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Abstract:  Sufficient conditions for oscillations of fourth order linear neutral delay differential 

       equations of the form 
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 are obtained ,where   )(,, tmtr  are positive real valued continuous functions  0)( tf , and    

  is the ratio of odd positive integers and  n is an integer. 
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I.  INTRODUCTION 

In this paper we consider the linear neutral delay differential equation   
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where )),0(,),([)( 0  tCtr , )),0[,),([)( 0  tCtf  . 

 .

 Corresponding equation in the absence of neutral term is given by  
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which is a delay differential equation and further if we take  1)( tm , 0  in equation (2) we get 
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The study of behavior of solutions of differential equation (2) has been a subject of interest for several researchers. 

We mention the works of [13, 2, 6 and 5].Oscillatory behavior of delay differential equations is extensively studied 

by several authors [7, 8, 9, 14, 4, 15 and 16]. 
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  Now we see some special case of equation (1).When   

1)( tr      equation (1) is reduced to  
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and to  
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and we note that, when 1)( tm , this equation further becomes to the equation 
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Recently there has been an increasing interest in the study of the oscillation of differential equations e.g. papers [1]-

[12]. In particular, differential equations of the form (1) and for special cases when 1)( tr , is a subject of 

intensive research. 

 The oscillation for equation (6) has been discussed by many authors.  

Said R. Grace , Jozef Džurina , Irena Jadlovská and Tongxing Li [14],studied the oscillatory behavior of 

 the fourth order nonlinear differential equation 
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and  Jozef Džurina, Blanka Baculíková and Irena Jadlovská B [5] have considered the fourth order  

nonlinear neutral differential equation of the form 
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Parhi and Tripathy [12] have considered fourth order neutral differential equation of the form 

   )())(()('')()()()( '' tftyGtqtytptytr    

and they  have established the oscillation and asymptotic behavior of the equation under the condition  
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The present work is motivated by [13] where the Authors, P. V. H. S Sai Kumar and K. V. V Seshagiri Rao have 

considered oscillations of third order linear neutral delay differential equation of the form 
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In this paper we establish the conditions for the oscillation of solutions of equation (1) by Ricccati Technique using 

the condition.  

                                                                     dt
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t
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                   By a solution of equation (1) we mean a function )),[()(  yTCty  where 0tTy   which 

satisfies(1) on ).,[ yT We consider only those solutions of  y(t) of (1) which satisfy   0:)( TttySup  for 

all yTT   and assume that (1) possesses such solutions. 

                           A solution of equation (1) is called oscillatory if it has arbitrary large zeros on ),[ yT ;  otherwise 

it is called nonoscillatory. Equation (1) is said to be oscillatory it all its solutions oscillate .Unless otherwise stated, 

when we write a functional inequality, it will be assumed to hold for sufficiently large t   in our subsequent 

discussion. 

II. MAIN RESULTS 

We need the following in our discussion 
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We set  
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We have the following Lemmas 

Lemma 2.1:  If  X and Y are nonnegative and 1 , then 
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, 

where equality holds if and only if X=Y 

Lemma 2.2:  ([1], Lemma 2.2.3) ).),,([ 0

 tCfLet n
Assume that )(tf n

 is of fixed sign and not 

identically zero on ),[ 0 t and that there exists 01 tt   such that 0)()(1  tftf nn
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Lemma 2.3:  Let 1 , be a ratio of odd positive integers. Then 
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Now we present the main theorem. 

Theorem 2.1:   Assume  )()( 51 HH   and (11) hold. If 1  and there exists a positive no decreasing 

function )),,([ 0

' RtC   such that  
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for some )1,0(k , then every solution of equation (1) is oscillatory. 

Proof. Suppose to the contrary .And let y(t) be a nonoscillatory solution of equation (1).Without loss of  

generality we may assume that y(t) is eventually positive. 

Since    ;0)(''')(,)(,0)(''',0)('',0)(',0)( 4 
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From (14) and also since    tt    we have  
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Also from (15) 
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Substituting (16) into (15) 
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Since   z(t)>0, z’(t)>0 on   ,2t  then there exists 23 tt   and a constant  c>0 such that 

cty )(  for 3tt          (18) 

In view of (18) and the fact that )()( tzty   (17) yields 
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From equation (1) we see that  
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From (23) we have, 
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 It follows from Lemma 2.2 that     
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For  every )1,0(k  and all sufficiently large   t. Hence by (24) and (25) we have 
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Also from (23) we have, 
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We set   
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Hence we obtain , 
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which implies that on integrating from ttot1  we get  
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For every )1,0(k  and sufficiently large t which contradicts to equation (13) as .t Thus the  

proof is completed.    
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