A Mapping for S-g-Closedness

Melahat Safak(Kocabas)^{#1}, Aynur Keskin Kaymakci^{*2}

[#] Selcuk University, Faculty of Sciences, Department of Mathematics, 42031, Campus, Konya/TURKEY

Abstract: We define a concept almost contra S-g-continuity. Then, we obtain some properties and characterizations of it. We also give the relations with some other types of continuity. Finally, we obtain that it is implied by al.cont.g-con. with (θ,s) - S-con. and cont. S-g-con. implied by it.

Keywords : Almost contra-S-g-continuity, g-closed sets, ideal, topology.

I. INTRODUCTION

Levine([15]) defined and examined a new closed set namely *g-closed*. Since *continuity* is important concept of topology, many topologist have studied the several kind of generalizations of continuity such as *contra continuity*[4]. Modifications of contra continuity have been introduced and investigated in many authors. Such as in ([13]), authors have defined a new contra continuity related to g-closed sets. Since *ideal* which is another important notion in topology, it is investigated in [14] and [19] respectively.

This paper is consist of three part. In third section, we give a definition namely almost contra-*S*-g-continuity. Then we got some properties of it and the relationships with some others. At last, we obtain that it is implied by al.cont.g-con. with (θ,s) - *S*-con. and cont. *S*-g-con. implied by it.

II. PRELIMINARIES

We will use the symbol (P, λ) for any topological space. If $Y \subseteq P$ is any subset of P, Cl(Y) and Int(Y) are denote the closure and interior of Y in P respectively. λ^{t} is the class of all closed sets in P.

Let $\wp(P)$ is power set of P. A nonempty subclass S of $\wp(P)$ said to be an ideal on P, if it satisfies (1) $Y \in S$, $Z \subseteq Y \Rightarrow Z \in S$ and (2) $Y \in S$, $Z \in S \Rightarrow (Y \cup Z) \in S$. Let a topological space (P, λ) with an ideal Son P. Then for every $Y \subseteq P$, $(.)^* : \wp(P) \rightarrow \wp(P)$ is defined as $Y^*(S, \lambda) = \{p \in P : (K \cap Y) \notin S \text{ for every}$ $Y \in \lambda_{(p)}\}, \lambda_{(p)}$ is open neighborhood of P. $Y^*(S, \lambda)$ is given a name a *local mapping of* M with related to S and λ ([14]). Briefly, Y^* is used instead of $Y^*(S, \lambda)$. In [19] author introduced a new closure function, where $cl^* : \wp(P) \rightarrow \wp(P)$ is defined by $cl^*(Y) = Y \cup Y^*$. $Y^*(S) = \{Y \subset P : cl^*(Y) = (P - Y)\}$ is a topology on P by using cl^* and it is finer than λ ([9]). If there are one topology λ and one ideal S on P is said to be an *ideal* topological space. It will be used by (P, λ, S) ([9]).

Now, we recall two lemmas and one definition which are need for this study.

Lemma 2.1([9]). For Z, Y are two subsets of (P, λ, S) , then

- (1) $Z \subset Y \Rightarrow Z^* \subset Y^*;$
- (2) $(Z \cup Y)^* = Z \cup Y;$
- (3) $Y^* = cl^*(Y) \subset cl(Y);$
- (4) $(Y^*)^* \subset Y^*$.

Definition 2.1. A subset *M* of (P, λ, S) given a name

- (1) clopen [14] $M \in \lambda$ and $M \in \lambda^{t}$;
- (2) regular open (i.e.; r.o.) [18] if M = Int(Cl(M));
- (3) regular closed (i.e.; r.c.) [18] if M = Cl(Int(M));

- (4) g-closed(i.e.; g-c.) [15] if $cl(M) \subset K$, whenever $M \subset K$ and $K \in \lambda$;
- (5) λ^* -closed(i.e.; λ^* c.) [9] if $M^* \subset M$;
- (6) S-g-closed(i.e.; S-g-c.)[5] $M^* \subset K$ whenever $M \subseteq K$ and $K \in \lambda$;
- (7) regular S-closed(i.e.; r S-c.) [11] if $M = (Int(M))^*$;
- (8) $f_s [12] M \subset (Int(M))^*$.

A subset *M* is given a name *S*-*g*-open(i.e.; *S*-g-o.) if (P - M) is an *S*-*g*-*c*.. The class of all clopen (resp. r.o., r.c., g-c., *S*-*g*-c., *S*-*g*-o., r.*S*-c., $f_s -)$ sets in (P, λ, S) is denoted by $CO(P, \lambda)$ (resp. $RO(P, \lambda)$, $RC(P, \lambda)$, $GC(P, \lambda)$, $SGC(P, \lambda)$, $SGO(P, \lambda)$, $RSC(P, \lambda)$, $f_s(P, \lambda)$). By using above definition, one can obtain the following figure.

III. ALMOST CONTRA S-G-CONTINUITY

In this part, we give a definition of almost contra-*S*-g-continuous mapping and obtain some conditions of it. **Definition 3.1.** A subset *K* of (P, λ, S) is given a name *mk-open set* if *K* is open and λ^* -c.. The collection of all *mk-open set*s in (P, λ, S) is will be used by $MK(P, \lambda)$.

Theorem 3.1. Every clopen set is a mk-open.

Proof. Let *K* be a clopen set in (P, λ, S) . So, *K* is *open* and *closed*. As every *closed set* is a λ^* -*c*., then *K* is *mk-open*.

Remark 3.1. The reversible of Theorem 3.1 isn't right generally. **Example 3.1.** For (P, λ, S) let $P = \{1, 2, 3, 4\}$, $S = \{\emptyset, \{3\}, \{4\}, \{3, 4\}\}$ and

 $\lambda = \{\emptyset, P, \{3\}, \{1,3\}, \{2,3\}, \{3,4\}, \{1,3,4\}, \{1,2,3\}, \{2,3,4\}\}.$ For $K = \{3,4\}, K$ is a *mk-open*, but isn't clopen. It is seen that $K \in \lambda$ Since $K^* = \emptyset \subset \{3,4\} = K$, *K* is *mk-open*. Since $Cl(K) = P \not\subset \{3,4\} = K$, *K* isn't closed and hence not clopen.

Proposition 3.1. $MK(P, \lambda)$ is closed finite union.

Proof. It is obtained from Lemma 2.1(2) and Definition 2.1(5).

By using Fig. 1 and Definition 3.1, the next figure is observed.

Definition 3.2. A map $f:(P,\lambda) \to (Q,\mu)$ is given a name regular set-connected(*i.e.;r.s.connected*)[5], (resp. *R-map*[3], almost continuous(*i.e.;al.con.*) [18], almost contra g-continuous(*i.e.; al.cont.g-con.*)[13], contra *R-map*(*i.e.; cont. R-map*)[6], (θ ,s)-continuous(*i.e.;* (θ ,s)-con.)([10],[16]))) $f^{-1}(Z)$ is clopen (resp. r.o., open, g-c., r.c., closed) in *P* for every r.o. set *Z* of *Q*.

The next figure is obvious from Fig. 1 with Definitions 3.2.

Definition 3.3. A map $f:(P,\lambda,S) \to (Q,\mu)$ is given a name *almost contra S-g-continuous* (i.e.; al. cont. *S-g-* con.) if $f^{-1}(Z)$ is *S*-g-c. in *P* for every $Z \in RO(Q,\mu)$.

Two next theorem are related to characterizations of *al.cont. S-g-con. mappings.*

Theorem 3.2. Let $f:(P,\lambda,S) \to (Q,\mu)$ be a mapping. Then next four conditions are mutually equivalent: (1) f is al cont. S-g-con:

(3)
$$f^{-1}(Int(Cl(T))) \in IGC(P,\lambda)$$
 for every $T \in \mu$;

(4) $f^{-1}(Cl(Int(R))) \in IGO(P,\lambda)$ for every $R \in \mu'$.

Proof. (1) \Rightarrow (2) Let $F \in RC(Q, \mu)$ Then $(Q - F) \in RO(Q, \mu)$ and according to (1), $f^{-1}((Q - F)) \in IGC(P, \lambda)$. Hence, $f^{-1}(F) \in IGO(P, \lambda)$.

(2) \Rightarrow (1) It is got similar to proof of (1) \Rightarrow (2).

(1) \Rightarrow (3) Let $T \in \mu$. Since $Int(Cl(T)) \in RO(Q, \mu)$, we have $f^{-1}(Int(Cl(T))) \in IGC(P, \lambda)$ by

using (1).

 $(3) \Rightarrow (1)$ It is clear.

(2) \Rightarrow (4) It is got as proof of (1) \Rightarrow (3).

(4) \Rightarrow (2) It is got as proof of (3) \Rightarrow (1).

Theorem 3.3. If $f:(P, \lambda, S) \rightarrow (Q, \mu)$ is al.cont. *S*-g-con. mapping, then the next two conditions are mutually equivalent:

- (1) For every $p \in P$, every r.c. *F* in *Q* containing f(p); there exists an *S*-g-o. set *K* in *P* containing *p* while $f(K) \subset F$,
- (2) For every $p \in P$, every r.o. *K* in *Q* non-containing f(p); there exists an *S*-g-c. set *V* in *P* non-containing *p* while $f^{-1}(K) \subset V$.

Proof. We will prove only (1) because of it is evident that (1) and (2) are equivalent to each other. Let *F* be any r.c. in *Q* containing f(p). According to Theorem 3.2(2), $f^{-1}(F) \in IGO(P, \lambda)$ and $p \in f^{-1}(F)$. Taking $K = f^{-1}(F)$, we observe immediately $f(K) \subset F$.

Definition 3.4. A mapping $f:(P,\lambda,S) \to (Q,\mu)$ is given a name almost f_s – continuous (i.e; al. f_s – con.) (resp. contra R-S-map (i.e.; cont. R-S-map), regular set*-connected (i.e.; r.s.*-connected), (θ,s) -S-continuous (i.e.; (θ,s) -S-con.) if $f^{-1}(Z)$, f_s – (resp. r. S-c., mk-open, λ^* -c.) set is in P for every $Z \in RO(Q,\mu)$.

Theorem 3.4. If $f:(P, \lambda, S) \rightarrow (Q, \mu)$ is cont. R-S-map, then it is (θ, s) -S-con.. **Proof.** It is observed from Fig. 1.

Remark 3.2. We give next example which is the reversible of Theorem 3.4 isn't true.

Example 3.2. For (P, λ, S) let $P = \{1, 2, 3\}$, $\lambda = \{\emptyset, P, \{1\}, \{1, 3\}, \{1, 2\}\}$ and $S = \{\emptyset, \{1\}, \{3\}, \{1, 3\}\}$. For (Q, μ) , let $Q = \{1, 2, 3\} = P$ and $\mu = \{\emptyset, Q, \{1, 2\}, \{3\}\}$. Let $f : (P, \lambda, S) \to (Q, \mu)$ is an identity function. For $Z = \{3\} \in RO(Q, \mu)$, $((f^{-1}(Z))^* = (\{3\})^* = \emptyset \subset \{3\} = f^{-1}(Z)$. So $f^{-1}(Z)$ is a $\lambda^* - c$. Because of $Z = \{3\} \in \mu$ $(Int(f^{-1}(Z)))^* = (Int(\{3\}))^* = (\{3\})^* = \emptyset \not\subset \{3\} = f^{-1}(Z)$. Hence isn't r.S-c. and

hence *f* is (θ, s) -*S*-con., but isn't cont. R-*S*-map.

Theorem 3.5. If $f:(P, \lambda, S) \rightarrow (Q, \mu)$ is (θ, s) -*S*-c., then al. cont. *S*-g-con.. **Proof.** It is observed from Fig. 1.

Remark 3.3. We have next example in which is denoted the reversible of Theorem 3.4 isn't true. **Example 3.3.** For (P, λ, S) let $P = \{x, y, z\}$, $\lambda = \{\emptyset, P, \{x\}, \{y, z\}\}$ and $S = \{\emptyset, \{x\}, \{z\}, \{x, z\}\}$ For (Q, μ) , let $Q = \{x, y, z\} = P$ and $\mu = \{\emptyset, Q, \{x, y\}, \{z\}\}$. Let $f : (P, \lambda, S) \rightarrow (Q, \mu)$ is a function, defined by: f(x) = f(z) = z and f(y) = y Set $Z = \{z\} \in RO(Q, \mu)$. Therefore, we have $f^{-1}(Z) = \{x, z\} \subset \{x, y, z\} = P \in \lambda$ and $(f^{-1}(Z))^* = (\{x, y\})^* = \{y, z\} \subset P$. Then $f^{-1}(Z) = \{y, z\}$ is *S*-g-c., but it is not $\lambda^* - c$. Therefore *f* is al. cont. *S*-g-con., but it is not (θ, s) -*S* con.

Theorem 3.6. If $f:(P, \lambda, S) \rightarrow (Q, \mu)$ is cont. R-S-map, then it is al. S-con.. **Proof.** This proof is observed from Fig. 3 and Theorem 3.2.

Remark 3.4. The reversible of Theorem 3.6 isn't true as observed in below.

Example 3.4. For (P, λ, S) let $P = \{x, y, z\}$, $\lambda = \{\emptyset, P, \{x\}, \{y, z\}\}$ and $S = \{\emptyset, \{z\}\}$. For (Q, μ) , let $Q = \{x, y, z\} = P$ and $\mu = \{\emptyset, Q, \{x, y\}, \{z\}\}$. Let $f : (P, \lambda, S) \to (Q, \mu)$ is a function, defined by : f(x) = f(z) = x and f(y) = z. Set $Z = \{z\} \in RO(Q, \mu)$. Then $f^{-1}(Z) = \{y\}$ is $f_s - set$, but it isn't S-g-c.. This shows that f is al. S- con., but it is not cont. R-S-map.

Theorem 3.7. If $f:(P, \lambda, S) \rightarrow (Q, \mu)$ s al. cont. g-con. mapping, then it is al. cont. *S*-g-con.. **Proof.** This proof is got from Fig. 1, Definition 2.2 and Definition 3.2.

Remark 3.5. The reversible of Theorem 3.7 isn't true as observed in below.

Example 3.5. For (P,λ,S) let $P = \{x, y, z, t\}$, $\lambda = \{\emptyset, P, \{x\}, \{y, z\}, \{x, y, z\}\}$ and $S = \{\emptyset, \{x\}, \{z\}, \{x, z\}\}$. For (Q, μ) , let $Q = \{x, y, z\}$ and $\mu = \{\emptyset, Q, \{x, y\}, \{z\}\}$. Let $f : (P,\lambda,S) \to (Q,\mu)$ is a mapping, defined by f(x) = f(z) = z, f(y) = x and f(t) = y Set $Z = \{z\} \in RO(Q,\mu)$. Then $f^{-1}(Z) = \{x, z\}$. Also $Y = \{x, y, z\} \in \lambda$ $(f^{-1}(Z))^* = (\{x, z\})^* = \emptyset \subset Y$ and hence $f^{-1}(Z)$ is S-g-c. set. Since $Cl(f^{-1}(Z)) = P \not\subset Y$ we observe that $f^{-1}(Z)$ is not g-c...It is observed that f is al. cont. S-g-con., but isn't al. cont. g-con.

Theorem 3.8. If $f: (P, \lambda, S) \rightarrow (Q, \mu)$ is r.s.connected, then it is r.s.*-connected. **Proof.** This proof is got from Fig. 1, Theorem 3.1.

Remark 3.6. The reversible of Theorem 3.8 isn't true as denoted below.

Example 3.6 For (P, λ, S) let $P = \{x, y, z, t\}$, $\lambda = \{\emptyset, P, \{x, y\}, \{z, t\}\}$ and $S = \{\emptyset, \{z\}, \{t\}, \{z, t\}\}$. For (Q, μ) , let $Q = \{x, y, z\}$ and $\mu = \{\emptyset, Q, \{x, y\}, \{z\}\}$. Let $f : (P, \lambda, S) \rightarrow (Q, \mu)$ is a function, defined by : f(x) = x, f(y) = y and f(z) = f(t) = z. If $Z = \{z\} \in RO(Q, \mu)$, then $f^{-1}(Z) = \{z, t\}$ is mk-open.

Since $(f^{-1}(Z))^* = (\{z,t\})^* = \emptyset \subset \{z,t\}$, $Cl(f^{-1}(Z)) = P \not\subset \{z,t\}$ is $\lambda^* - c$. set but it is not closed and clopen. So, f is r.s.*-connected but isn't r.s.connected.

Theorem 3.9. If $f: (P, \lambda, S) \rightarrow (Q, \mu)$ is cont.R-S-map, then it is cont.R-map. **Proof.** This proof is got from Fig. 1, Definition 2.2 and Definition 3.3.

Remark 3.7. The reversible of Theorem 3.8 isn't true as as denoted below. **Example 3.7** For (P, λ, S) let $P = \{x, y, z, t\}$, $\lambda = \{\emptyset, P, \{x, z\}, \{y, t\}\}$ and $S = \{\emptyset, \{y\}, \{t\}, \{y, t\}\}$ For (Q, μ) , let $Q = \{x, y, z\}$ and $\mu = \{\emptyset, Q, \{x, y\}, \{z\}\}$. Let $f : (P, \lambda, S) \rightarrow (Q, \mu)$ is a function defined by: f(x) = x, f(z) = y and f(y) = f(t) = z. If $Z = \{z\} \in RO(Q, \mu)$, then $f^{-1}(Z) = \{y, t\}$ Since $Int(f^{-1}(Z)) = Int(\{y, t\}) = \{y, t\}$ and $Cl(Int(f^{-1}(Z))) = Cl(Int(\{y, t\})) = \{y, t\}$, $f^{-1}(Z)$ is r.c.set. Besides since $(Int(f^{-1}(Z)))^* = (Int(\{y, t\}))^* = \emptyset \neq \{y, t\}$. $f^{-1}(Z)$ is not r. S-c.. This shows that f is cont.R-map but isn't cont.R-map.

Definition 3.4. A mapping $f:(P,\lambda,S) \to (Q,\mu)$ is given a name *contra S-g-continuous* (i.e.; cont. *S*-g-con.) if $f^{-1}(Z)$ is *S*-g-c. in (P,λ,S) for every open set *Z* of *Q*.

Theorem 3.10. If is $f:(P,\lambda,S) \to (Q,\mu)$ al.cont. S-g-con. mapping, then it is cont. S-g-con. **Proof** For $Z \subset PQ(Q,\mu)$ since $Z \subset \mu$ and $f:(P,\lambda,S) \to (Q,\mu)$ is al cont $S \in Con$.

Proof. For $Z \in RO(Q, \mu)$ since $Z \in \mu$ and $f: (P, \lambda, S) \to (Q, \mu)$ is al.cont.S-g-con., $f^{-1}(Z) \in SGC(P, \lambda)$. Thus, f is cont.S-g-con..

Remark 3.8. The reversible of Theorem 3.10 is false in generally.

Example 3.8. For (P,λ,S) let $P = \{x, y, z, t\}$ $\lambda = \{\emptyset, P, \{x\}, \{y\}, \{x, z\}, \{x, y\}, \{x, y, z\}\}$ and $S = \{\emptyset, \{y\}\}$. For (Q, μ) let $Q = \{x, y, z\}$ and $\mu = \{\emptyset, Q, \{x\}, \{y, z\}\}$. Let $f : (P, \lambda, S) \rightarrow (Q, \mu)$ be a mapping defined: f(x) = y, f(y) = f(z) = x. For $Z = \{x\} \in \mu$. Then, $f^{-1}(Z) = \{y, z\} \subset \{x, y, z\} = K \in \lambda$, $(f^{-1}(Z))^* = (\{y, z\})^* = \{z\} \subset K$ is S-g-c. set. So, f is cont. S-g-con.. For $N = \{y, z\} \in RO(Y, \varphi)$, $f^{-1}(N) = \{x\} = L \in \lambda$. $(f^{-1}(N))^* = (\{x\})^* = \{x, z\} \not\subset L$, N is not S-g-c.. Therefore, f isn't al. cont. S-g-con..

By using Fig. 3 and above theorems, the next figure is given.

Recall that a function $f:(P,\lambda,S) \to (Q,\mu)$ is given a name completely continuous (i.e.; compl. *con.*)[1] (resp. continuous (i.e.; con.) if $f^{-1}(Z)$ is r. o. (resp. open) in P for every open set Z of Q.

Theorem 3.11. For two mappings $f:(P,\lambda,S) \rightarrow (Q,\mu,D)$ and $g:(Q,\mu,D) \rightarrow (R,\kappa)$, let gof : $(P, \lambda, S) \rightarrow (R, \kappa)$ is a composite mapping. The next conditions valid:

- (1) If f is al. cont. S-g-con., g is an R-map then gof is al. cont. S-g-con.;
- (2) If f is cont. S-g-con., g is al. con. then gof is al. cont. S-g-con.;
- (3) If f is al. cont. S-g-con., g is completely con. then gof is cont. S-g-con.;
- (4) If f is cont. S-g-con., g is con. then gof is cont. S-g- con.

Proof. (1) Let V be any r. o. set in R. Since g is an R-map and f is al. cont.S-g-con., $g^{-1}(V) \in RO(Q, \mu)$ and $f^{-1}(g^{-1}(V)) = (gof)^{-1}(V) \in SGC(P, \lambda)$, respectively. This shows that, gof is al. cont. S-g con.

(2) Let V be any r.o. set in R. Since g is al. con. and f is cont. S-g-con., $g^{-1}(V) \in \mu$ and $f^{-1}(g^{-1}(V)) = (gof)^{-1}(V) \in SGC(P, \lambda)$, respectively. Hence, gof is al. cont. S-g-con.

(3) It is easily observe similar to (1).

(4) It is easily observe similar to (2).

Theorem 3.12. If $f:(P,\lambda,S) \to (Q,\mu)$ is al. cont. S-g-con. and al. con., then f is r.s.*-connected.

Proof. Let V be any r.o in Q. f is both al. cont. S-g-con. and al. con., $f^{-1}(V)$ is both S-g-c. and open. So, $f^{-1}(V)$ is $\lambda^* - c$ and mk-open set. Hence f is r.s.*-connected.

Definition 3.5. A mapping $f:(P,\lambda,S) \rightarrow (Q,\mu,D)$ is given a name

- (1) S-g-open if $f(\kappa)$ is D-g-o. in Q for every S-g-o. set K of P;
- (2) S-g-closed if $f(\kappa)$ is D-g-c. in Q for every S-g-c. set K of P.

Theorem 3.13. If $f:(P,\lambda,S) \to (Q,\mu,D)$ is surjection S-g-open (or S-g-closed), $g:(Q,\mu,D) \to (R,\omega)$ is a mapping while $gof: (P, \lambda, S) \to (R, \kappa)$ is al. cont. S-g-con., then g is al. cont. D-g-con..

Proof. Let V be any r. c. (resp. r. o.) in R. gof al. cont. S-g-con., $(gof)^{-1}(V) = f^{-1}(g^{-1}(V))$ is S-g-o. (resp. S-gc.). Since f is both surjection and S-g-open (or S-g-closed), $f(f^{-1}(g^{-1}(V))) = g^{-1}(V)$ is D-g-o. (or D-g-c.). Hence, g is al. cont. D-g-con..

IV. CONCLUSION

We obtain that it is implied by al.cont.g-con. with (θ,s) - S-con. and cont. S-g-con. implied by it.

REFERENCES

- [1] S.P Arya., R Gupta., "On strongly continuous mappings", Kyungpook Math. J., 14, pp.131-143, 1974.
- [2] N. Bourbaki. , General Topology, Part I. Reading, MA: Addison Wesley, 1996.
- [3] D. A. Carnahan., Some Properties Related To Compactness in Topological spaces. PhD Thesis, Univ. of Arkansas, 1973.
- [4] J. Dontchev., "Contra-continuous functions and stronglyS-closed mappings", Int. J. Math. Math. Sci., 19,pp.303-310,1996.
 [5] J.Dontchev, M Ganster., T Noiri., "Unified Operation Approach of Generalized Closed Sets via Topological Ideals", Math.
- Japonica, 49(3), pp. 395-401, 1999.
- [6] J. Dontchev, M. Ganster, I. L Reilly., "More on almost s-continuity", Indian J. Math., 41, pp. 139-146, 1999.
- [7] E. Ekici, "Another form of contra-continuity", Kochi J. Math., 1,pp.21-29. 2006.
- [8] E Hayashi, "Topologies defined by local properties", Math. Ann., 156,pp.205-215, 1964.
 [9] D. Jankovic, T.R. Hamlett, "New Topologies from Old via Ideals", Amer. Math. Monthly, 97(4), pp.295-310,1990.
- [10] J. K Joseph., M. K Kwak., "On S-closed spaces", Proc. Amer Math. Soc., 45, pp.65-87, 1980.
- [11] A .Keskin., T. Noiri, S. Yuksel, " Idelization of A Decomposition Theorem", Acta. Math. Hungar., 102(4) ,pp.269-277,2004.

- [12] A Keskin, T. Noiri ,S. Yuksel , "fr Sets and Decomposition of RIC-Continuity", Acta Math. Hungar., 107(4) ,pp.307-313,2004.
- [13] A. Keskin., T.Noiri, "Almost Contra g- Continuous Functions", Chaos, Solitons and Fractals, 42, pp. 238-246., 2009.
- [14] K.Kuratowski., Topologie I, Warszawa., 1933.
- [15] N. Levine., "Generalized Closed Sets in Topology", Rendicontidel Circolo Matematico di Palermo, 19(1), pp.89-96,1970.

- [16] T. Noiri., S. Jafari, "Properties of (θ,s)-continuous functions", Topol. Appl., 123,pp.167-179, 2002.
 [17] M. K Singal., A.R Singal., "Almost-continuous mappings", Yokohama Math. J., 16,pp.63-73,1968.
 [18] M. H Stone., "Applications of the theory of Boolean rings to general topology", TAMS, 41,pp.375-381,1937.
- [19] R. Vaidyanathaswamy., Set Topology, Chelsea Publishing New York, 1960.