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Abstract: Sufficient conditions for oscillations of fourth order linear neutral delay differential

equations of the form

df . d° , B
a{r(t)F(m(t)y(t) Zﬂy (t—T)J}H(t)y (t-0)=0, t>t,

are obtained ,where , I’(t), m(t) are positive real valued continuous functions f (t) >0, and

o isthe ratio of odd positive integers and n is an integer.
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I. INTRODUCTION

In this paper we consider the linear neutral delay differential equation

{r(t)—(m(t)y(t) Zﬂy (t—r)J}Jrf(t)ya(t—a):O, t>t, (1

where r(t) e C([t,,),(0,2)), f(t) e C([t,,»),[0,x))

Corresponding equation in the absence of neutral term is given by

{r(t) {m(t)y(t)}} +f(t)y“(t-0))=0 @)
which is a delay differential equation and further if we take m(t) =1, =0 in equation (2) we get

{r(t) {y(t)}}+ f(t)y”(t) =0 3

The study of behavior of solutions of differential equation (2) has been a subject of interest for several researchers.
We mention the works of [13, 2, 6 and 5].Oscillatory behavior of delay differential equations is extensively studied
by several authors [7, 8, 9, 14, 4, 15 and 16].
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Now we see some special case of equation (1).When

r(t)=1 equation (1) is reduced to

d* " B

o {m()y() Zt(t 1)y (t—r)}+f(t)y (t-o0)=0 (4)
and to

d H J—

d—{m()y() Zﬁy (t- f)}+f(t)y(t)—01f oc=0 (5)

and we note that, when m(t) =1, this equation further becomes to the equation

dt“{y() zt(t 1)y (t—f)}+f(t)y(t)=0 (6)

Recently there has been an increasing interest in the study of the oscillation of differential equations e.g. papers [1]-
[12]. In particular, differential equations of the form (1) and for special cases when r(t) =1, is a subject of
intensive research.

The oscillation for equation (6) has been discussed by many authors.

Said R. Grace , Jozef DZurina , Irena Jadlovska and Tongxing Li [14],studied the oscillatory behavior of

the fourth order nonlinear differential equation

(bley) )] )+ ) y((1) =0 (7)

and Jozef Dzurina, Blanka Baculikova and Irena Jadlovska B [5] have considered the fourth order

nonlinear neutral differential equation of the form

L0k 06OV )] )] + POy © ey =0 ®
Parhi and Tripathy [12] have considered fourth order neutral differential equation of the form

[r)(y(t) + p)yt-2))"] +at)G(yt - o)) = f (1)

and they have established the oscillation and asymptotic behavior of the equation under the condition
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t

t
I—dt <mas t—oow
r(t)

to

t
and J.Ldt =was t—ow 9)

v

The present work is motivated by [13] where the Authors, P. V. H. S Sai Kumar and K. V. V Seshagiri Rao have
considered oscillations of third order linear neutral delay differential equation of the form

r(t)
rit—r)

%{rl(t);_i(m(t)y(t)‘F y* (t—T)J}—l— ft)y(t-o)=0; txt,

In this paper we establish the conditions for the oscillation of solutions of equation (1) by Ricccati Technique using
the condition.

t

J.idt:oo as t—o0.
r(t)

to

By a solution of equation (1) we mean a function y(t) e C([T, ,00)) where T, >t, which

satisfies(1) on [T, ,0).We consider only those solutions of y(t) of (1) which satisfy Sup {|y(t)|: t>T }> 0 for

all T ZTy and assume that (1) possesses such solutions.

A solution of equation (1) is called oscillatory if it has arbitrary large zeros on ['I'y ,00) ; otherwise

it is called nonoscillatory. Equation (1) is said to be oscillatory it all its solutions oscillate .Unless otherwise stated,
when we write a functional inequality, it will be assumed to hold for sufficiently large t in our subsequent
discussion.

Il. MAIN RESULTS

We need the following in our discussion

(H,): r(t), m(),eC([ty, ), R);

(H,):F(0), p(t) =

are continuously differentiable on [to , oo).

1
t(t-1)
(H,;):0<a <1,and « isthe ratio of odd positive integers.
(H,): 7 eC'([t,,»),R) and o eC ([t,,»),R).

(He): F(t)>0,0< p(t)<oofor i=12......c0.
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We set

2t) =mOyH) + Yy (t-7)

T t(t-1)

and

t
R(t) = Ilidt =w ast—>o
Cre)

We have the following Lemmas
Lemma 2.1: If X and Y are nonnegative and A4 >1, then
XY LX< ()t—l)Yﬂ,

where equality holds if and only if X=Y

(10)

(1)

Lemma 2.2: ([1], Lemma2.2.3) Let f € C"([t,,00),R"). Assume that f "(t) is of fixed sign and not

identically zero on [t,,o0) and that there existst, >t such that " (t)f"(t) <Oforall t >t,.If

lim,  f(t) =0, then, for everyk € (0,2), there exixts t, € [t;,o0) such that

t—o0

k

(n—1)!

Lemma 2.3: Let ¢ >1, be aratio of odd positive integers. Then

tn—l

f(t) >

f n’1(t)‘, for t [t , ).

a+l

Bu—Au « <

a

a Ba+l

—_ A B >0,
(a+1)a+l Aa

Now we present the main theorem.

(12)

Theorem 2.1: Assume (H,)—(H) and (11) hold. If & >1 and there exists a positive no decreasing

function p € C ([t,, ), R) such that

p(s)f(s){%a)ﬂl—i

m(s =

1
(s—a)(s—o-1)

-

Lim,,, sup_[

4
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B (a+D)* (p(s)ks2 )a ]

(13)
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for some k € (0,1), then every solution of equation (1) is oscillatory.
Proof. Suppose to the contrary .And let y(t) be a nonoscillatory solution of equation (1).Without loss of

generality we may assume that y(t) is eventually positive.

Since z(t)>0, 2z'(t)>0, z"(t)>O,z"'(t)>0,z4(t),(r(t)z"'(t))“SO; for t>t,

(14)
From (14) and also since t—o <t we have
ri)z"'t)<rt—-o)z"(t-o) fort>t,

From the definition of z, we have

2(t) = m(t)Y(t)+Zmy (t-7)

m(t)y(t) = z(t) - Z ye(t—7)

; t(t 1)

1
Y(t)=% z(t) - Zﬂy (t- )}

1
Y(t)zm {Zmy (t- ZMY( - )H Zmy( -7)

(15)
Also from (15)
te 1
e TR =
Substituting (16) into (15)
o 1
y(t) = —— (t) z(t) - Zt(t D yt-7)-(1-a)a Zl‘,t(t ) 1)

Since z(2)>0, z’(t)>0 on [tz,oo) then there exists t; > t, and a constant ¢>0 such that
y(t)>c fort>t, (18)

In view of (18) and the fact that y(t) < z(t) (17) yields
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1 Lo 1 -
y()>m z(t) - Zt(t 1)y(t)—(1—a)a gt(t—l)} since t—7 <t
- 1
y()—m z(t) - Z(t D () -(1l-a)a ;t(t 1)} (19)
l-a o 1
y()_m_ _zt(t 1)—5(— a)a Zl“t(t—l)}z(t) (20)
1 la
y()>ﬁ__zt(t 1)_5(_ a)a 21: t(t— 1)} ©
- 1 .
y( ) = m_l— £ m[l‘l‘g(l—a)a Ji|2(t) (21)
From equation (1) we see that
4l d m(t)y(t)+2—y t-0) |l =—f Oy t-0)
dt dt® t(t-1)
y“(t-o)= 1 1—Zn: 1 1+— (1 a)a%‘ az“(t—a) (22)
mt-o)| Ft-olt-o-1)
Define
oft) = py OO sy @
2% (t)
e T ) iz )|
vO=P O 0 +p(t){ - }
ey O ) 2 OrE" o) | -roz7O) o)
@'(t) = p'(t) 20 +p(t)[ s

o),

o T O) |

()raxr“a»“&“a}

=p'(t) )
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From (23) we have,

ot) _r@)(z" )" .
p(t) ()

| L(t) ) 1 ~ n 1 1 _ ﬁ - Za(t—a)
“O= 00 (t)f(t){m(t—o-)(l D e ]} 2 ()

o) 2 of
{p(t) =

i=1

i e 2901 1
{p(t)l’(t)(z ®)". 2(t).z% (t) 'Z“(t)}

< PO : 1 1, o)
a)(t)<p()a)(t) p(t)f(t){ — )(1 Z(t—a)(t—a—l)(l+c(1 a)a }} 0

0 L[ e 1 Lo pgie || 2=2)
=0 " p(t)f(t){ (t—a)(l Lo o ]} 0

_ [ap(t)r(t)(zll'(t))a' z(t;lz(?(t) }

0 L[ e 1 Lo pgie || 20=2)
=0 " p(t)f(t){ (t—a)(l Lo ot ]} 0

—[ap(or(t)(z'“(t))“- Zi'f()t) }

2(t)>0, z'(t)>0, z"(t)>0,z"(t)>0,z*(t),(r(t)z""(t))* <0; for t>t,

Z(t— t—
By Kiguradze Lemma [8] we find Zz(t) Z%Z'(t) and hence (t-o) ( 0) (24)

()‘tz

It follows from Lemma 2.2 that

z'(t) zgtzz”'(t) (25)

For every k € (0,1) and all sufficiently large t. Hence by (24) and (25) we have
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p'(t) : 1 | t-0)™
w'(t) < ()w(t) p(t)f(t){ v )(1—;“_0)“_6_)( —(1 a)a j} v

oK rt)(z" ()
{azt 2" () p(t) 27 1) }

< PO 1 N 1 1 re |l (t=0)"
@O = e p(t)f(t){m(t_a)(l izzll(t—o-)(t—a—l)( C(1 a)a j} RT

_|:agt22ln(t)p(t) r(t)(zln(t))a :|

z7(t).z(t)

Also from (23) we have,

"®) _ o

() pOr(t)

and le'(lt()t): KRG RIS C C e
PO (1) pe (O (1)

p() n 1 1-a M
o'(t) < ()a’(t) p(t)f(t){ m(t - )[1 Z(I—O')(t—a—l)(+c(1 “e J} t

=1

_e;¢2 fﬂa) ()d0@ O 0

ore 200
P '(t) C 1 ol t-o)*
) —Zwt)-pt)f (t){ it —o) (1— .2:1: ((—o)t—o_D) @a+-= (1 a)a J} —tza

a)(t) 2(t)
2(t)

- a_kt 2 1&); (t) ,O(t)

pe®re)  pe are
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AW R 1 o L e
< o 0P (t)f(t){ — )[1 Z(t_a)(t_a_l)u (L-a)a J} T

i=1

1, (26)
_akt® e (1)
2 1
(p)r(®)=
o
k 2 ]
We set A= Ll, B= p_(tt) ,
2r®p(t))e PO
Using the Inequality
a+l a a+l
Bu—Au~ <% B aBso

We have

[,, (t)j
Pt a kt? o2 p(t)
ot)-—————— @ (1)<
o(t) 1 (k) @7)
®r(t) « lakt’)
Aor), S we)

L2 (o)
T (a+1) () kUt

SRS (O 1)
(@+1) (pkt?f

We find that
£ okt  « 2° r)(e'®)"
ot)-— < | s
p(t) 2( p(t)r(t))olc (a+1) (P(t)kt ) (28)

Hence we obtain ,
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n a “ _ 2a
L |1 - M+ i-a)are || 297
C

(t-o) _g(t—a)(t—a—l)

t2*

2" rme'm)

+ ~ - (29)
(e +2)" (pv)kt?)
which implies that on integrating from t, t0 t we get
1 " 1 1 <N 5oy |
p(s) f (s ———— 1—2 Ql+-(1-a)at- —_—
t ms-o)| F(s-o)s-o-1) ¢ s?”
j ds < w(t,)
4

2 rs)ee)
(@ +1) (p(s)ks?)" |

+

For every k € (0,1) and sufficiently large t which contradicts to equation (13) as t — oo, Thus the

proof is completed.
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