Linear Connections On Manifold Admitting F (2k + 5, 5) - Structure

Abhishek Singh And Abhiram Shukla

Abstract

D. Demetropoulou [2] and others have studied linear connections in the manifold admitting $f(2 \nu+3,-1)$-structure. The aim of the present paper is to study some properties of linear connections in a manifold admitting $F(2 K+5,5)$-structure. Certain interesting results have been obtained.

1. Preliminaries

Let F be a non-zero tensor field of the type $(1,1)$ and of class C^{∞} on an n-dimensional manifold M^{n} such that $[5,8]$

$$
\begin{equation*}
F^{2 K+5}+F^{5}=0, \tag{1.1}
\end{equation*}
$$

where K is a fixed positive integer greater than or equal to 1 . The rank of $(F)=r=$ constant.

Let us define the operators on M as follows [5, 8]

$$
\begin{equation*}
l=-F^{2 K}, \quad m=I+F^{2 K} \tag{1.2}
\end{equation*}
$$

where I denotes the identity operator.
We will state the following two theorems [5]
Theorem 1.1. Let M^{n} be an F-structure manifold satisfying (1.1), then

$$
\begin{cases}a . & l+m=I, \tag{1.3}\\ b . & l^{2}=l, \\ c . & m^{2}=m, \\ \text { d. } & l m=m l=0 .\end{cases}
$$

Key words and phrases. Linear connection, projection, geodesic, parallelism.

Thus for $(1,1)$ tensor field $F(\neq 0)$ satisfying (1.1), there exist complementary distributions D_{l} and D_{m} corresponding to the projection operators l and m respectively. Then, $\operatorname{dim} D_{l}=r$ and $\operatorname{dim} D_{m}=(n-r)$.

Theorem 1.2. We have

Thus F^{K} acts on D_{l} as an almost complex structure and on D_{m} as a null operator.
Let us define the operators $\bar{\nabla}$ and $\widetilde{\nabla}$ on M^{n} in terms of an arbitrary connections ∇ as under

$$
\begin{equation*}
\bar{\nabla}_{X} Y=l \nabla_{X}(m Y)+m \nabla_{X}(l Y) \tag{1.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\widetilde{\nabla}_{X} Y=l \nabla_{l X}(m Y)+m \nabla_{m X}(l Y)+l[l X, m Y]+m[m X, l Y] \tag{1.6}
\end{equation*}
$$

Then it is easy to show that $\bar{\nabla}$ and $\widetilde{\nabla}$ are linear connections on the manifold M^{n} [2]

2. Distributions anti-parallelism and anti-half parallelism

In this section, first we have the following definitions:
Definition 2.1. Let us call the distribution D_{L} as ∇-anti parallel if for all $T M^{n}$ denotes the tangent bundle of the manifold M^{n}.

Definition 2.2. The distribution D_{L} will be called ∇ anti-half parallel if for all $X \in D_{L}$ and $Y \in T M^{n}$, the vector field $\nabla_{Y} X \in D_{M}$, where

$$
\begin{equation*}
(\triangle F)(X, Y)=F \nabla_{X} Y-F \nabla_{Y} X-\nabla_{F X} Y+\nabla_{Y} F X \tag{2.1}
\end{equation*}
$$

F being a $(1,1)$ tensor field on M^{n} satisfying the equation (1.1).
In a similar manner, anti-half parallelism of the distribution D_{M} can also be defined.

Theorem 2.3. In the $F(2 K+5,5)$-structure manifold M^{n}, the distribution D_{L} and D_{M} are anti-parallel with respect to connections $\bar{\nabla}$ and $\widetilde{\nabla}$.

Proof. Let $X \in T M^{n}$ and $Y \in D_{L}$, therefore $m Y=0$. Hence in view of equation (1.5), we get

$$
\bar{\nabla}_{X} Y=m \nabla_{X}(l Y) \in D_{M} .
$$

Hence the distribution D_{L} is anti-half parallel with respect to the linear connection $\bar{\nabla}$. Similarly, it can also be shown that D_{M} is also $\bar{\nabla}$ is also anti-parallel.
Again in view of the equation (1.5), taking $m Y=0$, we obtain

$$
\begin{equation*}
\widetilde{\nabla}_{X} Y=m \nabla_{m X}(l Y)+m[m X, l Y] \in D_{M} \tag{2.2}
\end{equation*}
$$

Thus the distribution D_{L} is anti-parallel with respect to the linear connection $\widetilde{\nabla}$. A similar result for D_{M} can also be proved in a similar manner.

Theorem 2.4. In the $F(2 K+5,5)$-structure manifold M^{n}, the distribution D_{L} and D_{M} are anti-parallel with respect to connection ∇ if and only if ∇ and $\bar{\nabla}$ are equal.

Proof. Since the distributions D_{L} and D_{M} are anti-parallel with respect to the ∇, hence

$$
\begin{equation*}
l \nabla_{X}(l Y)=m \nabla_{X}(m Y)=0 \tag{2.3}
\end{equation*}
$$

for the vector fields $X, Y \in T M^{n}$.
Since $l+m=I$, hence in view of equation (2.3), it follows that

$$
\begin{align*}
& \nabla_{X}(l Y)=m \nabla_{X}(l Y), \\
& \nabla_{X}(m Y)=l \nabla_{X}(m Y) \tag{2.4}
\end{align*}
$$

Thus in view of the equations (1.5) and (2.4), it follows that

$$
\bar{\nabla}_{X} Y=\nabla_{X} Y
$$

Hence, the connections ∇ and $\bar{\nabla}$ are equal.
The converse can also be proved easily.
Theorem 2.5. In a $F(2 K+5,5)$-structure manifold M^{n}, the distribution D_{M} is anti-half parallel with respect to connection $\bar{\nabla}$ if

$$
\begin{equation*}
m \nabla_{F X}(l Y)=m \bar{\nabla}_{Y}(F X) \tag{2.5}
\end{equation*}
$$

for arbitrary $X \in D_{M}$ and $Y \in T M^{n}$.
Proof. Since $m F=F m=0$, hence in view of the equation (2.1), we get for the connection $\bar{\nabla}$

$$
\begin{equation*}
m(\triangle F)(X, Y)=m \bar{\nabla}_{Y}(F X)-m \nabla_{F X}(Y) \tag{2.6}
\end{equation*}
$$

By virtue of the equation (1.5), the above equation (2.6) takes the form

$$
\begin{align*}
m(\triangle F)(X, Y) & =m\left\{l \bar{\nabla}_{Y}(m F X)+m \bar{\nabla}_{Y}(l F X)\right\} \\
& -m\left\{l \nabla_{F X}(m Y)+m \nabla_{F X}(l Y)\right\} \tag{2.7}
\end{align*}
$$

Since, $m l=l m=0 ; F l=l F=F$ and m is the projection operator, the above equation (2.7) takes the form,

$$
\begin{equation*}
m(\triangle F)(X, Y)=m \bar{\nabla}_{Y}(F X)-m \nabla_{F X}(l Y) \tag{2.8}
\end{equation*}
$$

Since the distribution D_{M} is $\bar{\nabla}$ anti-half parallel so far all $X \in D_{M}$, $Y \in T M^{n}$,

$$
m(\triangle F)(X, Y) \in D_{L}
$$

Thus,

$$
m \bar{\nabla}_{Y}(F X)=m \nabla_{F X}(l Y)
$$

Hence, the theorem is proved.
Theorem 2.6. In the manifold M^{n} equipped with $F(2 K+5,5)$-structure, the distribution D_{L} is anti-half parallel with respect to the connection $\bar{\nabla}$ if

$$
F \nabla_{X}(l Y)=l \nabla_{F X}(m Y),
$$

for arbitrary $X \in D_{L}$ and $Y \in T M^{n}$.
Proof. Proof follows easily in a way similar to that of the theorem 2.5.

Theorem 2.7. In the $F(2 K+5,5)$-structure manifold M^{n}, the distribution D_{M} is anti-half parallel with respect to the connection $\widetilde{\nabla}$ if for $X \in D_{M}$ and $Y \in T M^{n}$ the equation

$$
m \nabla_{m Y}(F X)+m[m Y, F X]=0
$$

is satisfied.
Proof. For $X \in D_{M}$ and $Y \in T M^{n}$, we have for the connection $\widetilde{\nabla}$

$$
\begin{equation*}
(\triangle F)(X, Y)=F \widetilde{\nabla}_{X} Y-F \widetilde{\nabla}_{Y} X-\widetilde{\nabla}_{F X} Y+\widetilde{\nabla}_{Y} F X \tag{2.9}
\end{equation*}
$$

As $F m=m F=0$, hence from the above equation (2.9), it follows that

$$
\begin{equation*}
m(\triangle F)(X, Y)=m \widetilde{\nabla}_{Y} F X-m \widetilde{\nabla}_{F X} Y \tag{2.10}
\end{equation*}
$$

In view of the equation (1.4) and (1.6), it is easy to show that

$$
\begin{equation*}
m \widetilde{\nabla}_{F X} Y=0 \tag{2.11}
\end{equation*}
$$

and

$$
\begin{equation*}
m \widetilde{\nabla}_{Y} F X=m \nabla_{m Y}(F X)+m[m Y, F X] . \tag{2.12}
\end{equation*}
$$

Thus, we get

$$
\begin{equation*}
m(\triangle F)(X, Y)=m \nabla_{m Y}(F X)+m[m Y, F X] . \tag{2.13}
\end{equation*}
$$

The distribution D_{M} will be $\widetilde{\nabla}$ anti-half parallel if $X \in D_{M}, Y \in T M^{n}$, the vector field $(\triangle F)(X, Y) \in D_{L}$. Thus,

$$
m(\triangle F)(X, Y)=0
$$

i.e.,

$$
m \nabla_{m Y}(F X)+m[m Y, F X]=0
$$

Hence, the theorem is proved.

3. Geodesic in the manifold M^{n}

Let C be a curve in M^{n}, T a tangent field and ∇ arbitrary connection on M^{n}. Then, we have
Definition 3.1. The curve C is a geodesic with respect to the connection ∇ if $\nabla_{T} T=0$ along C.

Applying the definition for the connection $\bar{\nabla}$ and $\widetilde{\nabla}$, we have the following results in the $F(2 K+5,5)$-structure manifold M^{n}.

Theorem 3.2. A curve C is a geodesic in the manifold M^{n} with respect to the connection ∇ if the vector fields

$$
\nabla_{T} T-\nabla_{T}(l T) \in D_{M} \text { and } \nabla_{T}(l T) \in D_{L} .
$$

Proof. The curve C will be $\bar{\nabla}$ geodesic if $\bar{\nabla}_{T} T=0$.
In view of the equation (1.5), the above equation takes the form

$$
l \nabla_{T}(I-l) T+m \nabla_{T}(l T)=0
$$

or equivalently

$$
l \nabla_{T} T-l \nabla_{T}(l T)+m \nabla_{T}(l T)=0
$$

which implies that

$$
\nabla_{T} T-\nabla_{T}(l T) \in D_{M} \text { and } \nabla_{T}(l T) \in D_{L}
$$

This proves the theorem.
Theorem 3.3. A curve C is a geodesic in the manifold M^{n} with respect to the connection ∇ if

$$
\nabla_{l T} T-\nabla_{l T}(l T)+[l T, m T] \in D_{M} \text { and } \nabla_{m T}(l T)+[m T, l T] \in D_{L}
$$

Proof. Using definition of ∇ from the equation (1.6), proof follows easily as of theorem 3.2.
Theorem 3.4. The $(1,1)$ tensor field l is covariant constant with respect to the connection $\bar{\nabla}$ if

$$
\begin{equation*}
m \nabla_{X}(l Y)=l \nabla_{X}(m Y) \tag{3.1}
\end{equation*}
$$

but the tensor field m is always covariant constant.

Proof. We have

$$
\begin{equation*}
\left(\bar{\nabla}_{X} l\right) Y=\bar{\nabla}_{X}(l Y)-l \bar{\nabla}_{X} Y \tag{3.2}
\end{equation*}
$$

In view of equation (1.5), the above equation takes the form

$$
\begin{align*}
\left(\bar{\nabla}_{X} l\right) Y & =l \nabla_{X}(m l Y)+m \nabla_{X}(l Y) \\
& -l\left\{l \nabla_{X}(m Y)+m \nabla_{X}(l Y)\right\} . \tag{3.3}
\end{align*}
$$

Since $l^{2}=l$ and $l m=m l=0$, the equation (3.3) takes the form

$$
\begin{equation*}
\left(\bar{\nabla}_{X} l\right) Y=m \nabla_{X}(l Y)-l \nabla_{X}(m Y) . \tag{3.4}
\end{equation*}
$$

The $(1,1)$ tensor field l is covariant with respect to the connection $\bar{\nabla}$ if

$$
\begin{equation*}
\left(\bar{\nabla}_{X} l\right) Y=0 . \tag{3.5}
\end{equation*}
$$

Hence in view of the equation (3.4) and (3.5), we get

$$
m \nabla_{X}(l Y)=l \nabla_{X}(m Y)
$$

This proves the first part of the theorem.
Again it can be easily shown that

$$
\left(\bar{\nabla}_{X} m\right) Y=0
$$

for all vector fields $X, Y \in T M^{n}$. Thus, the tensor field m is always covariant constant.

Acknowledgement

The authors are grateful to Prof. Ram Nivas, Head of the Department of Mathematics and Astronomy, Lucknow University, for his guidance in the preparation of this paper.

References

[1] Demetropoulou-Psomopoulou, D. and Gouli-Andreou, F., On necessary and sufficient conditions for an n-dimensional manifold to admit a tensor field $f(\neq 0)$ of type $(1,1)$ satisfying $f^{2 \nu+3}+f=0$, Tensor, N.S., vol. 42, 252-257 (1985).
[2] Demetropoulou-Psomopoulou, D., Linear connections on manifold admitting $f(2 \nu+3,1)$-structure, Tensor, N.S., vol. 47, 235-239 (1988).
[3] Mishra, R.S. Structures on a differentiable manifold and their applications; Chandrama Prakashan, 50- A, Balrampur House, Allahabad, India (1984).
[4] Yano, K., On structure defined by a tensor field f of type (1,1) satisfying $f^{3}+f=0$. Tensor, N. S., 14, 99-109 (1963).
[5] Singh, A., On CR-structures and F-structure satisfying $F^{2 K+P}+F^{P}=0$, Int. J. Contemp. Math. Sciences, Vol. 4, no. 21, 2009.
[6] Yano, K. and Kon, M., Structures on manifold, World Scintific Press 1984.
[7] Goldberg, S.I., On the existence of manifold with an f-structure, Tensor, N. S. 26, 323-329 (1972).
[8] Nikkie, J., $F(2 k+1,1)$-structure on the Lagrangian space FILOMAT (Nis), 161-167 (1995).

Department of Mathematics, BBDNITM, Lucknow-226007 (India).
E-mail address: abhi.rmlau@gmail.com

