On The Homogeneous Ternary Quadratic Diophantine Equation

$$
5 x^{2}+4 y^{2}=189 z^{2}
$$

Dr.A.Kavitha
Assistant professor, Department of Mathematics, Shrimati Indira Gandhi College, Trichy-2.

ABSTRACT:

Homogeneous ternary quadratic equation $5 x^{2}+4 y^{2}=189 z^{2}$ is analysed for its integral points on it. Employing the integral solutions of the above equation, a few interesting relations between the solutions and the special numbers are also exhibited.

KEYWORDS: Homogeneous, ternary, quadratic, integral solutions.

I. INTRODUCTION:

The Diophantine equation offer an unlimited field for research due to their variety $[1-3]$. In particular, one may refer $[4-13]$ for quadratic equation with three unknowns. The communication concerns with yet another interesting equation $5 x^{2}+4 y^{2}=189 z^{2}$ representing non-homogeneous quadratic equation with three unknowns for determining its infinitely many non-zero integral points. Also, a few interesting relations among the solutions are presented.

II. NOTATIONS:

1. Polygonal number of rank n with side m

$t_{m, n}=n\left[1+\frac{(n-1)(m-2)}{2}\right]$

2. Pronic number of rank n

$\operatorname{Pr}_{n}=n(n+1)$
3. Star number of rank n
$S_{n}=6 n(n-1)+1$.

III. METHOD OF ANALYSIS:

The ternary quadratic Diophantine equation to be solved for its non- zero distinct integral solution is

$$
\begin{equation*}
5 x^{2}+4 y^{2}=189 z^{2} \tag{1}
\end{equation*}
$$

Introduction of the linear transformations $(X \neq T \neq 0)$

$$
\begin{equation*}
x=X-4 T, y=X+5 T \tag{2}
\end{equation*}
$$

in (1) leads to

$$
\begin{equation*}
X^{2}+20 T^{2}=21 z^{2} \tag{3}
\end{equation*}
$$

Different patterns of solutions of (1) are presented below:

Pattern-1:

write 20 as

$$
\begin{equation*}
21=(1+i \sqrt{20})(1-i \sqrt{20}) \tag{4}
\end{equation*}
$$

Assume

$$
\begin{equation*}
z=a^{2}+20 b^{2} \tag{5}
\end{equation*}
$$

where a and b are non- zero distinct integers
using (4) and (5) in (3), we get

$$
X^{2}+20 T^{2}=(1+i \sqrt{20})(1-i \sqrt{20})\left(a^{2}+20 b^{2}\right)^{2}
$$

Employing the method of factorization the above equation is written as

$$
(X+i \sqrt{20} T)(X-i \sqrt{20} T)=(1+i \sqrt{20})(1-i \sqrt{20})(a+i \sqrt{20} b)^{2}(a-i \sqrt{20} b)^{2}
$$

Equating the positive and negative factors, the resulting equations are,

$$
\begin{align*}
& X+i \sqrt{20} T=(1+i \sqrt{20})(a+i \sqrt{20} b)^{2} \tag{6}\\
& X-i \sqrt{20} T=(1-i \sqrt{20})(a-i \sqrt{20} b)^{2} \tag{7}
\end{align*}
$$

Equating real and imaginary parts in (6), we get

$$
\begin{aligned}
& X=a^{2}-20 b^{2}-40 a b \\
& T=a^{2}-20 b^{2}+2 a b
\end{aligned}
$$

substituting the values of X and T in (2), we get

$$
\begin{align*}
& x=x(a, b)=-3 a^{2}+60 b^{2}-48 a b \tag{8}\\
& y=y(a, b)=6 a^{2}-120 b^{2}-30 a b \tag{9}
\end{align*}
$$

Thus (8), (9) and (5) represents non- zero distinct integral solutions of (1) in two parameters.

Properties:

- $x(1, b)-60 \operatorname{Pr}_{b} \equiv 0(\bmod 3)$
- $y(a, 1)-6 \operatorname{Pr}_{a} \equiv 0(\bmod 2)$
- $x(b, b)-z(b, b)+12 t_{4, b}=0$
- $y(a, a)+144 t_{4, a}=0$
- $x(1, b+1)-S_{b} \equiv 0(\bmod 2)$
- $z(a+1,1)-S_{a}-\operatorname{Pr}_{a}+t_{4, a} \equiv 0(\bmod 2)$

Pattern-2:

The equation (3) can also be written as

$$
\begin{align*}
& X^{2}-z^{2}=20\left(z^{2}-T^{2}\right) \tag{10}\\
& (X-z)(X+z)=20(z-T)(z+T)
\end{align*}
$$

Equation (10) is written in the form of ratio as,

$$
\begin{equation*}
\frac{X+z}{5(z+T)}=\frac{4(z-T)}{X-z}=\frac{\alpha}{\beta}, \beta \neq 0 \tag{11}
\end{equation*}
$$

From the first and third factors of (11), we have

$$
\begin{align*}
& \frac{X+z}{5(z+T)}=\frac{\alpha}{\beta} \\
& \beta X-5 \alpha T+(\beta-5 \alpha) z=0 \tag{12}
\end{align*}
$$

From the second and third factors of (11), we have

$$
\begin{align*}
& \frac{4(Z-T)}{X-Z}=\frac{\alpha}{\beta} \\
& \quad-\alpha X-4 \beta T+(4 \beta+\alpha) z=0 \tag{13}
\end{align*}
$$

Applying the method of cross multiplication for solving (12) and (13)

$$
\begin{aligned}
& X=5 \alpha^{2}+40 \alpha \beta-4 \beta^{2} \\
& T=-5 \alpha^{2}+2 \alpha \beta+4 \beta^{2} \\
& z=5 \alpha^{2}+4 \beta^{2}
\end{aligned}
$$

substituting the values of X and T in (2), we get

$$
\left.\begin{array}{l}
x=x(\alpha, \beta)=25 \alpha^{2}+32 \alpha \beta-20 \beta^{2} \tag{14}\\
y=y(\alpha, \beta)=-20 \alpha^{2}+50 \alpha \beta+16 \beta^{2} \\
z=z(\alpha, \beta)=4 \beta^{2}+5 \alpha^{2}
\end{array}\right\}
$$

Thus (14) represents the non-zero distinct integral solutions to (1)

Properties:

- $x(1, \beta)-32 \operatorname{Pr}_{\beta}+52 t_{4, \beta} \equiv 0(\bmod 5)$
- $y(\alpha, 1)+20 \operatorname{Pr}_{\alpha} \equiv 0(\bmod 2)$
- $x(\beta, \beta)+z(\beta, \beta)-28 t_{4, \beta}=0$
- $y(\alpha, \alpha)-46 t_{4, \alpha}=0$
- $x(\beta, \beta+1)+S_{\beta} \equiv 0(\bmod 2)$
- $x(\alpha+1,1)-S_{\alpha} \equiv 0(\bmod 5)$

Pattern-3:

One may write (10) in the form of ratio as

$$
\begin{equation*}
\frac{X+z}{4(z+T)}=\frac{5(Z-T)}{X-z}=\frac{\alpha}{\beta}, \beta \neq 0 \tag{15}
\end{equation*}
$$

From the first and third factors of (15), we have

$$
\begin{align*}
& \frac{X+z}{4(z+T)}=\frac{\alpha}{\beta} \\
& \beta X+(\beta-4 \alpha) z-4 \alpha T=0 \tag{16}
\end{align*}
$$

From the second and third factors of (16), we have

$$
\begin{align*}
& \frac{5(z-T)}{X-z}=\frac{\alpha}{\beta} \\
& -5 \beta T+(5 \beta+\alpha) z-\alpha X=0 \tag{17}
\end{align*}
$$

Applying the method of cross multiplication for solving (16) and (17)

$$
\begin{aligned}
& X=4 \alpha^{2}+40 \alpha \beta-5 \beta^{2} \\
& T=5 \beta^{2}+2 \alpha \beta-4 \alpha^{2} \\
& z=4 \alpha^{2}+5 \beta^{2}
\end{aligned}
$$

substituting the values of X and T in (2), we get
$\left.\begin{array}{l}x=x(\alpha, \beta)=-25 \beta^{2}+32 \alpha \beta+20 \alpha^{2} \\ y=y(\alpha, \beta)=20 \beta^{2}+50 \alpha \beta-16 \alpha^{2} \\ z=z(\alpha, \beta)=4 \alpha^{2}+5 \beta^{2}\end{array}\right\}$
Thus (18) represents the non-zero distinct integral solutions to (1)

Properties:

- $x(1, \beta)-32 \operatorname{Pr}_{\beta}+57 t_{4, \beta} \equiv 0(\bmod 2)$
- $y(\alpha, 1)+16 \operatorname{Pr}_{\alpha} \equiv 0(\bmod 2)$
- $x(\beta, \beta)+y(\beta, \beta)-81 t_{4, \beta}=0$
- $x(\alpha, \alpha)+z(\alpha, \alpha)-36 t_{4, \alpha}=0$
- $y(1, \beta+1)-S_{\beta} \equiv 0(\bmod 5)$
- $\quad x(\alpha+1,1)-S_{\alpha} \equiv 0(\bmod 2)$

Pattern-4:

One may write (10) in the form of ratio as

$$
\begin{equation*}
\frac{X-z}{4(z+T)}=\frac{5(Z-T)}{X+z}=\frac{\alpha}{\beta}, \beta \neq 0 \tag{19}
\end{equation*}
$$

From the first and third factors of (19), we have

$$
\begin{align*}
& \frac{X-z}{4(z+T)}=\frac{\alpha}{\beta} \\
& \beta X-(\beta+4 \alpha) z-4 \alpha T=0 \tag{20}
\end{align*}
$$

From the second and third factors of (20), we have

$$
\begin{align*}
& \frac{5(z-T)}{X+z}=\frac{\alpha}{\beta} \\
& -5 \beta T+(6 \beta-\alpha) z-\alpha X=0 \tag{21}
\end{align*}
$$

Applying the method of cross multiplication for solving (20) and (21)

$$
\begin{aligned}
& X=-4 \alpha^{2}+40 \alpha \beta+5 \beta^{2} \\
& T=5 \beta^{2}-2 \alpha \beta-4 \alpha^{2} \\
& z=4 \alpha^{2}+5 \beta^{2}
\end{aligned}
$$

substituting the values of X and T in (2), we get
$\left.\begin{array}{l}x=x(\alpha, \beta)=-15 \beta^{2}+48 \alpha \beta+12 \alpha^{2} \\ y=y(\alpha, \beta)=30 \beta^{2}+30 \alpha \beta-24 \alpha^{2} \\ z=z(\alpha, \beta)=4 \alpha^{2}+5 \beta^{2}\end{array}\right\}$
Thus (22) represents the non-zero distinct integral solutions to (1)

Properties:

- $x(1, \beta)+15 \operatorname{Pr}_{\beta} \equiv 0(\bmod 3)$
- $y(\alpha, 1)+24 \operatorname{Pr}_{\alpha} \equiv 0(\bmod 2)$
- $x(\beta, \beta)+y(\beta, \beta)-81 t_{4, \beta}=0$
- $x(\alpha, \alpha)+z(\alpha, \alpha)-54 t_{4, \alpha}=0$
- $y(1, \beta+1)-S_{\beta}-60 \operatorname{Pr}_{\beta}+60 t_{4, \beta} \equiv 1(\bmod 2)$
- $x(\alpha+1,1)-S_{\alpha} \equiv 0(\bmod 2)$

Pattern-5:

One may write (10) in the form of ratio as

$$
\begin{equation*}
\frac{X-z}{4(z-T)}=\frac{5(Z+T)}{X+z}=\frac{\alpha}{\beta}, \beta \neq 0 \tag{23}
\end{equation*}
$$

From the first and third factors of (23), we have

$$
\begin{align*}
& \frac{X-z}{4(z-T)}=\frac{\alpha}{\beta} \\
& \beta X-(\beta+4 \alpha) z+4 \alpha T=0 \tag{24}
\end{align*}
$$

From the second and third factors of (23), we have

$$
\begin{align*}
& \frac{5(z+T)}{X+z}=\frac{\alpha}{\beta} \\
& 5 \beta T+(5 \beta-\alpha) z-\alpha X=0 \tag{25}
\end{align*}
$$

Applying the method of cross multiplication for solving (24) and (25)

$$
\begin{aligned}
& X=4 \alpha^{2}-40 \alpha \beta-5 \beta^{2} \\
& T=5 \beta^{2}-2 \alpha \beta-4 \alpha^{2} \\
& z=-4 \alpha^{2}-5 \beta^{2}
\end{aligned}
$$

substituting the values of X and T in (2), we get

$$
\left.\begin{array}{l}
x=x(\alpha, \beta)=-25 \beta^{2}-32 \alpha \beta+20 \alpha^{2} \tag{26}\\
y=y(\alpha, \beta)=20 \beta^{2}-50 \alpha \beta-16 \alpha^{2} \\
z=z(\alpha, \beta)=-4 \alpha^{2}-5 \beta^{2}
\end{array}\right\}
$$

Thus (26) represents the non-zero distinct integral solutions to (1)

Properties:

- $x(1, \beta)+32 \operatorname{Pr}_{\beta}-7 t_{4, \beta} \equiv 0(\bmod 2)$
- $y(\alpha, 1)+16 \operatorname{Pr}_{\alpha} \equiv 0(\bmod 2)$
- $x(\beta, \beta)-y(\beta, \beta)-9 t_{4, \beta}=0$
- $y(\alpha, \alpha)-z(\alpha, \alpha)+37 t_{4, \alpha}=0$
- $z(1, \beta+1)+S_{\beta} \equiv 0(\bmod 5)$
- $x(\alpha+1,1)-S_{\alpha} \equiv 0(\bmod 2)$

Pattern-6:

One may write (10)in the form of ratio as

$$
\begin{equation*}
\frac{X+z}{2(z+T)}=\frac{10(Z-T)}{X-z}=\frac{\alpha}{\beta}, \beta \neq 0 \tag{27}
\end{equation*}
$$

From the first and third factors of (27), we have

$$
\begin{align*}
& \frac{X+z}{2(z+T)}=\frac{\alpha}{\beta} \\
& \beta X+(\beta-2 \alpha) z-2 \alpha T=0 \tag{28}
\end{align*}
$$

From the second and third factors of (2.27), we have

$$
\frac{10(z-T)}{X-z}=\frac{\alpha}{\beta}
$$

$$
\begin{equation*}
-10 \beta T+(10 \beta+\alpha) z-\alpha X=0 \tag{29}
\end{equation*}
$$

Applying the method of cross multiplication for solving (28) and (29)

$$
\begin{aligned}
& X=-10 \beta^{2}+40 \alpha \beta+2 \alpha^{2} \\
& T=10 \beta^{2}+2 \alpha \beta-2 \alpha^{2} \\
& z=2 \alpha^{2}+10 \beta^{2}
\end{aligned}
$$

substituting the values of X and T in (2), we get

$$
\left.\begin{array}{l}
x=x(\alpha, \beta)=-50 \beta^{2}+32 \alpha \beta+10 \alpha^{2} \tag{30}\\
y=y(\alpha, \beta)=40 \beta^{2}+50 \alpha \beta-8 \alpha^{2} \\
z=z(\alpha, \beta)=2 \alpha^{2}+10 \beta^{2}
\end{array}\right\}
$$

Thus (30) represents the non-zero distinct integral solutions to (1)

Properties:

- $x(1, \beta)+50 \operatorname{Pr}_{\beta} \equiv 0(\bmod 2)$
- $y(\alpha, 1)+8 \operatorname{Pr}_{\alpha} \equiv 0(\bmod 2)$
- $x(\beta, \beta)-y(\beta, \beta)+90 t_{4, \beta}=0$
- $y(\alpha, \alpha)-z(\alpha, \alpha)-70 t_{4, \beta}=0$
- $z(1, \beta+1)-S_{\beta}-10 \operatorname{Pr}_{\beta}+10 t_{4, \beta} \equiv 1(\bmod 2)$
- $x(\alpha+1,1)-S_{\alpha} \equiv 0(\bmod 7)$

Pattern-7:

One may write (10) in the form of ratio as

$$
\begin{equation*}
\frac{X+z}{10(z-T)}=\frac{2(Z+T)}{X-z}=\frac{\alpha}{\beta}, \beta \neq 0 \tag{31}
\end{equation*}
$$

From the first and third factors of (31), we have

$$
\begin{align*}
& \frac{X+z}{10(z-T)}=\frac{\alpha}{\beta} \\
& \beta X+(\beta-10 \alpha) z+10 \alpha T=0 \tag{32}
\end{align*}
$$

From the second and third factors of (31), we have

$$
\begin{align*}
& \frac{2(z+T)}{X-z}=\frac{\alpha}{\beta} \\
& 2 \beta T+(2 \beta+\alpha) z-\alpha X=0 \tag{33}
\end{align*}
$$

Applying the method of cross multiplication for solving (32) and (33)

$$
\begin{aligned}
& X=-10 \alpha^{2}-40 \alpha \beta+2 \beta^{2} \\
& T=2 \beta^{2}+2 \alpha \beta-10 \alpha^{2} \\
& z=-10 \alpha^{2}-2 \beta^{2}
\end{aligned}
$$

substituting the values of X and T in (2), we get

$$
\left.\begin{array}{l}
x=x(\alpha, \beta)=-6 \beta^{2}-48 \alpha \beta+30 \alpha^{2} \tag{34}\\
y=y(\alpha, \beta)=12 \beta^{2}-30 \alpha \beta-60 \alpha^{2} \\
z=z(\alpha, \beta)=-10 \alpha^{2}-2 \beta^{2}
\end{array}\right\}
$$

Thus (34) represents the non-zero distinct integral solutions to (1)

Properties:

- $x(1, \beta)+6 \operatorname{Pr}_{\beta} \equiv 0(\bmod 2)$
- $y(\alpha, 1)+60 \mathrm{Pr}_{\alpha} \equiv 0(\bmod 2)$
- $x(\beta, \beta)+z(\beta, \beta)+36 t_{4, \beta}=0$
- $y(\alpha, \alpha)+z(\alpha, \alpha)+90 t_{4, \alpha}=0$
- $x(1, \beta+1)-S_{\beta}+18 \operatorname{Pr}_{\beta}-18 t_{4, \beta} \equiv 0(\bmod 7)$
- $z(\alpha+1,1)+S_{\alpha}+10 \operatorname{Pr}_{\alpha}-10 t_{4, \alpha} \equiv 1(\bmod 2)$

Pattern-8:

One may write (10) in the form of ratio as

$$
\begin{equation*}
\frac{X-z}{2(z+T)}=\frac{10(Z-T)}{X+z}=\frac{\alpha}{\beta}, \beta \neq 0 \tag{35}
\end{equation*}
$$

From the first and third factors of (35), we have

$$
\begin{align*}
& \frac{X-z}{2(z+T)}=\frac{\alpha}{\beta} \\
& \beta X-(\beta+2 \alpha) z-2 \alpha T=0 \tag{36}
\end{align*}
$$

From the second and third factors of (35), we have

$$
\begin{align*}
& \frac{10(z-T)}{X+z}=\frac{\alpha}{\beta} \\
& -10 \beta T+(10 \beta-\alpha) z-\alpha X=0 \tag{37}
\end{align*}
$$

Applying the method of cross multiplication for solving (36) and (37)

$$
\begin{aligned}
& X=-2 \alpha^{2}+40 \alpha \beta+10 \beta^{2} \\
& T=10 \beta^{2}-2 \alpha \beta-2 \alpha^{2} \\
& z=2 \alpha^{2}+10 \beta^{2}
\end{aligned}
$$

substituting the values of X and T in (2), we get
$\left.\begin{array}{l}x=x(\alpha, \beta)=-30 \beta^{2}+48 \alpha \beta+6 \alpha^{2} \\ y=y(\alpha, \beta)=60 \beta^{2}+30 \alpha \beta-12 \alpha^{2} \\ z=z(\alpha, \beta)=2 \alpha^{2}+10 \beta^{2}\end{array}\right\}$
Thus (38) represents the non-zero distinct integral solutions to (1)

Properties:

- $x(1, \beta)+30 \operatorname{Pr}_{\beta} \equiv 0(\bmod 2)$
- $y(\alpha, 1)+12 \mathrm{Pr}_{\alpha} \equiv 0(\bmod 2)$
- $x(\beta, \beta)+z(\beta, \beta)-36 t_{4, \beta}=0$
- $y(\alpha, \alpha)+z(\alpha, \alpha)-90 t_{4, \alpha}=0$
- $y(1, \beta+1)-S_{\beta}-90 \operatorname{Pr}_{\beta}+90 t_{4, \beta} \equiv 1(\bmod 2)$
- $z(\alpha+1,1)-S_{\alpha}-2 \operatorname{Pr}_{\alpha}+2 t_{4, \alpha} \equiv 1(\bmod 2)$

Pattern-9:

One may write (10) in the form of ratio as

$$
\begin{equation*}
\frac{X-z}{10(z-T)}=\frac{2(Z+T)}{X+z}=\frac{\alpha}{\beta}, \beta \neq 0 \tag{39}
\end{equation*}
$$

From the first and third factors of (39), we have

$$
\begin{align*}
& \frac{X-z}{10(z-T)}=\frac{\alpha}{\beta} \\
& \beta X-(\beta+10 \alpha) z+10 \alpha T=0 \tag{40}
\end{align*}
$$

From the second and third factors of (39), we have

$$
\begin{align*}
& \frac{2(z+T)}{X+z}=\frac{\alpha}{\beta} \\
& 2 \beta T+(2 \beta-\alpha) z-\alpha X=0 \tag{41}
\end{align*}
$$

Applying the method of cross multiplication for solving (40) and (41)

$$
\begin{aligned}
& X=10 \alpha^{2}-40 \alpha \beta-2 \beta^{2} \\
& T=2 \beta^{2}-2 \alpha \beta-10 \alpha^{2} \\
& z=-10 \alpha^{2}-2 \beta^{2}
\end{aligned}
$$

substituting the values of X and T in (2), we get

$$
\left.\begin{array}{l}
x=x(\alpha, \beta)=-10 \beta^{2}-32 \alpha \beta+50 \alpha^{2} \tag{42}\\
y=y(\alpha, \beta)=8 \beta^{2}-50 \alpha \beta-40 \alpha^{2} \\
z=z(\alpha, \beta)=-10 \alpha^{2}-2 \beta^{2}
\end{array}\right\}
$$

Thus (42) represents the non-zero distinct integral solutions to (1)

Properties:

- $x(1, \beta)+10 \operatorname{Pr}_{\beta} \equiv 0(\bmod 2)$
- $y(\alpha, 1)+40 \operatorname{Pr}_{\alpha} \equiv 0(\bmod 2)$
- $x(\beta, \beta)+z(\beta, \beta)+4 t_{4, \beta}=0$
- $z(\alpha, \alpha)+12 t_{4, \alpha}=0$
- $x(1, \beta+1)+S_{\beta} \equiv 0(\bmod 7)$
- $y(\alpha+1,1)+S_{\alpha}+90 \operatorname{Pr}_{\alpha}-90 t_{4, \alpha} \equiv 0(\bmod 2)$

Pattern-10:

One may write (10) in the form of ratio as

$$
\begin{equation*}
\frac{X+z}{20(z+T)}=\frac{1(z-T)}{X-z}=\frac{\alpha}{\beta}, \beta \neq 0 \tag{43}
\end{equation*}
$$

From the first and third factors of (43), we have

$$
\begin{align*}
& \frac{X+z}{20(z+T)}=\frac{\alpha}{\beta} \\
& \beta X+(\beta-20 \alpha) z-20 \alpha T=0 \tag{44}
\end{align*}
$$

From the second and third factors of (43), we have

$$
\frac{(z-T)}{X-z}=\frac{\alpha}{\beta}
$$

$$
\begin{equation*}
-\beta T+(\beta+\alpha) z-\alpha X=0 \tag{45}
\end{equation*}
$$

Applying the method of cross multiplication for solving (44) and (45)

$$
\begin{aligned}
& X=20 \alpha^{2}+40 \alpha \beta-\beta^{2} \\
& T=\beta^{2}+2 \alpha \beta-20 \alpha^{2} \\
& z=20 \alpha^{2}+\beta^{2}
\end{aligned}
$$

substituting the values of X and T in (2), we get

$$
\left.\begin{array}{l}
x=x(\alpha, \beta)=-5 \beta^{2}+32 \alpha \beta+100 \alpha^{2} \tag{46}\\
y=y(\alpha, \beta)=4 \beta^{2}+50 \alpha \beta-80 \alpha^{2} \\
z=z(\alpha, \beta)=20 \alpha^{2}+\beta^{2}
\end{array}\right\}
$$

Thus (46) represents the non-zero distinct integral solutions to (1)

Properties:

- $x(1, \beta)-32 \operatorname{Pr}_{\beta}+37 t_{4, \beta} \equiv 0(\bmod 2)$
- $y(\alpha, 1)+80 \operatorname{Pr}_{\alpha} \equiv 0(\bmod 2)$
- $x(\beta, \beta)+z(\beta, \beta)-148 t_{4, \beta}=0$
- $z(\alpha, \alpha)-21 t_{4, \alpha}=0$
- $x(1, \beta+1)+S_{\beta} \equiv 0(\bmod 3)$
- $y(\alpha+1,1)+S_{\alpha} \equiv 0(\bmod 3)$

IV. CONCLUSION

In this paper, we have made an attempt to obtain all integer solutions to ternary quadratic equation $5 x^{2}+4 y^{2}=189 z^{2}$. One may search for other patterns of solutions and their corresponding properties.

V. REFERENCES

[1] Dickson L.E. "History of theory of numbers", Vol-2, Diophantine analysis, New York, Dover, 2005.
[2] Mordell L.J. "Diophantine equations", Academic press, New York, 1969.
[3] Carmichael R.D. "The theory of numbers and Diophantine analysis", New York, Dover, 1959.
[4] Gopalan M.A, Geetha D, Lattice points on the hyperbola of two sheets $x^{2}-6 x y+y^{2}+6 x-2 y+5=z^{2}+4$, Impact J sci Tech 2010: 4:23-32.
[5] Gopalan M.A, Vidhyalakshmi S, Kavitha A, Integral points on the homogeneous cone $z^{2}=2 x^{2}-7 y^{2}$, The Diophantine J Math 2012; $1(2): 127-136$.
[6] Gopalan M.A, Vidhyalakshmi S, Sumathi G, Lattice points on the hyperboloid of one sheet $4 z^{2}=2 x^{2}+3 y^{2}-4$, Diophantine J Math 2012; $1(2): 109-115$.
[7] Gopalan M.A, Vidhyalakshmi S, Lakshmi K, Integral points on the hyperboloid of two sheets $3 y^{2}=7 x^{2}-z^{2}+21$, Diophantine J Math 2012;1(2):99-107.
[8] Gopalan M.A, Vidhyalakshmi S, Mallika S, Observations on hyperboloid of one sheet $x^{2}+2 y^{2}-z^{2}=2$, Bessel J Math 2012; 2(3): 221-226.
[9] Gopalan M.A, Vidhyalakshmi S, Usha Rani T.R, Mallika S, Integral points on the homogeneous cone $6 z^{2}+3 y^{2}-2 x^{2}=0$, Impact J sci Tech 2012; 6(1):7-13.
[10] Gopalan M.A, Vidhyalakshmi S, Sumathi G, Lattice points on the elliptic paraboloid $z=9 x^{2}+4 y^{2}$, Advances in Theoretical and Applied Mathematics 2012;m7(4):379-385.
[11] Gopalan M.A, Vidhyalakshmi S, Usha Rani T.R, Integral points on the non-homogeneous cone $2 z^{2}+4 x y+8 x-4 z=0, \quad$ Global Journal of Mathematics and Mathematics Sciences 2012; 2(1): 61-67
[12] Gopalan M.A, Vidhyalakshmi S, Lakshmi K , Lattice points on the elliptic paraboloid $16 y^{2}+9 z^{2}=4 x$, Bessel J of Math 2013; 3(2):137-145.
[13] Gopalan M.A, Geetha T, Hemalatha K,"On the ternary quadratic Diophantine equation $5\left(x^{2}+y^{2}\right)-2 x y=20 z^{2} "$, International journal of multidisciplinary research and development, Vol-2, Issue: 4,211-214, April-2015.
[14] Hema. D, Mallika. S,"On the ternary quadratic Diophantine equation $5 y^{2}=3 x^{2}+2 z^{2}$, Journal of Mathematics and informatics,Vol.10,157-165,2017.
[15] Selva Keerthana. K , Mallika. S, "On the Ternary Quadratic Diophantine equation $3\left(x^{2}+y^{2}\right)-5 x y+2(x+y)+4=15 z^{2}$ "Journal of Mathematics and informatics, Vol. 11,21-28,2017.

