On The Homogeneous Ternary Quadraticdiophantine Equation

$6 x^{2}+7 y^{2}=559 z^{2}$
Dr. S.Mallika
Assistant professor, Department of Mathematics, Shrimati Indira Gandhi College, Trichy-2.

ABSTRACT:

Homogeneous ternary quadratic equation $6 x^{2}+7 y^{2}=559 z^{2}$ is analysed for its integral points on it. Employing the integral solutions of the above equation, a few interesting relations between the solutions and the special numbers are also exhibited.

KEYWORDS: Homogeneous, ternary, quadratic, integral solutions.

I. INTRODUCTION

The Diophantine equation offer an unlimited field for research due to their variety $[1-3]$. In particular, one may refer $[4-13]$ for quadratic equation with three unknowns. The communication concerns with yet another interesting equation $6 x^{2}+7 y^{2}=559 z^{2}$ representing non-homogeneous quadratic equation with three unknowns for determining its infinitely many non-zero integral points. Also, a few interesting relations among the solutions are presented.

II. NOTATIONS

1. Polygonal number of rank n with side m

$t_{m, n}=n\left[1+\frac{(n-1)(m-2)}{2}\right]$

2. Pronic number of rank n

$$
\operatorname{Pr}_{n}=n(n+1)
$$

3. Star number of rank n

$S_{n}=6 n(n-1)+1$.

III. METHOD OF ANALYSIS

The ternary quadratic Diophantine equation to be solved for its non- zero distinct integral solution is

$$
\begin{equation*}
6 x^{2}+7 y^{2}=559 z^{2} \tag{1}
\end{equation*}
$$

Introduction of the linear transformations $(X \neq T \neq 0)$

$$
\begin{equation*}
x=X-7 T, y=X+6 T \tag{2}
\end{equation*}
$$

in (1) leads to

$$
\begin{equation*}
X^{2}+42 T^{2}=43 z^{2} \tag{3}
\end{equation*}
$$

Different patterns of solutions of (1) are presented below:

Pattern-1:

Write 43 as

$$
\begin{equation*}
43=(1+i \sqrt{42})(1-i \sqrt{42}) \tag{4}
\end{equation*}
$$

Assume

$$
\begin{equation*}
z=a^{2}+42 b^{2} \tag{5}
\end{equation*}
$$

where a and b are non- zero distinct integers
using (4) and (5) in (3), we get

$$
X^{2}+42 T^{2}=(1+i \sqrt{42})(1-i \sqrt{42})\left(a^{2}+42 b^{2}\right)^{2}
$$

Employing the method of factorization the above equation is written as
$(X+i \sqrt{42} T)(X-i \sqrt{42} T)=(1+i \sqrt{42})(1-i \sqrt{42})(a+i \sqrt{42} b)^{2}(a-i \sqrt{42} b)^{2}$
Equating the positive and negative factors, the resulting equations are,

$$
\begin{align*}
& X+i \sqrt{42} T=(1+i \sqrt{42})(a+i \sqrt{42} b)^{2} \tag{6}\\
& X-i \sqrt{42} T=(1-i \sqrt{42})(a-i \sqrt{42} b)^{2} \tag{7}
\end{align*}
$$

Equating real and imaginary parts in (6), we get

$$
\begin{aligned}
& X=a^{2}-42 b^{2}-84 a b \\
& T=a^{2}-42 b^{2}+2 a b
\end{aligned}
$$

substituting the values of X and T in (2), we get

$$
\begin{align*}
& x=x(a, b)=-6 a^{2}+252 b^{2}-98 a b \tag{8}\\
& y=y(a, b)=7 a^{2}-294 b^{2}-72 a b \tag{9}
\end{align*}
$$

Thus (8), (9) and (5) represents non- zero distinct integral solutions of (1) in two parameters.

Properties:

- $x(1, b)+98 \operatorname{Pr}_{b}-154 t{ }_{4, b} \equiv 0(\bmod 2)$
- $y(1, b)+72 \operatorname{Pr}_{b}+222 t_{4, b} \equiv 0(\bmod 7)$
- $x(b, b)+y(b, b)+211 t t_{4, b}=0$
- $y(b, b)+z(b, b)+312 t_{4, b}=0$
- $x(a+1,1)+S_{a}+116 \operatorname{Pr}_{a}-116 t_{4, a} \equiv 0(\bmod 2)$
- $z(1, b+1)-S_{b}-126 \operatorname{Pr}_{b}+126 t 4, b \equiv 1(\bmod 7)$

Pattern-2:

The equation (3) can also be written as

$$
\begin{align*}
& X^{2}-z^{2}=42\left(z^{2}-T^{2}\right) \tag{10}\\
& (X-z)(X+z)=42(z-T)(z+T)
\end{align*}
$$

Equation (10) is written in the form of ratio as,

$$
\begin{equation*}
\frac{X+z}{2(z+T)}=\frac{21(z-T)}{X-z}=\frac{\alpha}{\beta}, \beta \neq 0 \tag{11}
\end{equation*}
$$

From the first and third factors of (11), we have

$$
\begin{align*}
& \frac{X+z}{2(z+T)}=\frac{\alpha}{\beta} \\
& \beta X-2 \alpha T+(\beta-2 \alpha) z=0 \tag{12}
\end{align*}
$$

From the second and third factors of (12), we have

$$
\begin{align*}
& \frac{21(z-T)}{X-z}=\frac{\alpha}{\beta} \\
& -\alpha X-21 \beta T+(21 \beta+\alpha) z=0 \tag{13}
\end{align*}
$$

Applying the method of cross multiplication for solving (12) and (13)

$$
\begin{aligned}
& X=2 \alpha^{2}+84 \alpha \beta-21 \beta^{2} \\
& T=-2 \alpha^{2}+2 \alpha \beta+21 \beta^{2} \\
& z=2 \alpha^{2}+21 \beta^{2}
\end{aligned}
$$

substituting the values of X and T in (2), we get

$$
\left.\begin{array}{l}
x=x(\alpha, \beta)=-12 \alpha^{2}+98 \alpha \beta-168 \beta^{2} \\
y=y(\alpha, \beta)=-10 \alpha^{2}+96 \alpha \beta+105 \beta^{2} \tag{14}\\
z=z(\alpha, \beta)=2 \beta^{2}+21 \alpha^{2}
\end{array}\right\}
$$

Thus (14) represents the non-zero distinct integral solutions to (1)

Properties:

- $x(1, \beta)-98 \operatorname{Pr}_{\beta}+266 t_{4, \beta} \equiv 0(\bmod 2)$
- $y(1, \beta)-96 \operatorname{Pr}_{\beta}-9 t_{4, \beta} \equiv 0(\bmod 5)$
- $x(\beta, \beta)+y(\beta, \beta)+109 t_{4, \beta}=0$
- $y(\beta, \beta)+z(\beta, \beta)-214 t_{4, \beta}=0$
- $x(\alpha+1,1)+S_{\alpha}-64 \operatorname{Pr}_{\alpha}+64 t_{4, \alpha} \equiv 0(\bmod 9)$
- $z(1, \beta+1)-S_{\beta}-63 \operatorname{Pr}_{\beta}+63 t_{4, \beta} \equiv 0(\bmod 2)$

Pattern-3:

One may write (10) in the form of ratio as

$$
\begin{equation*}
\frac{X+z}{21(z+T)}=\frac{2(Z-T)}{X-z}=\frac{\alpha}{\beta}, \beta \neq 0 \tag{15}
\end{equation*}
$$

From the first and third factors of (15), we have

$$
\begin{align*}
& \frac{X+z}{21(z+T)}=\frac{\alpha}{\beta} \\
& \beta X+(\beta-21 \alpha) z-21 \alpha T=0 \tag{16}
\end{align*}
$$

From the second and third factors of (15), we have

$$
\begin{align*}
& \frac{2(z-T)}{X-z}=\frac{\alpha}{\beta} \\
& -2 \beta T+(2 \beta+\alpha) z-\alpha X=0 \tag{17}
\end{align*}
$$

Applying the method of cross multiplication for solving (16) and (17)

$$
\begin{aligned}
& X=21 \alpha^{2}+84 \alpha \beta-2 \beta^{2} \\
& T=2 \beta^{2}+2 \alpha \beta-21 \alpha^{2} \\
& z=21 \alpha^{2}+2 \beta^{2}
\end{aligned}
$$

substituting the values of X and T in (2), we get

$$
\left.\begin{array}{l}
x=x(\alpha, \beta)=-16 \beta^{2}+70 \alpha \beta+168 \alpha^{2} \\
y=y(\alpha, \beta)=10 \beta^{2}+96 \alpha \beta-105 \alpha^{2} \tag{18}\\
z=z(\alpha, \beta)=21 \alpha^{2}+2 \beta^{2}
\end{array}\right\}
$$

Thus (18) represents the non-zero distinct integral solutions to (1)

Properties:

- $x(1, \beta)-70 \operatorname{Pr}_{\beta}+86 t_{4, \beta} \equiv 0(\bmod 2)$
- $y(1, \beta)-96 \operatorname{Pr}_{\beta}+86 t_{4, \beta} \equiv 0(\bmod 5)$
- $x(\beta, \beta)+y(\beta, \beta)-223 t_{4, \beta}=0$
- $y(\beta, \beta)+z(\beta, \beta)-24 t_{4, \beta}=0$
- $x(\alpha+1,1)+S_{\alpha}-86 \operatorname{Pr}_{\alpha}+86 t_{4, \alpha} \equiv 0(\bmod 2)$
- $z(1, \beta+1)-S_{\beta}-6 \operatorname{Pr}_{\beta}+6 t_{4, \beta} \equiv 0(\bmod 2)$

Pattern-4:

One may write (10) in the form of ratio as

$$
\begin{equation*}
\frac{X+z}{21(z-T)}=\frac{2(Z+T)}{X-z}=\frac{\alpha}{\beta}, \beta \neq 0 \tag{19}
\end{equation*}
$$

From the first and third factors of (19), we have

$$
\begin{align*}
& \frac{X+z}{21(z-T)}=\frac{\alpha}{\beta} \\
& \beta X+(\beta-21 \alpha) z+21 \alpha T=0 \tag{20}
\end{align*}
$$

From the second and third factors of (19), we have

$$
\begin{align*}
& \frac{2(z+T)}{X-z}=\frac{\alpha}{\beta} \\
& 2 \beta T+(2 \beta+\alpha) z-\alpha X=0 \tag{21}
\end{align*}
$$

Applying the method of cross multiplication for solving (20) and (21)

$$
\begin{aligned}
& X=-21 \alpha^{2}-84 \alpha \beta+2 \beta^{2} \\
& T=2 \beta^{2}+2 \alpha \beta-21 \alpha^{2} \\
& z=-21 \alpha^{2}-2 \beta^{2}
\end{aligned}
$$

substituting the values of X and T in (2), we get

$$
\left.\begin{array}{l}
x=x(\alpha, \beta)=-12 \beta^{2}-98 \alpha \beta+126 \alpha^{2} \tag{22}\\
y=y(\alpha, \beta)=14 \beta^{2}-72 \alpha \beta-147 \alpha^{2} \\
z=z(\alpha, \beta)=-2 \alpha^{2}-21 \beta^{2}
\end{array}\right\}
$$

Thus (22) represents the non-zero distinct integral solutions to (1)

Properties:

- $x(1, \beta)+98 \operatorname{Pr}_{\beta}-86 t_{4, \beta} \equiv 0(\bmod 3)$
- $y(1, \beta)+72 \operatorname{Pr}_{\beta}-86 t_{4, \beta} \equiv 0(\bmod 7)$
- $x(\beta, \beta)+y(\beta, \beta)+189 t_{4, \beta}=0$
- $y(\beta, \beta)+z(\beta, \beta)+228 t_{4, \beta}=0$
- $x(\alpha+1,1)-S_{\alpha}-280 \operatorname{Pr}_{\alpha}+280 t_{4, \alpha} \equiv 0(\bmod 5)$
- $z(1, \beta+1)+S_{\beta}+6 \operatorname{Pr}_{\beta}-6 t_{4, \beta} \equiv 0(\bmod 2)$

Pattern-5:

One may write (10) in the form of ratio as

$$
\begin{equation*}
\frac{X+z}{14(z+T)}=\frac{3(Z-T)}{X-z}=\frac{\alpha}{\beta}, \beta \neq 0 \tag{23}
\end{equation*}
$$

From the first and third factors of (23), we have

$$
\begin{align*}
& \frac{X+z}{14(z+T)}=\frac{\alpha}{\beta} \\
& \beta X+(\beta-14 \alpha) z-14 \alpha T=0 \tag{24}
\end{align*}
$$

From the second and third factors of (24), we have

$$
\begin{align*}
& \frac{3(z-T)}{X-z}=\frac{\alpha}{\beta} \\
& -3 \beta T+(3 \beta+\alpha) z-\alpha X=0 \tag{25}
\end{align*}
$$

Applying the method of cross multiplication for solving (24) and (25)

$$
\begin{aligned}
& X=14 \alpha^{2}+84 \alpha \beta-3 \beta^{2} \\
& T=3 \beta^{2}+2 \alpha \beta-14 \alpha^{2} \\
& z=14 \alpha^{2}+3 \beta^{2}
\end{aligned}
$$

substituting the values of X and T in (2), we get

$$
\left.\begin{array}{l}
x=x(\alpha, \beta)=-24 \beta^{2}+70 \alpha \beta+112 \alpha^{2} \\
y=y(\alpha, \beta)=15 \beta^{2}+96 \alpha \beta-70 \alpha^{2} \tag{26}\\
z=z(\alpha, \beta)=14 \alpha^{2}+3 \beta^{2}
\end{array}\right\}
$$

Thus (26) represents the non-zero distinct integral solutions to (1)

Properties:

- $x(1, \beta)+-70 \operatorname{Pr}_{\beta}+94 t_{4, \beta} \equiv 0(\bmod 2)$
- $y(1, \beta)-96 \operatorname{Pr}_{\beta}+81 t_{4, \beta} \equiv 0(\bmod 2)$
- $x(\beta, \beta)+y(\beta, \beta)-199 t_{4, \beta}=0$
- $y(\beta, \beta)+z(\beta, \beta)-58 t_{4, \beta}=0$
- $x(\alpha+1,1)-S_{\alpha}-406 \operatorname{Pr}_{\alpha}+406 t_{4, \alpha} \equiv 1(\bmod 2)$
- $z(1, \beta+1)-S_{\beta}-9 \operatorname{Pr}_{\beta}+9 t_{4, \beta} \equiv 0(\bmod 2)$

Pattern-6:

One may write (10) in the form of ratio as

$$
\begin{equation*}
\frac{X+z}{3(z+T)}=\frac{14(Z-T)}{X-z}=\frac{\alpha}{\beta}, \beta \neq 0 \tag{27}
\end{equation*}
$$

From the first and third factors of (27), we have

$$
\begin{align*}
& \frac{X+z}{3(z+T)}=\frac{\alpha}{\beta} \\
& \beta X+(\beta-3 \alpha) z-3 \alpha T=0 \tag{28}
\end{align*}
$$

From the second and third factors of (27), we have

$$
\begin{align*}
& \frac{14(z-T)}{X-z}=\frac{\alpha}{\beta} \\
& -14 \beta T+(14 \beta+\alpha) z-\alpha X=0 \tag{29}
\end{align*}
$$

Applying the method of cross multiplication for solving (28) and (29)

$$
\begin{aligned}
& X=-14 \beta^{2}+84 \alpha \beta+3 \alpha^{2} \\
& T=14 \beta^{2}+2 \alpha \beta-3 \alpha^{2} \\
& z=3 \alpha^{2}+14 \beta^{2}
\end{aligned}
$$

substituting the values of X and T in (2), we get

$$
\left.\begin{array}{l}
x=x(\alpha, \beta)=-112 \beta^{2}+70 \alpha \beta+24 \alpha^{2} \tag{30}\\
y=y(\alpha, \beta)=70 \beta^{2}+96 \alpha \beta-15 \alpha^{2} \\
z=z(\alpha, \beta)=3 \alpha^{2}+14 \beta^{2}
\end{array}\right\}
$$

Thus (30) represents the non-zero distinct integral solutions to (1)

Properties:

- $x(1, \beta)-70 \operatorname{Pr}_{\beta}+182 t_{4, \beta} \equiv 0(\bmod 2)$
- $y(1, \beta)-96 \operatorname{Pr}_{\beta}+26 t_{4, \beta} \equiv 0(\bmod 5)$
- $x(\beta, \beta)+y(\beta, \beta)-133 t_{4, \beta}=0$
- $y(\beta, \beta)+z(\beta, \beta)-168 t_{4, \beta}=0$
- $x(\alpha+1,1)-S_{\alpha}-406 \operatorname{Pr}_{\alpha}+406 t_{4, \alpha} \equiv 1(\bmod 2)$
- $z(1, \beta+1)-S_{\beta}-42 \operatorname{Pr}_{\beta}+42 t_{4, \beta} \equiv 0(\bmod 2)$

Pattern-7:

(10) may be written in the form of ratio as

$$
\begin{equation*}
\frac{X+z}{3(z-T)}=\frac{14(Z+T)}{X-z}=\frac{\alpha}{\beta}, \beta \neq 0 \tag{31}
\end{equation*}
$$

From the first and third factors of (31), we have

$$
\begin{align*}
& \frac{X+z}{3(z-T)}=\frac{\alpha}{\beta} \\
& \beta X+(\beta-3 \alpha) z+3 \alpha T=0 \tag{32}
\end{align*}
$$

From the second and third factors of (32), we have

$$
\begin{align*}
& \frac{14(z+T)}{X-z}=\frac{\alpha}{\beta} \\
& 14 \beta T+(14 \beta+\alpha) z-\alpha X=0 \tag{33}
\end{align*}
$$

Applying the method of cross multiplication for solving (32) and (33)

$$
\begin{aligned}
& X=-3 \alpha^{2}-84 \alpha \beta+14 \beta^{2} \\
& T=14 \beta^{2}+2 \alpha \beta-3 \alpha^{2} \\
& z=-3 \alpha^{2}-14 \beta^{2}
\end{aligned}
$$

substituting the values of X and T in (2), we get

$$
\left.\begin{array}{l}
x=x(\alpha, \beta)=-84 \beta^{2}-98 \alpha \beta+18 \alpha^{2} \tag{34}\\
y=y(\alpha, \beta)=98 \beta^{2}-72 \alpha \beta-21 \alpha^{2} \\
z=z(\alpha, \beta)=-3 \alpha^{2}-14 \beta^{2}
\end{array}\right\}
$$

Thus (34) represents the non-zero distinct integral solutions to (1)

Properties:

- $x(1, \beta)+98 \operatorname{Pr}_{\beta}-14 t_{4, \beta} \equiv 0(\bmod 2)$
- $y(1, \beta)+72 \operatorname{Pr}_{\beta}-170 t_{4, \beta} \equiv 0(\bmod 3)$
- $x(\beta, \beta)+y(\beta, \beta)+159 t_{4, \beta}=0$
- $y(\beta, \beta)+z(\beta, \beta)+12 t_{4, \beta}=0$
- $x(\alpha+1,1)-S_{\alpha}+44 \operatorname{Pr}_{\alpha}-44 t_{4, \alpha} \equiv 0(\bmod 5)$
- $z(1, \beta+1)+S_{\beta}+42 \operatorname{Pr}_{\beta}-42 t_{4, \beta} \equiv 0(\bmod 2)$

Pattern-8:

One may write (10)in the form of ratio as

$$
\begin{equation*}
\frac{X+z}{6(z+T)}=\frac{7(Z-T)}{X-z}=\frac{\alpha}{\beta}, \beta \neq 0 \tag{35}
\end{equation*}
$$

From the first and third factors of (35), we have

$$
\begin{align*}
& \frac{X+z}{6(z+T)}=\frac{\alpha}{\beta} \\
& \beta X+(\beta-6 \alpha) z-6 \alpha T=0 \tag{36}
\end{align*}
$$

From the second and third factors of (35), we have

$$
\begin{align*}
& \frac{7(z-T)}{X-z}=\frac{\alpha}{\beta} \\
& -7 \beta T+(7 \beta+\alpha) z-\alpha X=0 \tag{37}
\end{align*}
$$

Applying the method of cross multiplication for solving (36) and (37)

$$
\begin{aligned}
& X=6 \alpha^{2}+84 \alpha \beta-7 \beta^{2} \\
& T=7 \beta^{2}+2 \alpha \beta-6 \alpha^{2} \\
& z=6 \alpha^{2}+7 \beta^{2}
\end{aligned}
$$

substituting the values of X and T in (2), we get

$$
\left.\begin{array}{l}
x=x(\alpha, \beta)=-56 \beta^{2}+70 \alpha \beta+48 \alpha^{2} \tag{38}\\
y=y(\alpha, \beta)=35 \beta^{2}+96 \alpha \beta-30 \alpha^{2} \\
z=z(\alpha, \beta)=6 \alpha^{2}+7 \beta^{2}
\end{array}\right\}
$$

Thus (38) represents the non-zero distinct integral solutions to (1)

Properties:

- $x(1, \beta)-70 \operatorname{Pr}_{\beta}+126 t_{4, \beta} \equiv 0(\bmod 2)$
- $y(1, \beta)-96 \operatorname{Pr}_{\beta}+61 t_{4, \beta} \equiv 0(\bmod 5)$
- $x(\beta, \beta)+y(\beta, \beta)-163 t_{4, \beta}=0$
- $y(\beta, \beta)+z(\beta, \beta)-114 t_{4, \beta}=0$
- $x(\alpha+1,1)-S_{\alpha}-214 \operatorname{Pr}_{\alpha}+214 t_{4, \alpha} \equiv 0(\bmod 2)$
- $z(1, \beta+1)-S_{\beta}-21 \operatorname{Pr}_{\beta}+21 t_{4, \beta} \equiv 1(\bmod 2)$

Pattern-9:

One may write (10) in the form of ratio as

$$
\begin{equation*}
\frac{X+z}{7(z+T)}=\frac{6(Z-T)}{X-z}=\frac{\alpha}{\beta}, \beta \neq 0 \tag{39}
\end{equation*}
$$

From the first and third factors of (38), we have

$$
\begin{align*}
& \frac{X+z}{7(z+T)}=\frac{\alpha}{\beta} \\
& \beta X+(\beta-7 \alpha) z-7 \alpha T=0 \tag{40}
\end{align*}
$$

From the second and third factors of (40), we have

$$
\begin{align*}
& \frac{6(z-T)}{X-z}=\frac{\alpha}{\beta} \\
& -6 \beta T+(6 \beta+\alpha) z-\alpha X=0 \tag{41}
\end{align*}
$$

Applying the method of cross multiplication for solving (40) and (41)

$$
\begin{aligned}
& X=7 \alpha^{2}+84 \alpha \beta-6 \beta^{2} \\
& T=6 \beta^{2}+2 \alpha \beta-7 \alpha^{2} \\
& z=7 \alpha^{2}+6 \beta^{2}
\end{aligned}
$$

substituting the values of X and T in (2), we get

$$
\left.\begin{array}{l}
x=x(\alpha, \beta)=-48 \beta^{2}+70 \alpha \beta+56 \alpha^{2} \\
y=y(\alpha, \beta)=30 \beta^{2}+96 \alpha \beta-35 \alpha^{2} \tag{42}\\
z=z(\alpha, \beta)=7 \alpha^{2}+6 \beta^{2}
\end{array}\right\}
$$

Thus (42) represents the non-zero distinct integral solutions to (1)

Properties:

- $x(1, \beta)-70 \operatorname{Pr}_{\beta}+118 t_{4, \beta} \equiv 0(\bmod 2)$
- $y(1, \beta)-96 \operatorname{Pr}_{\beta}+66 t_{4, \beta} \equiv 0(\bmod 5)$
- $x(\beta, \beta)+y(\beta, \beta)-169 t_{4, \beta}=0$
- $y(\beta, \beta)+z(\beta, \beta)-104 t_{4, \beta}=0$
- $x(\alpha+1,1)-S_{\alpha}-238 \operatorname{Pr}_{\alpha}+238 t_{4, \alpha} \equiv 0(\bmod 2)$
- $z(1, \beta+1)-S_{\beta}-18 \operatorname{Pr}_{\beta}+18 t_{4, \beta} \equiv 1(\bmod 2)$

Pattern-10:

One may write (10) in the form of ratio as

$$
\begin{equation*}
\frac{X+z}{7(z-T)}=\frac{6(z+T)}{X-z}=\frac{\alpha}{\beta}, \beta \neq 0 \tag{43}
\end{equation*}
$$

From the first and third factors of (43), we have

$$
\begin{align*}
& \frac{X+z}{7(z-T)}=\frac{\alpha}{\beta} \\
& \beta X+(\beta-7 \alpha) z+7 \alpha T=0 \tag{44}
\end{align*}
$$

From the second and third factors of (43), we have

$$
\begin{align*}
& \frac{6(z+T)}{X-z}=\frac{\alpha}{\beta} \\
& 6 \beta T+(6 \beta+\alpha) z-\alpha X=0 \tag{45}
\end{align*}
$$

Applying the method of cross multiplication for solving (44) and (45)

$$
\begin{aligned}
& X=-7 \alpha^{2}-84 \alpha \beta+6 \beta^{2} \\
& T=6 \beta^{2}+2 \alpha \beta-7 \alpha^{2} \\
& z=-7 \alpha^{2}-6 \beta^{2}
\end{aligned}
$$

substituting the values of X and T in (2), we get

$$
\left.\begin{array}{l}
x=x(\alpha, \beta)=-36 \beta^{2}-98 \alpha \beta+42 \alpha^{2} \tag{46}\\
y=y(\alpha, \beta)=42 \beta^{2}-72 \alpha \beta-49 \alpha^{2} \\
z=z(\alpha, \beta)=-7 \alpha^{2}-6 \beta^{2}
\end{array}\right\}
$$

Thus (46) represents the non-zero distinct integral solutions to (1)

Properties:

- $x(1, \beta)+98 \operatorname{Pr}_{\beta}-62 t_{4, \beta} \equiv 0(\bmod 2)$
- $y(1, \beta)+72 \operatorname{Pr}_{\beta}-114 t_{4, \beta} \equiv 1(\bmod 2)$
- $x(\beta, \beta)+y(\beta, \beta)+171 t_{4, \beta}=0$
- $y(\beta, \beta)+z(\beta, \beta)+92 t_{4, \beta}=0$
- $x(\alpha+1,1)-S_{\alpha}-28 \operatorname{Pr}_{\alpha}+28 t_{4, \alpha} \equiv 0(\bmod 2)$
- $z(1, \beta+1)+S_{\beta}+18 \operatorname{Pr}_{\beta}-18 t_{4, \beta} \equiv 1(\bmod 2)$

Pattern-11:

One may write (10) in the form of ratio as

$$
\begin{equation*}
\frac{X-z}{21(z+T)}=\frac{2(z-T)}{X+z}=\frac{\alpha}{\beta}, \beta \neq 0 \tag{47}
\end{equation*}
$$

From the first and third factors of (47), we have

$$
\begin{align*}
& \frac{X-z}{21(z+T)}=\frac{\alpha}{\beta} \\
& \beta X-(\beta+21 \alpha) z-21 \alpha T=0 \tag{48}
\end{align*}
$$

From the second and third factors of (47), we have

$$
\begin{align*}
& \frac{2(z-T)}{X+z}=\frac{\alpha}{\beta} \\
& -2 \beta T+(2 \beta-\alpha) z-\alpha X=0 \tag{49}
\end{align*}
$$

Applying the method of cross multiplication for solving (48) and (49)

$$
\begin{aligned}
& X=-21 \alpha^{2}+84 \alpha \beta+2 \beta^{2} \\
& T=2 \beta^{2}-2 \alpha \beta-21 \alpha^{2} \\
& z=21 \alpha^{2}+2 \beta^{2}
\end{aligned}
$$

substituting the values of X and T in (2), we get

$$
\left.\begin{array}{l}
x=x(\alpha, \beta)=-12 \beta^{2}+98 \alpha \beta+126 \alpha^{2} \tag{50}\\
y=y(\alpha, \beta)=14 \beta^{2}+72 \alpha \beta-147 \alpha^{2} \\
z=z(\alpha, \beta)=21 \alpha^{2}+2 \beta^{2}
\end{array}\right\}
$$

Thus (50) represents the non-zero distinct integral solutions to (1)

Properties:

- $x(1, \beta)-98 \operatorname{Pr}_{\beta}+110 t_{4, \beta} \equiv 0(\bmod 2)$
- $y(1, \beta)-72 \operatorname{Pr}_{\beta}+58 t_{4, \beta} \equiv 0(\bmod 7)$
- $x(\beta, \beta)+y(\beta, \beta)-151 t_{4, \beta}=0$
- $y(\beta, \beta)+z(\beta, \beta)+38 t_{4, \beta}=0$
- $x(\alpha+1,1)-S_{\alpha}-476 \operatorname{Pr}_{\alpha}+476 t_{4, \alpha} \equiv 0(\bmod 2)$
- $z(1, \beta+1)-S_{\beta}-6 \operatorname{Pr}_{\beta}+6 t_{4, \beta} \equiv 1(\bmod 2)$

Pattern-12:

One may write (10) in the form of ratio as

$$
\begin{equation*}
\frac{X-z}{3(z+T)}=\frac{14(z-T)}{X+z}=\frac{\alpha}{\beta}, \beta \neq 0 \tag{51}
\end{equation*}
$$

From the first and third factors of (51), we have

$$
\begin{align*}
& \frac{X-z}{3(z+T)}=\frac{\alpha}{\beta} \\
& \beta X-(\beta+3 \alpha) z-3 \alpha T=0 \tag{52}
\end{align*}
$$

From the second and third factors of (50), we have

$$
\begin{align*}
& \frac{14(z-T)}{X+z}=\frac{\alpha}{\beta} \\
& -14 \beta T+(14 \beta-\alpha) z-\alpha X=0 \tag{53}
\end{align*}
$$

Applying the method of cross multiplication for solving (52) and (53)

$$
X=-3 \alpha^{2}+84 \alpha \beta+14 \beta^{2}
$$

$$
T=14 \beta^{2}-2 \alpha \beta-3 \alpha^{2}
$$

$$
z=3 \alpha^{2}+14 \beta^{2}
$$

substituting the values of X and T in (2), we get

$$
\left.\begin{array}{l}
x=x(\alpha, \beta)=-84 \beta^{2}+98 \alpha \beta+18 \alpha^{2} \\
y=y(\alpha, \beta)=98 \beta^{2}+72 \alpha \beta-21 \alpha^{2} \tag{54}\\
z=z(\alpha, \beta)=3 \alpha^{2}+14 \beta^{2}
\end{array}\right\}
$$

Thus (54) represents the non-zero distinct integral solutions to (1)

Properties:

- $x(1, \beta)-98 \operatorname{Pr}_{\beta}+182 t_{4, \beta} \equiv 0(\bmod 2)$
- $y(1, \beta)-72 \operatorname{Pr}_{\beta}+170 t_{4, \beta} \equiv 0(\bmod 3)$
- $x(\beta, \beta)+y(\beta, \beta)-181 t_{4, \beta}=0$
- $y(\beta, \beta)+z(\beta, \beta)-166 t_{4, \beta}=0$
- $x(\alpha+1,1)-S_{\alpha}-152 \operatorname{Pr}_{\alpha}+152 t_{4, \alpha} \equiv 0(\bmod 2)$
- $z(1, \beta+1)-S_{\beta}-42 \operatorname{Pr}_{\beta}+42 t_{4, \beta} \equiv 1(\bmod 2)$

Pattern-13:

One may write (10) in the form of ratio as

$$
\begin{equation*}
\frac{X-z}{7(z+T)}=\frac{6(z-T)}{X+z}=\frac{\alpha}{\beta}, \beta \neq 0 \tag{55}
\end{equation*}
$$

From the first and third factors of (55), we have

$$
\begin{align*}
& \frac{X-z}{7(z+T)}=\frac{\alpha}{\beta} \\
& \beta X-(\beta+7 \alpha) z-7 \alpha T=0 \tag{56}
\end{align*}
$$

From the second and third factors of (56), we have

$$
\begin{align*}
& \frac{6(z-T)}{X+z}=\frac{\alpha}{\beta} \\
& -6 \beta T+(6 \beta-\alpha) z-\alpha X=0 \tag{57}
\end{align*}
$$

Applying the method of cross multiplication for solving (56) and (57)

$$
\begin{aligned}
& X=-7 \alpha^{2}+84 \alpha \beta+6 \beta^{2} \\
& T=6 \beta^{2}-2 \alpha \beta-7 \alpha^{2} \\
& z=7 \alpha^{2}+6 \beta^{2}
\end{aligned}
$$

substituting the values of X and T in (2), we get
$\left.\begin{array}{l}x=x(\alpha, \beta)=-36 \beta^{2}+98 \alpha \beta+42 \alpha^{2} \\ y=y(\alpha, \beta)=42 \beta^{2}+72 \alpha \beta-49 \alpha^{2} \\ z=z(\alpha, \beta)=7 \alpha^{2}+6 \beta^{2}\end{array}\right\}$
Thus (58) represents the non-zero distinct integral solutions to (1)

Properties:

- $x(1, \beta)-98 \operatorname{Pr}_{\beta}+134 t_{4, \beta} \equiv 0(\bmod 2)$
- $y(1, \beta)-72 \operatorname{Pr}_{\beta}+30 t_{4, \beta} \equiv 0(\bmod 7)$
- $x(\beta, \beta)+y(\beta, \beta)-169 t_{4, \beta}=0$
- $y(\beta, \beta)+z(\beta, \beta)-78 t_{4, \beta}=0$
- $x(\alpha+1,1)-S_{\alpha}-224 \operatorname{Pr}_{\alpha}+224 t_{4, \alpha} \equiv 0(\bmod 2)$
- $z(1, \beta+1)-S_{\beta}-18 \operatorname{Pr}_{\beta}+18 t_{4, \beta} \equiv 1(\bmod 2)$

IV. CONCLUSION

In this paper, we have made an attempt to obtain all integer solutions to ternary quadratic equation $6 x^{2}+7 y^{2}=559 z^{2}$. One may search for other patterns of solutions and their corresponding properties.

V. REFERENCES

[1] Dickson L.E. "History of theory of numbers", Vol-2, Diophantine analysis, New York, Dover, 2005.
[2] Mordell L.J. "Diophantine equations", Academic press, New York, 1969.
[3] Carmichael R.D. "The theory of numbers and Diophantine analysis", New York, Dover, 1959.
[4] Gopalan M.A, Geetha D, Lattice points on the hyperbola of two sheets $x^{2}-6 x y+y^{2}+6 x-2 y+5=z^{2}+4$, Impact J sci Tech : 4:23-32,2010.
[5] Gopalan M.A, Vidhyalakshmi S, Kavitha A, Integral points on the homogeneous cone $z^{2}=2 x^{2}-7 y^{2}$, The Diophantine J Math ; $1(2): 127-136,2012$.
[6] Gopalan M.A, Vidhyalakshmi S, Sumathi G, Lattice points on the hyperboloid of one sheet $4 z^{2}=2 x^{2}+3 y^{2}-4$,Diophantine J Math; $1(2): 109-115,2012 .$.
[7] Gopalan M.A, Vidhyalakshmi S, Lakshmi K, Integral points on the hyperboloid of two sheets $3 y^{2}=7 x^{2}-z^{2}+21$, Diophantine J Math ; $1(2): 99-107,2012$.
[8] Gopalan M.A, Vidhyalakshmi S, Mallika S, Observations on hyperboloid of one sheet $x^{2}+2 y^{2}-z^{2}=2$, Bessel J Math ; 2(3): 221-226,2012.
[9] Gopalan M.A, Vidhyalakshmi S, Usha Rani T.R, Mallika S, Integral points on the homogeneous cone $6 z^{2}+3 y^{2}-2 x^{2}=0$, Impact J sci Tech ; 6(1):7-13,2012..
[10] Gopalan M.A, Vidhyalakshmi S, Sumathi G, Lattice points on the elliptic paraboloid $z=9 x^{2}+4 y^{2}$, Advances in Theoretical and Applied Mathematics;m 7(4):379-385,2012..
[11] Gopalan M.A, Vidhyalakshmi S, Usha Rani T.R, Integral points on the non-homogeneous cone $2 z^{2}+4 x y+8 x-4 z=0, \quad$ Global Journal of Mathematics and Mathematics Sciences 2012; 2(1): 61-67.
[12] Gopalan M.A, Vidhyalakshmi S, Lakshmi K, Lattice points on the elliptic paraboloid $16 y^{2}+9 z^{2}=4 x$, Bessel J of Math ;
[13] Gopalan M.A, Geetha T, HemalathaK,"On the ternary quadratic Diophantine equation $5\left(x^{2}+y^{2}\right)-2 x y=20 z^{2} "$, International journal of multidisciplinary research and development, Vol-2, Issue: 4,211-214, April-2015.
[14] Hema.D,Mallika.S,"On the ternary quadratic Diophantine equation $5 y^{2}=3 x^{2}+2 z^{2}$,Journal of Mathematics and informatics,Vol.10,157-165,2017.
[15] Selva Keerthana.K , Mallika.S, "On the Ternary Quadratic Diophantine equation $3\left(x^{2}+y^{2}\right)-5 x y+2(x+y)+4=15 z^{2}$ "Journal of Mathematics and informatics, Vol. 11,21-28,2017.

