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Abstract: We define a concept almost contra S-g-continuity. Then, we obtain some properties and
characterizations of it. We also give the relations with some other types of continuity. Finally, we obtain that it
is implied by al.cont.g-con. with (8,s)- S-con. and cont. S-g-con. implied by it.
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I. INTRODUCTION

Levine([15]) defined and examined a new closed set namely g-closed. Since continuity is important concept
of topology, many topologist have studied the several kind of generalizations of continuity such as contra
continuity[4]. Modifications of contra continuity have been introduced and investigated in many authors. Such
as in ([13]), authors have defined a new contra continuity related to g-closed sets. Since ideal which is another
important notion in topology, it is investigated in [14] and [19] respectively.

This paper is consist of three part. In third section, we give a definition namely almost contra-S-g-continuity.
Then we got some properties of it and the relationships with some others. At last, we obtain that it is implied by
al.cont.g-con. with (6,s)- S-con. and cont. S-g-con. implied by it.

Il. PRELIMINARIES
We will use the symbol (P, A) for any topological space. If Y < P is any subset of P, CI(Y) and Int(Y)

are denote the closure and interior of Y in P respectively. A' is the class of all closed sets in P.
Let @(P)is power set of P . A nonempty subclass S of g(P)said to be an ideal on P, if it satisfies (1)

YeS,ZcY=>ZeSand(2)YeS,ZeS=(YuZ)eS. Let atopological space (P, A) with an ideal S
on P. Then for every Y c P, () :¢(P) — @(P) is defined as Y (S,A)={peP:(KNY)eS for every

Y e4,} 4, isopen neighborhood of P. Y (S, A) is given a name a local mapping of M with related to S and

A ([14]). Briefly, Y is used instead of Y (S,4) . In [19] author introduced a new closure function,
wherecl” : o(P) — go(P) is defined by ¢l (Y) =Y UY". Y'(S) ={Y < P:cl"(Y) = (P-Y)} is a topology on

P by using cl”and it is finer than A ([9]). If there are one topology A and one ideal S on P is said to be an ideal
topological space. It will be used by (P, 4,S) ([9]).

Now, we recall two lemmas and one definition which are need for this study.
Lemma 2.1([9]). For Z, Y are two subsets of (P, 1,S), then

1 ZcY=Z cY';

(2 (ZuY) =ZuY;

(3) Y =cl'(Y)ccl(Y);

4 (Y)Y cy.

Definition 2.1. A subset M of (P, 4,S) given a hame
(1) clopen[14] M e AandM e A';
(2) regular open (i.e.; r.0.) [18] if M = Int(CI(M));
(3) regular closed (i.e.; r.c.) [18] if M =ClI(Int(M));
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(4) g-closed(i.e.; g-c.) [15] ifcl(M) =« K, whenever M cK and Ke 4;
(5) A -closed(i.e.; A'c.)[9]if M =M ;

(6) S-g-closed(i.e.; S-g-c.)[5] M~ < K whenever M c K and K € 4
(7) regular S-closed(i.e.; r S-c.) [11] if M = (Int(M))’;
8) f —[12] M < (Int(M))’).

A subset M is given a name S-g-open(i.e.; S-g-0.) if (P -M ) is an S-g-c.. The class of all clopen (resp. r.o., r.c.,
g-c., S-g-c, S-g-o0., r.S-c., f —) sets in (P,4,S) is denoted by CO(P,1) (resp. RO(P,1), RC(P, 1),

GC(P, 1), SGC(P,4),SGO(P, 1), RSC(P,A), f (P, 4)).
By using above definition, one can obtain the following figure.

r.c closed —» O0-C.

'\T%\l_%\

clopen — ro.—  open
Fig. 1.

11l. ALMOST CONTRA S-G-CONTINUITY
In this part, we give a definition of almost contra-S-g-continuous mapping and obtain some conditions of it.
Definition 3.1. A subset K of (P, 4, S) is given a name mk-open set if K is open and A" -c.. The collection of
all mk-open setsin (P, A,S) iswill be used by MK(P, 4) .

Theorem 3.1. Every clopen set is a mk-open.

Proof. Let K be a clopen set in (P, 4,S). So, K is open and closed. As every closed set is a A" -c., then K is
mk-open.

Remark 3.1. The reversible of Theorem 3.1 isn’t right generally.

Example 3.1. For (P, 4,S) let P={1,2,3,4}, s={2,{3},{4},{3,4}} and
21={2,P,{3},{1,3},{2,3},{3,4},{1.3,4},{1,2,3},{2,3,4}} . For K ={3,4}, K is a mk-open, but isn’t
clopen. It is seen that K e A Since K' =@ < {3,4} =K , K is mk-open. Since CI(K)=P «{3,4} =K ,
K isn’t closed and hence not clopen.

Proposition 3.1. MK(P, 1) is closed finite union.

Proof. It is obtained from Lemma 2.1(2) and Definition 2.1(5).

By using Fig. 1 and Definition 3.1, the next figure is observed.

rc. — A » closed —» -C

\rSc —»\—c _ \Sgc
fsl—set

clopen > mk-q — > open

r.o. /

Fig. 2.
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Definition 3.2. Amap f :(P,/l) - (Q,,u) is given a name regular set-connected(i.e.;r.s.connected)[5], (resp.
R-map[3], almost continuous(i.e.;al.con.) [18], almost contra g-continuous(i.e.; al.cont.g-con.)[13], contra R-
map(i.e.; cont. R-map)[6], (6,s)-continuous(i.e.; (6,s)-con.)([10],[16]))) f (Z) is clopen (resp. r.o., open, g-C.,

r.c., closed) in P for every r.o. set Z of Q.
The next figure is obvious from Fig. 1 with Definitions 3.2.

r.s.connected ——p contR-map ——» (6, s) con.
R-fiap —»  al.con. al. cont. g-con.
Fig. 3.

Definition 3.3. Amap f :(P, A S) - (Q, ,u) is given a name almost contra S-g-continuous (i.e.; al. cont. S-g-
con.) if f *(Z) is S-g-c. in P for every Z e RO(Q, u).
Two next theorem are related to characterizations of al.cont. S-g-con. mappings.
Theorem 3.2. Let f :(P,4,S)—(Q, ) be a mapping. Then next four conditions are mutually equivalent:
(1) fisal.cont. S-g-con.;
(2 f7(F)elIGO(P,A) forevery FeRC(Q, u);
@) fr(Int(CI(T)))elGC(P, 1) foreveryT e u;
@ f7(cI(Int(R)))e1GO(P,4) forevery Re u'.
Proof. (1)=() Let FeRC(Qu) Then (Q-F)eRO(Q,u) and according to (1),
f*((Q-F)) e IGC(P, 1) .Hence, f(F)elGO(P,A).
(2)=(1) Itis got similar to proof of (1)=(2).
(1)=(3) Let T e & . Since Int(CI(T)) e RO(Q, u), we have f*(Int(CI(T))) e IGC(P, 1) by
using (1).
(3)=(2) Itis clear.
(2)=(4) Itis got as proof of (1)=(3).
(4)=(2) It is got as proof of (3)=(1).
Theorem 3.3. If f : (P, A S) - (Q, ,u) is al.cont. S-g-con. mapping, then the next two conditions are mutually

equivalent:
(1) Forevery peP everyr.c. Fin Q containing f (p); there exists an S-g-o. set K in P containing p

while f(K)c F,
(2) Forevery peP,everyr.o. Kin Q non-containing f (p) ; there exists an S-g-c. set V in P non-

containing p while f*(K)cV.

Proof. We will prove only (1) because of it is evident that (1) and (2) are equivalent to each other. Let F be any
r.c. in Q containing f(p) . According to Theorem 3.2(2), f'(F)eIGO(P,2)and pe f'(F) .Taking

K = f(F), we observe immediately f(K)cF .

Definition 3.4. Amapping f :(P,4,S) —(Q, ) isgivenaname almost f, —continuous (i.e; al. f, —con.)(
resp. contra R-S-map (i.e.; cont. R-S-map), regular set*-connected (i.e.; r.s.*-connected), (6,s)-S-continuous
(i.e.; (8s)-S-con.) if f7(Z), f, — (resp.r.S-c., mk-open, A" -c.)setisin P for every Z e RO(Q,,u).
Theorem 3.4. If f :(P,2,5) — (Q, ) is cont. R-S-map, then it is (0,5)-S-con..

Proof. It is observed from Fig. 1.

Remark 3.2. We give next example which is the reversible of Theorem 3.4 isn’t true.
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Example 3.2. For (P, 1,S) let P={1,2,3}, 1={2,P,{1},{1,3},{1,2}} and S ={@,{1},{3},{1,3}}. For
(Qu), let Q={1,2,3}=P and x={2,Q,{1,2},{3}}. Let f:(P,4,S)—(Q,x)is an identity function.
For Z={3}eRO(Q u) ., ((f*(2)) =({38} )y =2 {3}=17(2). So f*(Z)is a1 —c. .Because
of Z={3}eu (INt(f*(2)) =(nt({3})) =({38}) =@« {3} =f"(Z) . Hence isn’t r.S-c. and

hence f is (6,s)-S-con., but isn’t cont. R-S-map.

Theorem 3.5. If f:(P,2,S) — (Q, u) is (6,5)-S-c., then al. cont. S-g-con..
Proof. It is observed from Fig. 1.

Remark 3.3. We have next example in which is denoted the reversible of Theorem 3.4 isn’t true.
Example 3.3. For (P,4,S) let P={xy,z}, 1={2,P,{x} {y,z}} and S ={2,{x},{z},{x,2}} For

(Qu), let Q={x,y,z} =P and u={2,Q,{x y},{z}}. Let f :(P,2,5)—(Q, u) is a function, defined
by: f(x)="f(z)=z2 and f(y)=y Set Z={z} eRO(Q,u) . Therefore, we

have f*(Z)={x,z} c{x,y,z} =P e and (f’l(Z))* =({x.y}) ={y,z} <P . Then £*(2)={y,z} is

S-g-c., butitis not A" —c.. Therefore fis al. cont. S-g-con., but it is not (6,s)-S con..

Theorem 3.6. If f :(P,2,5)— (Q, ) is cont. R-S-map, then it is al. S-con..
Proof. This proof is observed from Fig. 3 and Theorem 3.2.

Remark 3.4. The reversible of Theorem 3.6 isn’t true as observed in below.
Example 3.4. For (P, 4,8) let P={x,y,z}, 1={@,P,{x},{y,z}} andS={2,{z}}. For (Q,u) , let
Q={xy,z}=P and u={2,Q{x y} {z}} . Let f:(P,4S)—>(Q x) is a function, defined by :

f(x)="f(z)=x and f(y)=2z.Set Z={z} eRO(Q,u).Then f*(Z)={y} is f, —set, butitisn’tS-
g-c.. This shows that f is al. S- con., but it is not cont. R-S-map.

Theorem 3.7. If f : (P,/l, S) - (Q, ,u)S al. cont. g-con. mapping, then it is al. cont. S-g-con..
Proof. This proof is got from Fig. 1, Definition 2.2 and Definition 3.2.

Remark 3.5. The reversible of Theorem 3.7 isn’t true as observed in below.

Example 35, For (P,4,S) let P={xvyzt} , i={P{x}.{y,z}.{xy,2}} and
S={z,{x}.{z} {x2}} . For (Qu) ., let Q={xyz} and u={2,Q{x vy} {z}}
Let f:(P,4,S)—(Q, «) is a mapping, defined by f(x)=f(z)=z , f(y)=x and f(t)=y Set
Z={z} eRO(Q,u). Then f7(Z)={xz} . AlsoY ={x,y,z} e (f’l(Z))* =({x,z}) =@ cY and

hence f*(Z) isS-g-c. set. Since CI(f "(Z))=P <Y we observe that f *(Z)isnot g-c..Itis observed that
fisal. cont. S-g-con., but isn’t al. cont. g-con..

Theorem 3.8. If f :(P,2,S) — (Q, u)is r.s.connected, then it is r.s.*-connected.

Proof. This proof is got from Fig. 1, Theorem 3.1.

Remark 3.6. The reversible of Theorem 3.8 isn’t true as denoted below.

Example 3.6 For (P,4,8) let P={x,y,z,t}, A={@,P,{x,y},{z,t}} and S ={,{z},{t},{z,t}}. For
(Qu), let Q={x,y,z} and u={2,Q,{x v},{z}}. Let f :(P,4,S) —(Q, u) is a function, defined by :
f(x)=x, f(y)=y and f(z)=f(t)=z If Z={z} eRO(Q, ), then f7(Z)={zt} is mk-open.
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since (17(2)) =({zt}) =@c{zt}, CI(f*(2))=Pe{zt} is 2 —c. set but it is not closed and
clopen.So, fisr.s.*-connected but isn’t r.s.connected.

Theorem 3.9. If f :(P,1,S) — (Q, ) is cont.R-S-map, then it is cont.R-map.
Proof. This proof is got from Fig. 1, Definition 2.2 and Definition 3.3.

Remark 3.7. The reversible of Theorem 3.8 isn’t true as as denoted below.
Example 3.7 For (P, 4,9) let P={x,y,z,t}, A={@,P,{x,z} ,{y,t}} and S ={@,{y}.{t}.{y,t}} For

(Qu), let Q={x,y,z} and u={2,Q,{x,y} {z}}. Let f :(P,4,S) —>(Q,x) is a function defined by:

f(x)=x f(z)=y and f(y)=f(t)=z Uf Z={z}eRO(Qu) ,  then
f(z2)={yt} Since Int(f *(2)) = Int{y,t}) ={y, t} and
Cl(Int(f *(2))) = Cl(Int{y,t}) ={y. t} , f7(2) isr.c.set. Besides since

(Int(f*(2))" = (Int{y,t}) =D ={y,t} . £7(Z)is not r. S-c.. This shows that f is cont.R-map but isn’t
cont.R-S-map.

Definition 3.4. Amapping f : (P, 4,S) —(Q, «)is given a name contra S-g-continuous (i.e.; cont. S-g-con.) if
f*(Z) isS-g-c.in (P, 4,S) for every open set Z of Q.

Theorem 3.10. If is f :(P,A,S) —>(Q,,u) al.cont. S-g-con. mapping, then it is cont. S-g-con..

Proof. For Z e RO(Q, u) since Z e pz and f :(P,4,S)—(Q, u)is al.cont.S-g-con., f™(Z) e SGC(P, 1) .
Thus, fis cont.S-g-con..

Remark 3.8.The reversible of Theorem 3.10 is false in generally.
Example3.8. For  (P,4,S) let P={xy,zt} A={a P {x} {y}.{xz}.{x vy}, {xyz}} and

S={2,{y}} . For (Q,u)let Q={x,y,z} and u={2,Q{x} {y,z}} .Let f:(P,1,S)—(Q,u)be a
mapping  defined:  f(x)=y , f(y)=f(z)=x . For Z={x}eum .  Then,

f1(2)={y,z} c{xy,z2}=KeA, (f’l(Z))* =({y.z}) ={z} =K isS-g-c. set. So, f is cont. S-g-con..

For N={y,z} eRO(Y,p) , f'(N)={x}=Lea. (f’l(N))* =({x}) ={x,z} L, N is not S-g-c.
Therefore, fisn’t al. cont. S-g-con..

By using Fig. 3 and above theorems, the next figure is given.

cont. R-map (6s)-con— al. cont. g-con.

‘ o
:%&-S map ——» (639)- S-con. —»\al cont. S-g-con.
al. corl f, —con. coi. S-g-con.

rs.cannected — 5 r.s.*-connected ——— al. con.

Fig. 4.
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Recall that a function f:(P,1,S)—(Q, ) is given a name completely continuous (i.e.; compl.

con.)[1] (resp. continuous (i.e.;con.) if f*(Z) isr. 0. (resp. open) in P for every open set Z of Q.

Theorem 3.11. For two mappings f:(P,4,S)—>(Q,xD) and g:(Q uD)—>(R«x) , let
gof : (P, 4,S) = (R, k) isa composite mapping. The next conditions valid:

(1) Iff isal. cont. S-g-con., g is an R-map then gof is al. cont. S-g-con.;

(2) If f iscont. S-g-con., g is al. con. then gof is al. cont. S-g-con.;

(3) Iff isal. cont. S-g-con., g is completely con. then gof is cont. S-g-con.;
(4) If f iscont. S-g-con., g is con. then gof is cont. S-g- con.

Proof. (1) Let V be any r. 0. set in R. Since g is an R-map and f is al. cont.S-g-con., g~ (V) e RO(Q, 1) and
£ (g™ (V)) = (gof ) (V) e SGC(P, A) , respectively. This shows that, gof is al. cont. S-g con.

(2) Let V be any ro. set in R. Since g is al. con. and f is cont. S-g-con. , g (V)eu and
£ (g™ (V)) = (gof ) *(V) e SGC(P, A) , respectively. Hence, gof is al. cont. S-g-con.

(3) Itis easily observe similar to (1).

(4) Itiseasily observe similar to (2).

Theorem 3.12. If f :(P,4,S)—(Q, )is al. cont. S-g-con. and al. con., then f is r.s.*-connected.
Proof. Let V be any r.o in Q. .fis both al. cont. S-g-con. and al. con., f (V) is both S-g-c. and open. So,

f*(V)is A" —c.and mk-open set. Hence f is r.s.*-connected.

Definition 3.5. Amapping f:(P,4,5) > (Q,x, D) isgiven aname
(1) S-g-open if f(x)is D-g-o. in Q for every S-g-o. set K of P;
(2) S-g-closed if f (x) is D-g-c. in Q for every S-g-c. set K of P.

Theorem 3.13. If t:(P,4,5) - (Q,u, D)is surjection S-g-open (or S-g-closed), g:(Q, .. D) > (R w) is a
mapping while gof : (P, 1,5) > (R,«) isal. cont. S-g-con., then g is al. cont. D-g-con..
Proof. Let V be any r. c. (resp. r. 0.) in R. gof al. cont. S-g-con., (gof )™ (V) = f (g™ (V)) is S-g-0. (resp. S-g-

c.). Since f is both surjection and S-g-open (or S-g-closed), f(f " (g™(V))))=g (V) is D-g-0. (or D-g-c.).
Hence, g is al. cont. D-g-con..

IV. CONCLUSION
We obtain that it is implied by al.cont.g-con. with (6,s)- S-con. and cont. S-g-con. implied by it.
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