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I. INTRODUCTION

L.A. Zadeh [12] in 1965 introduced the concept of fuzzy sets to describe vagueness mathematically in its very
abstractness. The theory of G-modules originated in the 20th century. Representation theory was developed on
the basis of embedding a group G in to a linear group GL(V).The theory of group representation (G module
theory) was developed by Frobenious. G in 1962. Soon after the concept of fuzzy sets were introduced by Zadeh
in 1965. Fuzzy subgroup and its important properties were defined and established by Rosenfeld in 1971. After
that in the year 2004, Shery Fernandez [10] introduced fuzzy parallels of the notions of G-modules. The concept
of group actions in various algebraic structures in [5, 9]. Jun et.al [6] initiated to introduce double framed soft
sets and presented its applications in BCK/BCI algebras. Let X be a non-empty set. A mapping p: X — [0, 1] is
called a fuzzy subset of X. Rosenfeld [8] applied the concept of fuzzy sets to the theory of groups and defined
the concept of fuzzy subgroups of a group. Since then, many papers concerning various fuzzy algebraic
structures have appeared in the literature [1, 2-4, 7, 11]. Jun et.al [6] studied double-framed soft sets in
BCK/BCI algebras.The target of this study is to observe some of the algebraic structures of a double-framed N-
fuzzy soft set. So, we introduce the concept of a double-framed N-fuzzy soft G-module of a given classical
module and investigate some of the crucial properties and characterizations of the proposed concept. The ideas
of G-invariant double-framed N- fuzzy soft G-modules are also discussed.

Il. PRELIMINARIES

Let ‘M’ be a module over the ring of integers Z and G be a finite group which acts on M ((ie)

V g €G, xeM, x?=gxg ™" €M). The identity element of G is denoted by “¢”.

Definition 2.1: Let G be a finite group. A vector space M over a field K (a subfield of C) is called a G-module if
for every g € G and m €M, there exists a product (called the right action of G on M) m.ge M which satisfies the
following axioms.

1. m.1G =m for all m € M (1G being the identify of G)

2.m.(g.hy=(m.g).h, meM,g,heG

3. (kl m; + k2 mz). g-= kl (ml. g) + kz(mz. g), kl, sz K, my, meM & ge€ G.
In a similar manner ,the left action of G on M can be defined.

Definition 2.2:Let M and M* be G-modules. A mapping @: M—M* is a G-module homomorphism if
1. Q(kl m; + kzmz) = kl (1] (ml) + k2 (1] (mz)
2.8(@m) =g @ (M), ky, k€ K, m, m;,;meM &g €G.

Definition 2.3:Let M be a G-module. A subspace N of M is a G - sub module if N is also a G-module under the
action of G.
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Definition 2.4: Let U be any universal set, E set of parameters and Ac E. Then a pair (K,A) is called soft set
over U, where K is a mapping from A to 2", the power set of U.

Example 2.5: Let X={c1,C,,C5} be the set of three cars and E={costly(e;), metallic colour(e,), cheap(es)}be the
set of parameters, where A={e;,e,} < E. Then (K,A)={K(e1)={c1,C,,Cs},K(e;)={c1,C}} is the crisp soft set over
X.

Definition 2.6: Let U be an initial universe. Let P (U) be the power set of U, E be the set of all parameters and
AC E. A soft set (f4, E) on the universe U is defined by the set of order pairs (f,, E) = {(e, f; (e)): e€ E, f,€ P
(U)} where f, : E — P (U) such that f; (€) = ¢, if e €A. Here ‘£, is called an approximate function of the soft
set.

Example 2.7: Let U = {u,,u,, us, uy} be a set of four shirts and E = {white(e,),red(e,), blue(e;)} be a set of
parameters. If A = {e;, e,} S E. Let fy(eq) = {uy, uy suz, uyt and f4(e;)= {uy,uy,uz}. Then we write the soft
set (f, E)={(e1, {1, uy u3, wy}), (e5,{uq,uy,u3})} over U which describe the “colour of the shirts” which Mr.
X is going to buy. We may represent the soft set in the following form: U={(ey,u;), (€2,U1), (€1,Uz), (€2,Uz),
(e1,u3), (e2,u3), (e1, Ua)}.

Definition 2.8: Let U be the universal set, E set of parameters and Ac E. Let K(X) denote the set of all fuzzy
subsets of U. Then a pair (K,A) is called fuzzy soft set over U, where K is a mapping from A to K(U).

Example 2.9: Let U={c,,c,,c3} be the set of three cars and E={costly(e;), metallic colour(e,), cheap(es)} be the
set of parameters, where A={e;,e;}cE. Then (K,A)={K(e;)={c./0.6,¢c,/0.4,c5/0.3}, K(e,)={c./0.5,¢c,/0.7,c5/0.8}}
is the fuzzy soft set over U denoted by Fa.

Definition 2.10: Let Ka be a fuzzy soft set over U and ‘a’ be a subset of U. Then upper a- inclusion of Ka
denoted by K*5 = {xeA /K(x) > a}. Similarly K%, = {xe A/ K(x) < a} is called lower a-inclusion of K.

Definition 2.11: Let Kaand Gg be fuzzy soft sets over the common universe U and y:A— B be a function. Then
fuzzy soft image of K under y over U denoted by w(K,) is a set-valued function, where y(Ka):B— 2" defined
by w(Ka) (b)={U{K(a) / acA and y (a)=b}, if y'(b)= ¢} for all beB, the soft pre-image of Gg under y over U
denoted by y(Gg) is a set-valued function, wherey™(Gg) : A — 2" defined by y*(Gg)(b) = G(y(a)) for all a
eA. Then fuzzy soft anti-image of Ka under v over U denoted by y(K,) is a set-valued function, where
WY(Ka):B — 2" defined byy ™ (Ka)(b)={~{K(a) / acA and y (a)=b} , if y™(b) = ¢} for all beB.

Definition 2.12: A group action of G on a fuzzy soft set ‘A’ of a Z-module M is denoted by A® and is defined
by AY(x)= A(Xg ), geG.
From the definition of group action G on a fuzzy soft set, following results are easy to verify.
Lemma 2.13 [P.K.Sharma]: Let G be a finite group which acts on Z-module M. Then for every
x,yeM, geG and r € Z, we have

M (x+y)=xT+y

i) ()’ =x%y°

Gi)  (rx)°=rx®

v (xy)P=(x*y°)
Proof: (i) Since (X +y)?=g(x+y)g™ =gxg+gyg™" = =x%+y*

-1

(i) ()° = g(xy)g* =g(xey)g ™ = glxg ay)o ™ =(oxg* )(ayg *) =x°y"*
(i) (rx)° = g(rx)g " =g(X+ X +........+ rtimes)g ™
=gxg " +gxg "+ gxg e, +rtimes
=r(gxg*) =r x
) (% y) = g(x y)g* =(gxg ayg ) =(x°,y°)
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I1l. DOUBLE-FRAMED N- FUZZY SOFT G-MODULES

In this section, we define the concept of double-framed N- fuzzy soft G-module of a given classical module over
a ring and also investigate its elementary properties and characterizations. Throughout this paper, R denotes a
commutative ring with unity 1.

Definition 3.1: A negative fuzzy (N- fuzzy) soft set A on the universe of discourse X" is defined as A =
(x,64(x)), x € X whered : X —[-1,0]and — 1 <6 4(x)<0.

Definition 3.2:A double-framed N- fuzzy set (DFNFS) A on a universe X is an object of the form
A={(X,Ha(X),va(X))|x € X}where pa(x) €[-1,0] is called the degree of truth membership(TM) of x in A, va(X) €
[-1,0] is called the degree of false membership (FM) of X in A. pa (X),va(X) must satisfy the condition pa
(x)*+va(x) <1¥Xx € X. Then ¥x € X, 1—(na (X)+va(X)) is called the degree of refusal membership of x in A.

Example 3.3: Ms. A wants to buy a dress and looks at the shops all day to find the most beautiful one which
supplies her criterions. Since she is not sure for the parameters, she may give up some of them if she finds her
cup of tea and also she does not spare much time for looking around. U = The set of all dresses under
consideration in the shop. U = {x1, x», x3, x4}. E =The set of all parameters. Each parameter is a word in
sentence. E = {ey, ey, ez, ey, es}. er=low, e;:=high, ez:=colour, e,:=plain and es:=design .The double framed
soft fuzzy set is defined as follows. (F, f) = {(F(e1 ), f(e1)), (F(e2), f(e2 ). (F(es ), f(es)), (F(es ), f(es)),
(F(es ), fes )} ={({xs }, 0.6), ({xa, x4 }, 1), ({1, x2 }, 0.3), ({x1, x5 }, 0.8), ({x4 }, 0.7)} .Here the values f(e))
indicates the influences of the parameters on the decision in what degree.

Definition 3.4: Let ‘M’ be a module over a ring R. A double-framed N- fuzzy soft set ‘A’ on M is called a
double-framed N- fuzzy soft G-module of M if the following conditions are satisfied:

(DFNFSGM-1) : A(0)= X
(i) P,(0)=1, 1,(0)=0

(DFNFSGM-2) : A(x+ y) >min {A(x), A(y)}, foreach x,ye M
(ie) P, (x+y) >min {P,(x),P,(y)},
Ly (x-+y) <max {1, (X), T, ()}

(DFNFSGM-3) : A(rx) > A(x), for each xe M, reR

(ie) P, (rx) = P, (X), 1,(rx) < 1,(x).
The collection of all double-framed N- fuzzy soft G-modules of M is denoted by DFNFSG(M).

Example 3.5: Let us take the classical ring R = Z4 = {0, 1, 2, 3}. Since each ring is a module on itself, we
consider M = Z, as a classical module.
Define a double-framed N-fuzzy soft set ‘A’ as follows:

A={1,1, 0)/0+(0.7, 0.4, 0.7)/1+(0.8, 0.2, 0.4)/2+(0.7, 0.2, 0.7)/3}

It is clear that the double-framed N- fuzzy soft set ‘A’ is a double-framed N- fuzzy soft G-module of M.
Proposition 3.6: Let A be a double-framed N- fuzzy soft set of Z-module M and G be a finite group which acts
on M. Then Afis also a double-framed N-fuzzy soft G-module of M.
Proof: Clearly, (DFNFSGM-1): A%(0)=A(0°)=A(0)=1.

(DFNFSGM-2): Let x,ye M, g €G and r € Z, then by Lemma 2.13 (i),

A% (X+Y) =A{(x+ y)g}:A(xg +y?¢ ) > min {A(xg), A(yg)}: min {Ag (x), A? (y)}.

(DFNFSGM-3): A? (rX) = A{(rx)g } = A(r x¢ ) > A( x¢ ) = A9(x)by Lemma 2.13 (i) and (iii).
Hence, AY is double-framed N- fuzzy soft G-module of M.
Remark 3.7: The converse of proposition 3.6 does not hold.
Example 38: Let M ={Z4 ={0, 1 2, 3},+4, X4} regarded as Z-module and a finite group
G =({O, 1 2, 3, 4}, XS). consider a double-framed N- fuzzy soft set A of M given by

A0)=0.2,A(1)=0.3,A(2)=0.7, A(3)=0.4. Clearly ‘A’ is not double-framed N- fuzzy soft G-
module of M, because
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A(2+4%) = A(1) = 0.3<0.4 = min {0.7, 0.4} = min {A(2), A3)}.
Take g = 3, so that g™ = 2, then
x? =gxg™ =3X,x X, 2=06x(mod4) = 2x(mod 4),

1 if x=0,2
We get A%(x) = A(Xg): {04 if x=1 3

Now, it is easy to check that A% is double-framed N- fuzzy soft G-module of M.

Definition 3.9: Let A and B be double-framed N- fuzzy soft sets on M. Then their sum A+B is a double-framed
N-fuzzy soft set on M, defined as follows:

PA+B(X) = max{min{PA(Y)’ PB(Z)}/X:y+ Z,y,Z¢€ M}

IA+B(X) = min {max{ IA(y)’ IB(Z)}/XZY"‘ Z,y,2¢€ M}
Definition 3.10: Let A be a double-framed N- fuzzy soft set on M. Then A is a double-framed N- fuzzy soft set
on M, defined as follows:

P .(X) = Py(—x), 1 ,(X)=1,(—x), for each xe M.
IV. CHARACTERIZATION OF DOUBLE-FRAMED N- FUZZY SOFT G-MODULES

In this section, we will discuss the structure of double-framed N- fuzzy soft G-modules under group actions.
The following theorems are proved enhanced with group actions.

Definition 4.1: Let A be a double-framed N- fuzzy soft set on M and re R. Define double-framed N- fuzzy
soft set rA on M as follows:

Pa=max{P,(y)/y eM, x=ry}
I, =min{l,(y)/yeM, x=ry}.

Proposition 4.2: If A is a double-framed N- fuzzy soft set of G-module of M and G be a finite group which acts
on M, then (-1)A=-A.
Proof: Let xe M be arbitrary.

P(—l)A(Xg): V PA(yg): \% PA(XQ): PA(_XQ):P—A(XQ)

Then the following is valid.

(' 1)A = (P(-l)A’ I(»1)A) = (P—A’ I—A) =-A
This completes the proof.

Proposition 4.3: 1f A and B are double-framed N- fuzzy soft sets on M with A < B, then rAcrB, for each

reRr.
Proof: It is straightforward by the definition 4.1.
Proposition 4.4: If A and B are double-framed N- fuzzy soft sets on M and G be a finite group which acts on

M, then r(sA)= (rs)A, for each r, seR.
Proof: Letxe M andr, seR be arbitrary.
L) = A1al?)= A AZ%)= A 1.E0)= A 142%) = 1igal®)

X=ry X=ry y=5X X=r(5z) x=(rs)z
By the similar calculations the other equality is obtained, so

r(SA) = (Pr(sA)’ Ir(sA)) = (P(rs)A’ I(rs)A) = (I’S)A
Hence the proof.

Proposition 4.5: If A and B are double-framed N- fuzzy soft sets on M and G be a finite group which acts on
M, then r(A+B)= rA+rB for each reR.
Proof: Let A and B be double-framed N- fuzzy soft setson M, xe M and re R.

Nr(A+B)(Xg ) =V Nap (yg)

X=ry
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v v miniN, (2 ) N, (22 )

X=ry y=X;+X,

Vv min{NA(zf )' NB(Zzg )}

X=I¥ 41X,

M (M)

— min (N, (x¢ ) N (x0))

X=Xy +X,

= Niars (Xg )
The other equality is obtained similarly.

Hence, r(A+B) = (Pr(AJrB)’ Ir(A+B)) = (PrA+rB1 IrA+rB) = rA+rB.

Proposition 4.6: If A is double-framed N- fuzzy soft set on M and G be a finite group which acts on M, then

P (rx)° > PA(xg), I, (rx)° < IA(xg)
Proof: It is straightforward by the definition 4.1.

Proposition 4.7: If A and B are double-framed N- fuzzy soft sets on M and G be a finite group which acts on
M, then

(i) P( )9>P(g), for each x e M, if and onlyif P, <P,

(ii) l5(rx)° ( ) for each xe M, if andonlyif I, > I,
Proof: (i) Suppose PB( ) P ( ), for each x e M, then
P)= v Ry
X=ry, yeM
So, P, < P;.

Conversely, suppose P., < P; is satisfied, then PrA( )S Ps (Xg ), for each xe M.

Hence, PB(XQ)Z P,A(rx)g > PA(X ), for each x € M (by Proposition 4.6), (ii) is also proved in a
similar way.

Proposition 4.8: If A and B are double-framed N- fuzzy soft sets on M and G be a finite group which acts on
M, then

() Pas(r+sy) = minp,(x*) Py (v}
() ae(rx+rsy)’ <max{l,(x?) 1,(y°)}, for each xeM, r,seR
Proof: Itis proved by using Definition 3.4, Definition 3.10 and Proposition 4.6.
Proposition 4.9: If A, B and C are three double-framed N- fuzzy soft sets on M and G be a finite group which
acts on M, then the following are satisfied for each r, s €RR:
(i) P, (rx+sy)® > min {PA(XQ), P (y )} for all x,y e M if andonlyif P, g <P.

Gy lo(rx+sy)? <max{l,(x?) 15(y%)} for all x,yeM if and onlyif 1,,,,>1.
Proof: It is proved by using Proposition 4.8.

rA+s

Theorem 4.10: Let A be a double-framed N-fuzzy soft set on M and G be a finite group which acts on M and
for eachr, s €R, then

(i) P,<P, < P,(rx)°> PA(xg),
21, < 1,(x)°<1,(x?) for each xe M.
(ii) P <Py, © P,(rx+sy)’>min {PA(xg), PA(yg)}
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ln> 1, < 1, (rx+sy)® < max {IA(xg), IA(yg)}

Proof: The Proof follows from Proposition 4.7 and Proposition 4.9.
Theorem 4.11: Let A be a double-framed N- fuzzy soft set on M and G be a finite group which acts on M. Then
A e DFNFSGM(M) if and only if the following properties are satisfied.

(i) A(Og ) = X.

(ii) A(rx+sy)? > min {A(xg ) A(yg )} foreach x,yeMandr,seR.

Proof: Let A be a double-framed N- fuzzy soft G-module on M and G be a finite group which acts on M and X,
y eM.

From the condition (DFNFSGM-1) of Definition 3.4, it is obvious that A(Og ) = X. From
(DFNFSGM-2) and (DFNFSGM-3), the following are true,

P, (rx+sy)® > min {P,(rx® ), P,(sy® )} = min {P,(x¢), P, (y*)}
I,(rx+sy)® < max {I A(rx)%, 1 A(sy)g}
< max {IA(Xg ) IA(yg)} foreachx,ye M and r,seR.
Hence, A(rx+sy)® = (PA(rx+sy)g, N, (rx+sy)?, 1,(rx+sy)’ )
2 rin 20} Py i e, ) i e ) 1, )
~ i o) Ny 1,6 i) W1, )
 min (), Ay )}
Conversely, suppose A satisfies the conditions (i) and (ii), then it is clearly hypothesis A(Og ) = )Z
P.(x+y)’ = P,(Lx+1y)® > min{P,(x°) P.(y?)}
Ly(x+y)" = 1, @Lx+1y)® < max{l,(x?) 1,(y®)}

so, A(x+y)® > min {A(Xg ), A(yg )} and the condition (DFNFSGM-2) of Definition-3.4 is satisfied.
Now, let us show the validity of condition (DFNFSGM-3), by the hypothesis,

P,(rx)? = P,(rx+r0)° > min {PA(XQ), PA(Og)}z PA(xg)

1, (r)? = 1,(rx+r0)® < max{l,(x3) 1,(0°)}=1,(x*) foreach x,y e M, reR
Therefore, (DFNFSGM-3) of Definition 3.4 is satisfied.

9

Theorem 4.12: Let A and B be double-framed N- fuzzy soft G-modules of a classical module M and G be a
finite group which acts on M. Then intersection AN B is also a DFNFSGM of M.
Proof: Since A, B € DFNFSGM(M), we have

A0?)=X, B(0*)=X.
P..s(09)=min{P,(0°) P, (09)} =1

6(0%)=max{,(0°) 1,(0° )} = 0.

Let X,ye M, r,s € R, by Theorem 4.11, it is enough to show that
(AnB)rx+sy)’ = min {(AnB)x®), (AnB)y® )}
P, s (rx+sy)’ > min {P N (xg), P (yg)}
5 (rx+sy)® < max {I - (xg), s (yg)}

Now, we consider the truth-membership degree of the intersection,
P, s (rx+sy)’ = min {P (rx+sy)°®, Py (rx+sy)° }

> min {mln {P ( 9) PA(yg)}, min {PB(XQ)' Ps(yg)}}
= min {min {P, (x° ) P, (x° ), min {P,(y* ) Py (y* )i
=min {PAﬁB (xg ) Py (ygI )}

Then other inequalities are proved similarly.
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Hence, AN B € DFNFSGM (M).
Note 4.13: A non-empty subset N of M is a sub module of M if and only if rx+syeN for all

xX,yeM, r,seR.

Proposition 4.14:Let M be a G-module over R. A € DFNFSGM(M) and G be a finite group which acts on M,
if and only if for all a € [O, l], a —level setof A, (PA)a, (IA)a are classical G-modules of M where
Al0?)=X.
Proof: Let Ae DFNFSGM(M), a €[0,1] x,y €(P,), and r,s e Rbeany elements.

g

Then, PA(xg)z a, PA(yg)Za and min {PA(X ) PA(yg)}z a.
By using Theorem 4.11, we have,

P, (rx+sy)® > min {PA(x)g, PA(y)g} > a.
Hence, X+ Sye(PA)a
Therefore, (PA)a is a classical G-module of M for each & € [0, 1].
Similarly, for X,y € (I A)a
We obtain rx+sye (I,,)* for eachax € [0, 1].
Consequently, (I A)“ is classical G-module of M for each @ € [0, l].
Conversely, let (PA)a be a classical G-module of M for each & € [0, 1].
Let X,y €M, a=min {PA(x)g, P.(y) }.Then P.(x)’ > and P,(y)’ >a.
Thus, X,y € (PA)a .
Since, (PA)a is a classical G-module of M, we have rx + sy e(P, )a forall r,seR.
Hence, (P, )(rx+sy)®>a = min {PA<X9), PA(yg )}
Now, we consider (I A)a , let x,yeM, a=max {I A(Xg ), IA(yg )} Then
1L,(x9)<a, 1,(y®)<a.Thus, x,y e (1,)".
Since, (IA)Q is a G-module of M, we have rx+sye A “forall r,seR.
Thus, (1, )(rx+sy)® < o = max {I,,(x¢), 1,(yo)}.
It is also obvious that A(Og ) = X_.Hence the conditions of Theorem 4.11 are satisfied.

Proposition 4.15: Let A and B be two double-framed N- fuzzy soft sets X and Y respectively and G be a finite
group which acts on M. Then the following equalities are satisfied for the a-level

(Pa )= (Pa), x(Ps), and (1) =(1,)"x(Py)".
Proof: Let (X y) ( A B) be arbitrary.

S0, Pys(x,y)! 2@ < min{P,(x°) Py(yo )2 @ = P,(x¢)= @ and Py(y?)> e
= (xy) e (Pa),x (Ry),

Let (X, y)= (I o5 )" be arbitrary.

Hence, | (X, Y)’ <a < max{IA(xg), IB(yg)}g a s IA(XQ)S a and IB(yg)S a

< (xy) e (1) x (1)

Proposition 4.16: Let A, B € DFNFSGM(M). Then the product Ax B is also a double-framed N-fuzzy soft G-
module of M.

Proof: We know that the direct product of two soft G-modules is a G-module. So, by Proposition 4.14 and
Proposition 4.15, we obtain the result.
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Proposition 4.17: Let A and B be two double-framed N- fuzzy soft sets on X and Y respectively and G be a
finite group which acts on M and ¢: X —Y be a mapping. Then the followings hold:

0 #(P).) = Puw),
B0 )2 (1w

(ii) 67 ((R),) = (P¢‘1(B))a’

¢ ((IB)a) = (I¢*l(B))g'

Proof:(i) Let ye¢((PA)a), then there exists Xe(PA)a such that ¢(X) =Y.

Hence, PA(Xg)Z a. So, \/ PA(X) >a, (ie) P¢(A)(yg)2 a and ye (P¢(A))a
xep(y)
Hence, ¢((PA )a ) c (P¢(A) )a , similarly, we obtain other inclusion.

(ii) (P¢_1(B))a = xe X/ P¢_1(B)(x9)z a
= {xe X IPg(x*)> af
= {X e X /¢(X)€(PB)(1}
= {xex/xep(R), )}
= ¢_l ((PB )a )
The other equality is obtained in a similar way.
Theorem 4.18: Let M, N be the classical G-modules and ¢ : M — N be a homomorphism of G-modules.

Then the pre image ¢_1(B) isa DFNFSGM of M.
Proof: By Proposition 4.17 (ii), we have

¢ ((PB )a) - (P¢-1(B))a’
¢7l((|8)a) - (I¢*1(B))g'

Since pre image of a G-module is a G-module, by Proposition 4.14, we obtain the result.
Corollary 4.19: If ¢ : M — N is a homomorphism of G-modules and {Bj fje I} is a family of double-

framed N- fuzzy soft G-modules of N, then the image ¢7l(ﬂ Bj ) is a DFNFSGM of M.
Theorem 4.20: Let M and N be the classical G-modules and ¢ : M — N be a homomorphism of G-

modules. If ‘A’ is a DFNFSGM of M and G is a finite group which acts on M, then the image ¢(A) isa
DFNFSGM of N.

Proof: By Proposition 4.14, it is enough to show that (P¢(A))a ,(|¢(A))a are G-sub modules of N for all

ael0, 1]

Let V.Y, e¢((PA)a).Then P¢(A)(ylg )2 o and P¢(A)(y29 )Z o, there exist X, X, €M such that

PA(Xlg)Z a, P¢(A)(ylg)2 o and PA(XZQ)Z a, P¢(A)(yzg)2 a.

Then PA(xlg)z a, PA(XZQ)Z a and min {PA(xlg) PA(XZQ)}Z a.

Since ‘A’ is a DFNFSGM of M, for any ', S €R, we have

P, (rx, +sx,)° > min {PA(xl)g, P,(x,)° }2 a

Hence, X, +5X, €(P,), = @(rx, +sx,)ed(P,), g(P¢(A))a = rg(x,)+ se(x,) e (P¢(A))a
=TIy, +5Y, e(P¢( A) )a .

Therefore, (P¢(A) )a is a G-sub module of N.
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Similarly, (I 4(A) )“ is also a classical G-sub module of N for each & E[O, 1].

By Proposition 4.14, ¢(A) is a DFNFSGM of N.
Corollary 4.21: If ¢: M — N is a surjective G-module homomorphism and {A e I} is a family of

double-framed N- fuzzy soft G-modules of M, then the image ¢~ (ﬂ A ) isa DFNFSGM of N.
Definition 4.22: Let A be a DFNFSGM of M and G be a finite group which acts on M. Then ‘A’ is said to be
G-invariant DFNFSGM of M if and only if A9(x) = A(x? )= A(x), forallxe M, g €G.

Theorem 4.24: Let M and M' be Z-modules which G acts on M and let ‘f” be a bijective G-module
homomorphism from M. Then f(A)is a G-invariant DFNFSGM of M.

Proof: Since ‘A’ is a G-invariant DFNFSGM of M/, therefore A° =A, for g € G.
Now, (f(A))° = f(A?)= f(A), Vg eG.
Hence, f (A) is G-invariant DFNFSGM of M'.

CONCLUSION

Modules over a ring are a generalisation of abelian groups (which are modules over Z) [Hungerford. T.W].
From the philosophical point of set view, it has been shown that a double-framed N- fuzzy soft set generalizes a
classical set, fuzzy set, interval valued fuzzy set, intuitionistic fuzzy set ,etc. A double-framed N- fuzzy soft set
is an instance of double-framed N- fuzzy set which can be used in real scientific and E-generating problems.
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