes based on Truncated 

Log-Logistic Distribution”. Bulletin of PureAnd Applied Sciences, Vol-31E (Math&Stat.): Issue (No.2), pp243-255. 

[11] Narayana Muthy, B. R, Akhtar, P. Md and Venkataramudu, B. (2013) “Optimization of CASP-CUSUM Schemes based on 

Truncated Rayleigh Distribution”.  International Journal of Engineering and Development, Volum 6, Issue 2, pp37-44. 

[12] M.E Ghitany,B.Atieh,S.Nadarajah.(2008) “Lindley Distribution and its applications”. Mathematics and computers in simulation 

78(2008) 493-506. 

[13] B.Sainath, P.Mohammed Akhtar, G.Venkatesulu, and Narayana Muthy, B. R, (2016) “CASPCUSUM Schemes based on Truncated 

Burr Distribution using Lobatto Integration method, IOSR Journal of Mathematics (IOSR-JM), Vol-12, Issue 2, pp54-63. 

[14] G.Venkatesulu, P.Mohammed Akhtar, B.Sainath and Narayana Murthy, B.R. (2017)“Truncated Gompertz Distribution and its 

Optimization of CASP- CUSUMSchemes”.Journal of Research in Applied Mathematics, Vol3-Issue7, pp19-28. 

[15] D. V. Lindley, Fiducial distributions and Bayes'theorem. Journal of theRoyal Society, series B, 20 (1958), 102-107. 

[16] M. Sankaran, The discrete Poisson-Lindley distribution. Biometrics, 26(1970), 145-149. 

[17] G.Venkatesulu, P.Mohammed Akhtar, B.Sainath and Narayana Murthy, B.R. (2018)“Continuous Acceptance Sampling Plans for 

Truncated Lomax Distribution Based on CUSUM Schemes ”.International Journal Mathematics Trends and Technology , Vol-55, 

pp174-184.  

 

 


