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Abstract — this paper proposed a new step in the modelling of the crowd dynamics in catastrophic events. 

Indeed, it considers three concurrent behaviours and includes the processes of transition from one behaviour to 

the other. Up to now the main models consist in modelling the panic which is fear behaviour, but it is not always 
adopted. Furthermore, panic does not necessarily last during the entire event and, on the contrary, the global 

behaviour of the crowd can change. In this work, two other behaviours have been integrated in the modelling: 

the reflex one and the controlled one. As seen in human sciences, our facsimilist show that they can influences 

the crowd behaviour and a return to normality. 
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I. INTRODUCTION 

            Nowadays, management of disasters has become a major issue, due to their huge financial and human 

costs. In fact, our societies, independently from their development level, are still not sufficiently prepared to a 

natural or anthropic catastrophe and to possible domino effects. However, there is an increasing trend 

concerning the number of disasters, ranking from a hundred in 1960 to 800 in 2000, and the trend is not 

expected to be inverted in the future, due to the population growth and densification in the risk zones.                 

A fundamental level for reducing human vulnerability in the face of such events is the population training, to 

adapt their behaviours to extreme situations. In fact, during several catastrophic events, controlled and 

uncontrolled behaviours in individuals, small groups or crowds have been observed. These reactions depend not 

only on the event and its temporality (nature, unexpectedness, presence of alert), but also on the population 

characteristics (density, composition, preparation level). This approach permits to consider the heterogeneity of 

the population, but this means also high computational requirements and sometimes a difficulty in transferring 
the microscopic properties at a macroscopic level. At macroscopic level, the models of crowd dynamics consist 

in partial differential equations that describe the evolution in time and space of the density and mean velocity of 

the crowd flow. Finally, at mesoscopic level, between the microscopic and the macroscopic ones, we have the 

models that exploit the approach of the kinetic theory, through the Boltzmann or Vlahos equations, depending 

on the different range of interactions. The collective behaviours that have been observed in the Impact and in the 

destruction, zone can be classified in two main categories: The instinctive behaviours, managed by the reptilian 

zone of the brain that handle with the impulsive and urged behaviours. The controlled behaviours, where the 

prefrontal cortex adapts in a more reflexive way the reactions to an external perturbation. In the first group, we 

have all the behaviours of instinctive escape and fight, the panic, but also the behaviours as a sort of automaton, 

while in the second one we have all the persons that keep calm and self-control. 

II. THE MATHEMATICAL MODEL OF DURING CATASTROPHIC EVENTS 

Definition 2.1  
Catastrophe:  

A catastrophe is a disaster. If a wedding reception is disrupted by a fistfight between the bride and her 

mother-in-law, you could call the occasion a catastrophe. Catastrophe comes from a Greek word meaning 

―overturn‘‘. It originally referred to the disastrous finish of a drama, usually a tragedy.  

Catastrophe event:  

Something catastrophic is very harmful or disastrous. When the stock market crashes, it‘s a 

catastrophic event for investors. This is a strong word for terrible, harmful, devastating things. Tornadoes, 

hurricanes, earthquakes, and tsunamis are catastrophic weather events.   

Example:  
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This flood is a catastrophe. Licensed from iStock Photo. Noun. The definition of a catastrophe is a 

large, often sudden, disaster or ending. The Japan Earthquake of 2011 is an example of a catastrophe.  

Catastrophic failure: Catastrophic failure is a complete, sudden, often unexpected breakdown in a machine, 

electronic system, computer or network. Such a breakdown may occur because of a hardware event such as a 

disk drive crash, memory chip failure or surge on the power line.  

Catastrophic injury:  
A catastrophic injury is a severe injury to the spine, spinal cord, or brain, and may also include skull or 

spinal fractures. This is a subset of the definition for the legal term catastrophic injury which is based on the 

definition used by the American Medical Association.   

Catastrophe Model:  

Catastrophe Modeling (also known as Cat Modeling) is the process of using computer-assisted 

calculations to estimate the losses that could be sustained due to a catastrophic event such as a hurricane or 

earthquake.  

Claims:  

An event is designated a Catastrophe by the industry when claims are expected to reach a certain dollar 

threshold, currently set at $25 million, and more than a certain number of policyholders and insurance 

companies are affected. Sep 19, 2017 an index used in the insurance industry to quantify the magnitude of 

insurance claims expected from major disasters.  
Catastrophe loss:  

          Catastrophe loss indexes are created by third party firms that research natural disasters and work to 

provide estimates of the amount of losses from each catastrophe.  

 

The mathematical model of three groups of compartmental reactions:  

In this paper, we consider the human behaviors in the impact zone of a catastrophe, with a fast dynamic 

and no alert to the population. We suppose that the effect of surprise is total and there are no precursor signs or 

warnings that allow the population to adopt preventive behaviors.  To give an example, there may be an 

earthquake or a local tsunami. We have distinguished three diverse types of behaviors in such situation. The first 

type consists in the reflex behaviors and concerns the reptilian brain. In our case, it corresponds to the set of 

instinctive behaviors except panic. This mechanism permits to react quickly, either by running away as fast as 
possible or by being flabbergasted and being physically unable to move in space. The second one corresponds 

the panic behavior. Panic has a status since, even if it is not always adopted (as, for example, during an 

earthquake in prepared regions as japan), This behavior is the most feared. Moreover, the extinction of 

collective panic is more linked to internal dynamics than to the remoteness of the danger. Thus, even if it 

belongs to reflex behaviors, we consider it apart due to its nature. Furthermore, in our model, the collective 

panic can propagate via imitation and contagion mechanisms. Finally, the third type includes all the controlled 

behaviors. They are governed by the prefrontal cortex, which takes over the reptilian brain. They can take 

different forms in a catastrophe, as, for example, evacuation, leak, containment, sheltering, research for help, 

pillage, theft… As for the first type, we have decided to globalize all these controlled behaviors, despite their 

variety. It is worth noting that the three previous behaviors do not all occur at the same time and respect a 

certain order. Indeed, the first behavior of an individual in the face of danger is a reflex one followed, in a 

second step, by controlled or panic behavior.  
 

Formalization of the human behavior:  

In this paper, we propose a SIR- based mathematical model composed of four classes, one constitutes 

daily behaviors, and the three others correspond to the three previous behaviors described at section.  Thus, first, 

we did not suppose to have a class named Q composed of individuals in a daily behavior and that, during the 

event, no death nor birth takes place. Hence, globally the population is constant and composed by N individuals. 

Moreover, during the catastrophe, Q is the sum of two sub-populations:  

𝑸𝟏(t):it designs the number of individuals with routine behaviors. Clearly, just before the catastrophic event 

occurs, all the population is in this state, therefore𝑄1(0) =N,  

𝑸𝟐(t):it designs the number of individuals who come back to normal lifestyle after the out- break of the disaster. 

We expect that at the end of the event, all the individuals will be in this state, thus𝑄2(𝑡𝑒𝑛𝑑)=N.  Per section 3.1 

the population during the catastrophe is decomposed into subpopulations that are represented by the following 

variables x(t)=number of persons with reflex behaviors, y(t)=number of persons with controlled behaviors, 

z(t)=number of persons with panic behavior, Since we supposed to be in presence of a sudden and unpredictable 

event, all the involved population will have firstly a reaction, corresponding to instinctive comportments. Thus, 

the routine behaviors, represented here with the variable𝑄1 (t), can only be transformed in reflex behaviors, that 

is in x (t). Hereafter, reflex behaviors can become controlled or panic behaviors. Since 𝑄2 (t) represents the 

number of individual who come back to normal lifestyle, it can be alimented only by the controlled behaviors y 
(t). In fact, some individual needs to recover self-control to regain the everyday routine. Moreover, we suppose 
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that, once they have come back to normality, they maintain their habitual behaviors. Thus, the individuals in 𝑄2 

cannot pass in 𝑄1and re-enter in the loop. Furthermore, per our psychological and geographical, during 

catastrophic events we have interactions and transitions between the different behaviors, as represented in 

Figure 1.  

The exterior event, that is the catastrophe onset, is represented by forcing function 𝛶 which can be discrete or 
continuous, depending on the type of the event under study. For example, an event under study.  For example, 

an event such as a local tsunami can be modeled by a discrete function, whereas an inundation can be modeled 

by a continuous function since it can be announced fewer hours before its start. In our case, we supposed to be 

in the first situation and the Brutality and the speed of the catastrophic event is modeled through a logistic 

function. For considering the possible continuation or repetition of the catastrophe perception stress, the arrows 

labeled 𝑠1𝑎𝑛𝑑𝑠2 are added, where 𝑠1𝑎𝑛𝑑𝑠2 are supposed to be constant parameters. Once the population is in a 

reflex behavior, they can evolve in a controlled or panic one per the parameters 𝐵1𝑎𝑛𝑑𝐵2, respectively. γ(t) 

behaviors  ϕ(t) instinctive behavior, managed by the reptilian zone of the brain controlled behaviors, managed 

by the pre-frontal cortex In the same way, a part of the controlled population can evolve to a panic are causality 

links behavior and reciprocally per the coefficients 𝑐1𝑎𝑛𝑑𝑐2, respectively. All the previous transaction is 

causality links. However, some processes of imitation and contagion exist and are modeled by the arrows 

labeled α, µ, δ. In the graphic, α transposes the process of imitation between x and y which is realized in both 

direction. This process is modeled as an epidemiological propagation and has the following form: α.𝑓1 (x(t)). 

y(t). This modeling permits to favor the imitation in one direction, from x to y. indeed in our numerical tests, we 

have assumed that there must be at least 55% of reflex behaviors for that controlled individual behaviors imitate 

reflex ones. In the same manner, the constant δ traduces the imitation processes between x and y and is modeled 

by the function δ. 𝑓2 (x(t)). z(t). Finally, the constant µ traduces the imitation processes between controlled and 

panic individual‘s behavior, knowing that the imitation is essentially in the sense panic towards controlled 
individual‘s behavior. It modeled by the term µ. g(y(t)). z(t).  From the graphical modeling in Figure 1, the 

mathematical model is deduced:   

𝑑𝑥 𝑑𝑡 = 𝛾(𝑡)𝑄1(𝑡)(1 − 𝑥(𝑡) 𝑥𝑚 ) − (𝐵1 + 𝐵2)𝑥(𝑡) + 𝛼𝑓1(𝑥(𝑡))𝑦(𝑡) + 𝛿𝑓2(𝑥(𝑡))𝑧(𝑡) + 𝑠1𝑦(𝑡) + 𝑠2𝑧(𝑡),  
𝑑𝑦 𝑑𝑡 = 𝐵1𝑥(𝑡) − 𝛼𝑓1(𝑥(𝑡))𝑦(𝑡) + 𝐶1𝑧(𝑡) − 𝑠1𝑦(𝑡) − 𝐶2𝑦(𝑡) − 𝜑(𝑡)𝑦(𝑡)(1 − 𝑄2(𝑡) 𝑄2𝑚 ) + 𝜇𝑔(𝑦(𝑡))𝑧,  

𝑑𝑧 𝑑𝑡 = 𝐵2𝑥(𝑡) − 𝑠2𝑧(𝑡) − 𝛿𝑓2(𝑥(𝑡))𝑧(𝑡) − 𝐶1𝑧(𝑡) + 𝐶2𝑦(𝑡) − 𝜇𝑔(𝑦)𝑧,  
𝑑𝑄1 𝑑𝑡 = −𝛾(𝑡)𝑄1(𝑡)(1 − 𝑥(𝑡) 𝑥𝑚 ),  
𝑑𝑄2 𝑑𝑡 = 𝜑(𝑡)𝑦(𝑡)(1 − 𝑄2(𝑡) 𝑄2𝑚 )  

Since the concerned population is supposed to be constant, that is the equality 𝑄1(𝑡) + 𝑄2(𝑡) + 𝑥(𝑡) + 𝑦(𝑡) + 𝑧(𝑡) 
= 𝑁 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ∈ [𝑂,𝑇] is verified, system can be reduced to four equation and rewritten as:  

𝑑𝑥 𝑑𝑡 = 𝛾(𝑡)𝑄1(𝑡)(1 − 𝑥(𝑡) 𝑥𝑚 ) − (𝐵1 + 𝐵2)𝑥(𝑡) + 𝛼𝑓1(𝑥(𝑡))𝑦(𝑡) + 𝛿𝑓2(𝑥(𝑡))𝑧(𝑡) + 𝑠1𝑦(𝑡) + 𝑠2𝑧(𝑡),  
𝑑𝑦 𝑑𝑡 = 𝐵1𝑥(𝑡) − 𝛼𝑓1(𝑥(𝑡))𝑦(𝑡) + 𝐶1𝑧(𝑡) − 𝑠1𝑦(𝑡) − 𝐶2𝑦(𝑡) − 𝜑(𝑡)𝑦(𝑡)(1 − 𝑁 − 𝑄1(𝑡) − 𝑥(𝑡) − 𝑦(𝑡) − 𝑧(𝑡) 

𝑄2𝑚 ) + 𝜇𝑔(𝑦(𝑡))𝑧(𝑡),  
𝑑𝑧 𝑑𝑡 = 𝐵2𝑥(𝑡) − 𝑠2𝑧(𝑡) − 𝛿𝑓2(𝑥(𝑡))𝑧(𝑡) − 𝐶1𝑧(𝑡) + 𝐶2𝑦(𝑡) − 𝜇𝑔(𝑦)𝑧(𝑡),  
𝑑𝑄1 𝑑𝑡 = −𝛾(𝑡)𝑄1(𝑡)(1 − 𝑥(𝑡) 𝑥𝑚 ).  
 

Human behaviors in evacuation crowd dynamics:  
Human crowds as a large living system in evacuation dynamics:  

The dynamics of a crowd, as already mentioned, cannot be simply confined to mechanical and 

deterministic causality principles. In fact, the heterogeneous behaviors of pedestrians and their social dynamics 

can have an important influence over the dynamics and in the strategy; they use to achieve a certain objective of 

their movement in interactions with other pedestrians.  

This strategy is not simply an individual one, it depends on the collective one which, due to nonlocal 

interactions, can find a consensus toward a commonly shared strategy. This section tackles the first key problem: 

understanding the major features of a human crowd viewed as a ―social‖ hence complex system. Let us now 

consider the assessment of the most important complexity features of a crowd viewed as a living system within 

the framework that our society is a complex system.   

           The general strategy proposed in is that the mathematical approach to modeling of living, hence 

complex, system should consider the features. These general considerations should be focused on the specific 
field of application treated in this, namely the modelling of crowds in evacuation dynamics. Evacuation 

dynamics shows the appearance of special stress conditions. Some stress conditions can be amplified in special 

venues such as lively foot-bridges.   

           Contributions to understand the psychology of a crowd are, selected among various ones, where stress 

can end up with panic and even with aggressive behaviors. Bearing all above in mind, let us give, a possible 

definition of how a crowd can be defined:   
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Ability to express a strategy:  

           Walkers are capable to develop specific strategies, which depend on their own state and on that of the 

entities in their surrounding environment. Different strategies can appear in the dynamics. Examples include 

pedestrians who move toward different directions, and a crowd in a public demonstration with a small group of 

rioters, whose aim is not the expression of a political-social opinion, but instead to create conflict with security 

forces.   
 

Heterogeneity and hierarchy:  

The ability to express a strategy is heterogeneously distributed, referring to both the differences in 

walking abilities, and to social expressions. This feature can include a possible presence of leaders, who aim to 

drive the crowd to their own strategy. Leaders can contribute, in evacuation dynamics, to drive walkers toward 

appropriate strategies including the selection of optimal routes among the available ones.   

 

Nonlinear and nonlocal interactions:  

Interactions are nonlinearly additive and involve immediate neighbors, but also distant individuals. 

Interactions refer both to mechanical and social dynamics and include those with the external environment and 

the venue, where the walkers move. A key example is given by the onset and propagation of stress conditions, 

which may be generated in a certain restricted area and then diffused over the whole crowd.  
 

Microscopic to collective behaviors:  

          Pedestrians can communicate and develop a social dynamic. This communication can diffuse 

emotional state among walkers. Accordingly, they modify both strategy and dynamical rules followed in their 

dynamics. The output is a collective behavior which can be observed over the whole crowd.  

          A general overview of this approach is presented in the project, where the basic concepts of stochastic 

games are introduced. Applications to model crowd dynamics and social systems are proposed in for a crowd in 

unbounded domain, and for dynamics in complex venues. Once a model has been derived, its validation needs 

to be performed.  

          The validation of models basically means verifying their ability to reproduce empirical data, detected in 

steady flow conditions at a quantitative level and to depict emerging behaviors at a qualitative level in unsteady 
conditions. This agreement must be achieved for a suitable choice of the model‘s parameters.  

          The validation of crowd models is a challenging topic that, with a few exceptions such as and a few 

others, is poorly treated in the literature. The amount of empirical data available is quite limited for developing a 

detailed validation process. Hence, a strategy should be elaborated to exploit the existing data at the best of the 

panorama they offer.  

          An additional difficulty is that the greatest part of empirical data sets is available at the macroscopic 

scale, while the modeling process needs a detailed understanding of the dynamics at the microscopic scale. 

Quantitative validation of models will reproduce the features captured empirically using velocity and flux 

diagrams that are measured against speed in steady flow conditions.  

         Qualitatively, emerging behaviors observed evacuation time is stressful conditions; need to be 

reproduced in the model output. Bearing all above in mind, let us define more precisely the validation strategy 

according to the following milestones concerning the performance of a model.  Ability to capture the complexity 
features of a crowd viewed as a living, hence complex, system. Models should reproduce, even at a quantitative 

level, the velocity and fundamental diagrams of crowd traffic.  

Moreover, features such as the transition from free to congested flow, with possible changes to 

interaction rules, should be caught at least at a qualitative level. Models should consider that environmental 

conditions can determine different observable dynamics. Models should qualitatively reproduce emerging 

behaviors. They should catch the transition from small to large deviations by means of properly identified 

parameters.  

 

Critical Analysis:  

           The overview on crowd dynamics and safety problems presented in this project has shown that the 

literature in the field can give valuable contribution to the crisis management of human crowds in evacuation 
situation. However, it is worth stressing that several problems are still open and need further research activity.   

           Some perspectives can be given out of said overview and critical analysis. Without claim of 

completeness, some remarks can be referred to the three sentences quoted. The importance of understanding 

human behavior in crowds is undisputed. It is required for ensuring that proper support can be given to crowd 

managers in preparation and during crowd event.  

           This important hint indicates that understanding social and dynamical behaviors of a crowd is the 

necessary basis for any decision process related to safety. The problems consist not only of acquiring this type 

of information, but also support practical decision making. Our project has put in evidence that any approach 
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should consider the crowd as a living, hence complex, system. Hence, understanding the complexity features of 

human crowd is very important also in designing computational models. Crowd management involves accessing 

and interpreting a wide variety of information sources,   

            Predicting crowd behaviors as well as deciding the use of a range of possible, highly context-

dependent intervention mechanisms: indeed, a broad variety of information sources is very important here we 

simply stress that the design of the predictive engine can contribute to select the available information. However, 
data to be inserted should be properly assessed. Otherwise, the information can be even misleading.  

            The authors agree that decision support can be aided by the inclusion of relevant, validated and 

practical use of crowd models and the existing literature on crowd modeling can only partially support crisis 

management. As shown in this, further parameters could be modeled to increase the relevance and accuracy of 

models used for this purpose.  Indeed, new modeling techniques are often required to achieve this as proposed in 

this project. These techniques can account for some of the identified enhancements, though we claim to have 

covered them exhaustively. Partially positive answer in the last issue indicates that future research activity on 

crowd modeling should focus on a deeper integration of psychological and behavioral features in models. This 

effort can be supported by empirical data on crowd detection specifically related to social behaviors. 

III. CALIBRATION OF THE MODEL OF HUMAN BEHAVIOR 

Definition 3.1:  

Human behaviour:  

Human behaviour is studied by the specialized academic disciplines of psychiatry, psychology, social 

work, sociology, economics, and anthropology. Behaviour is impacted by certain traits everyone has. The traits 

vary from person to person and can produce different Behaviour from each person.  

Social work theories are general explanations that are supported by evidence obtained through the 

scientific method. A theory may explain human behaviour.  

 

Organizational Behaviour:  

           In the business world, today, Organizational Behaviour is an essential tool for managing effective 

teams and it helps to understanding and predicts human behaviour in an organization. It studies on how 

organizations can be structures more accurately, and how several events in their outside situations effect 

organizations.   

 

3.2 populations adopting the percentages of a certain type of behaviour:  

The several types of human behaviours described previously can manifest in variable proportions, in 

function of the considered catastrophe, the suddenness of the threat, the composition of the group, the individual 

aptitudes for understanding the danger and the knowledge of the environment.  

           Moreover, considers that in most of the catastrophe, ‗‘15% of individuals manifest obvious 

pathological reactions, 15% keep their cool and 70% manifest an apparently calm behaviour but answer in fact 

to a certain degree of emotional side ration and loss of initiative which reports to a pathological register‖.   

These percentages must be modulated per the different parameters of our model, which leads us to consider:  

 x(t)=50 to 75% of the population  y(t)=12 to 25% of the population z(t)=12 to 25% of the population  

At our knowledge, no data are available for quantifying transition mechanisms from one state to another.  

 

3.3 The duration of the behaviour:  

The three different reactions have different duration. The duration of the reflex and panic behaviours 

varies from few minutes to our hour. Most of the time, these two types of behaviour do not exceed 15 minutes. 

However, for the first one, it may take longer especially if it corresponds to a delay of evacuation in a disaster 

area. In this case, support and research behaviors for relatives and victims gradually appear. For the second one, 

the collective panic behaviours resolve generally spontaneously. However, sometimes, an external intervention 

permits to the panic population z(t) to come back to an automate behaviour x(t), before adopting a controlled 

behaviour y(t). In general, the duration of the uncontrolled behaviour x(t)+y(t) does not last more than 1h30. In 

this model, we suppose that an individual cannot stay 1 hour in a reflex behaviour and another hour in a panic 

state. The duration of the controlled behaviour y(t) varies from few minutes to fewer hours, per the intervention 

of the emergency response. The choice of the parameters will be done to find these data.  

 

3.4 Calibration of model parameters:  

This section reports in the calibration procedure used for determining the best value of parameters in 

the RL and winner models. For the RL model, the model parameters that need to be determined includes: α (or 
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ATF), ATC, and W. The best value of these three parameters was determined using the four calibration 

functions for Environment Inflow in the DSF task: L+, L-, NL+ and NL-.  

           To calibrate these parameters in the RL model, a constraint-based optimization procedure was followed 

which could be defined as Objective: Min {Sum of average RMSE Discrepancy in 4 Environment Inflow 

Functions L+, L-, NL+, and NL-} subject to, 0≤α≤1, {dimensionless} 0≤ATC≤100, {trial} 0≤W≤ 

1,{dimensionless} Thus, the aim of the optimization procedure is to find the best values of the three 

parameters(above) such that it would result in the minimum value for the sum of the average RMSE over the 

Discrepancy between the RL model‘s data and human data across the four calibration functions. The average 

RMSE for Discrepancy is evaluated by using average Discrepancy across 100 trials in the DSF task, where the 

Discrepancy is averaged over all human and model participants for each of the 100 trial points. The number of 

model participants used was the same as the number of human participants in four different calibration functions 

{these were reported in the DSF task section for different function above}. The lower bound value of the three 

constraints is defined to be 0, as these parameters cannot be negative {and a negative value will be meaningless}. 

The upper bound value of ATC constraints is defined to be 100, as that is the maximum trial value across 

distinct functions in the DSF task. The α and W parameters are weights in the equations of the RL model and 

thus these parameters can only contain real value between 0 and 1. To carry out the actual optimization, a 

genetic algorithm program was used. The genetic algorithm tries out different combinations of the three model 

parameters to minimize the RMSE between the model‘s average Discrepancy and the corresponding human‘s 

average Discrepancy. The best-fitting model parameters are the ones for which the RMSE in the objective 

function will be minimized. The stopping rule for the algorithm in the RL model‘s optimization was set act 

10000 trials of different combinations of the three parameters. This stopping rule value is extremely large and 

thus ensures a very high level of confidence in the optimized parameter values obtained {for more details on the 

genetic algorithm program}. The parameters of the winner model were already optimized using the four 

calibration functions, L+, L-, NL+, and NL-, by its creator at the time of submitting the model to the MCC. Thus, 

the winner model was used ―as is‘‘ to compare it to the calibrated RL model in the DSF task. The next section 

reports the best values of the parameters from the RL and winner models.  

 

3.5 Calibration results:  

The optimization of the RL model resulted in a low value of 10.55 gallons for the RMSE averaged 

across the four calibration functions. The individual RMSE and R2 in different calibration functions. The best 

values of these parameters seem to have an interesting effect.  

          The ATC value is about 3 trials in the RL model and this ATC value is much closer to the two-trial 

value that was also found in human data of the collected verbal protocol in the NL+ function (reported above). 

Thus, the RL model appears to provide a close representation to the observations found in human data.  

          Furthermore, the value of α in the RL model is about half of 0.5. Thus, the model predominantly bases 

its User Inflow and User Outflow decisions on the past experiences of the Environment Net Flow values rather 

than on the last trial‘s (or most recent) Environment Net Flow value. Furthermore, the value of W parameter is 

very high and close to 1.0.   

          This means that the model understands the dynamics of the DSF task (a non-zero Environment Inflow 

and a zero Environment Outflow in different calibration functions) and like human participants in verbal 

protocols, it primarily uses the User Outflow than the User Inflow.   

          Thus, the model tries to bring the stock level back to the goal by removing the water stock that is added 

by the Environment Inflow in each trial. The similarity between the behaviour of the model and human data 

highlight the fact that the RL model is a plausible account of human behaviour in the DSF task.   

 

3.6 Behaviour Duration- Description, Procedures, & Example:   

           If you are interested in measuring how long a behavior lasts you can use a duration recording method. 

Make sure that the behavior that you are observing has a clear beginning and a clear ending so that you can tell 

exactly when the behavior starts and when it finishes. You will also need some timing instrument such as a wall 

clock, wristwatch, or stopwatch.  

           Examples of behaviors that you might want to measure the length of include crying, being out of the 

classroom, or being in a location of the classroom. Procedures * Make sure that you have your timing 

instrument available prior to beginning your observation* Each time that the behaviour occurs:  

           Write down the time when the behaviour stopped calculate the length of time that the behaviour lasted 

and write it in minutes and/or seconds.   
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3.7 Factors influencing the human behaviours in the context of disasters:  

           To position us research about the state of the art in this domain, we will first precise the notion of 

human behaviours and the factors influencing these letters during a catastrophic event. This fast overview will 

permit to specify our choices both in terms of reactions to consider and parameters to integrate in the modelling.  

In 1936, K. Lewin (1936) formalized the human behavior © by a function of the form: C=f (P, E). This 

formulation indicates that the environment (E), in the broader sense of the term (i.e. physical, social cultural, 

spatial, temporal environment), and the characteristic of individuals (P) (i.e. physical resistance, experience, 

memory of past events) are parameters conditioning the reactions of populations. Relatively to the field of 

disasters, these parameters are:  

a) Origin of the risk and anticipation of the beginning of the disaster (parameter E):  

            Some disasters can be anticipated and announced by different information channels (newspapers, 

radio, televisions…). It is often the case of hurricanes, floods, volcanic eruption. However, other disasters arrive 

by surprise as earthquakes and nuclear explosions or, in another domain, terrorist actions.   

            In the first case, we observe controlled behaviours (Baumann and Sims 1974; George and Gammon, 

2011) since the authority‘s actions allow the population to be prepared in front of the risk (organized evacuation, 

consideration of the potential effects of the disaster)  

            Whereas in the second case, because of the effect of surprise and fear, reactions are more instinctive 

(Laborite, 1994), immediate and automatic (side ration, leak for example during non-anticipated auto-evacuation) 

at least in the first time in stands of a disaster (Procinolol et al., 2015).  

  

b) Areas of the disaster (Parameter E)  

Human behaviours depend also on the area of the catastrophe in which the population is located (Crocq, 

1994). The affected area is usually divided in four types of zoning: the impact zone, where the material 

destruction zone,  

Where the material damages are very important but where the number of injured people is less, and the social 

organization is very perturbed; and external zones which are generally less impacted by the disaster.  

c) Specificities of the impacted zone (Parameter E)  

The human behaviours and the associated displacements are generally guided by the territory and the 

alternatives that it offers particularly for the evacuation or leak, the accessibility of temporary shelters. One can 

name some non-exhaustive elements that affect the behavior reactions: the presence of open spaces or buildings 

permitting to ensure the security of populations,   

The number and the position of exits (Helbing et al., 2000; Henein and White, 2005), the identification of arrow 

evacuation exits, the morphology of networks and the state of the communication infrastructures (Nabaa et al., 

2009).  

d) Characteristics of individuals (Parameter P) and density of population (Parameter E)  

The behaviours vary also with the physical factors of individuals (age, agility), their learnings and 

experiences (culture of risk), their knowledge about the place, the individual‘s motivations (join or save his 

family members, to become a hero….) but also the local perception of the environment (Wijermans, 2007). 

Indeed, without any consideration of the risk, most of individuals are influenced by the density of population (E). 

This density, which increases when the crowd is being formed, makes the situation more dangerous (i.e. 

reduction of the choices for the individual displacements, increasing of interactions between individuals and 

their neighbours) and can lead, for example, to extreme situations of trampling and suffocation. The origin of 

the risk, the anticipation of the beginning of the catastrophe and the spatial zoning are factors that are considered 

in the construction of the mathematical model. At this stage of the modeling, we have decided to integrate 

general parameters, that is parameters not specific to an area or to social, economic or cultural characteristics as 

age, sex, cultural area, level of income or wealth Indeed, the latter do not play key role during the catastrophe 

but rather before and after the catastrophe (Baumann and Sims,)  

 

3.8 Prevention of catastrophe events:  

Most people think of ―near misses‖ as harrowing close calls that could have been a lot worse- when a 

fire-fighter escapes a burning building moment before it collapses, or when a tornado miraculously veers away 

from a town in its path. Events like these are rare narrow escape that leave us shaken and looking for lessons.  

           But there‘s another class of near misses, ones that are much more common and pernicious. These are 

the often-unremarked small failures that permeate day-today business but cause no immediate harm. people are 

hardwired to misinterpret or ignore the warnings embedded in these failures, and so they often go unexamined 

or, perversely, are signs that systems are resilient, and things are going well.  

Yet these seemingly innocuous events are often harbingers; if conditions shift slightly, or if luck does 

not intervene, a crisis erupts. Consider the BP Gulf oil rig disaster. As a case study in the anatomy of near 
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misses and the consequences of misreading them, it‘s close to perfect. In April 2010, as gas blowout occurred 

during the cementing of the Deepwater Horizon well.  

           The blowout ignited, killing 11 people, sinking the rig, and triggering a massive underwater spill that 

would take months to contain. Numerous poor decisions and dangerous conditions contributed to the disaster: 

Drillers had used too few centralizers to position the pipe the lubricating ―drilling mud‖ was removed too early, 

managers had misinterpreted vital test results that would have confirmed that hydrocarbons were seeping from 

the well.  

           In addition, BP relied on an older version of a complex fail-safe device called a blowout preventer that 

had a notoriously spotty track record. Why did Transocean (the rig‘s owner), BP executives, rig managers, and 

drilling crew overlook the warning signs, even though the well had been plagued by technical problems all 

along (crew members called it ―the well from hell‖)?  

           We believe that the stakeholders were Lulled into complacency by a catalog of previous near misses in 

the industry successful outcomes in which luck played a key role in averting disaster. Increasing numbers of 

ultradeep wells were being drilled, but significant oil spills or fatalities were extremely rare. And many Gulf of 

Mexico wells had suffered minor blowouts during cementing (dozens of them in the past two decades);  

           However, in each case chance factors-favorable wind direction, no one welding near the leak at the 

time, for instance-helped prevent an explosion. Each near miss, rather than raise alarms and prompt 

investigations, was taken as an indication  that existing methods and safety procedures worked. For the past 

seven years, we have studied near misses in dozens of companies across industries from telecommunications to 

automobiles, at NASA, and in lab simulations.  

Our research reveals a pattern: Multiple near misses preceded (and foreshadowed) every disaster and 

business crisis we studied, and most of the misses were ignored or misread. Our work also shows that cognitive 

biases conspire to blind managers to the near misses. Two cloud our judgment. The first is ―normalization of 

deviance,‖ the tendency over time to accept anomalies-particularly risky ones-as normal.  

Think of the growing comfort a worker might feel with using a ladder with a broken rung; the more 

times he climbs the dangerous ladder without incident, the safer he feels it is. For an organization, such 

normalization can be catastrophic. Columbia University sociologist Diane Vaughan coined the phrase in her 

book The Challenger Launch Decision to describe the organizational behaviors that allowed a glaring 

mechanical anomaly on the space shuttle to gradually be viewed as a normal flight risk-dooming its crew.   

The second cognitive error is the so-called outcome bias. When people observe successful outcomes, 

they tend to focus on the results more than on the (often unseen) complex processes that led to them. 

IV. CONCLUSIONS 

This paper introduces a new step in the modelling of the crowd dynamics in catastrophic events. Indeed, 

it considers three concurrent behaviours and includes the processes of transition from one behaviour to the other. 

Up to now the main models consist in modelling the panic which is fear behaviour, but it is not always adopted. 

Furthermore, panic does not necessarily last during the entire event and, on the contrary, the global behaviour of 

the crowd can change. In this work, two other behaviours have been integrated in the modelling: the reflex one 
and the controlled one. As seen in human sciences, our facsimilist show that they can influences the crowd 

behaviour and a return to normality. The next step of this work will consist in doing a mathematical study of this 

model and integrating it in a diffusion process. 
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