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Abstract: In this paper, properties of the automorphism class   of    unitary,  normal and     

hypernormal operators on a Hilbert space are investigated. In this context,  is a self-adjoint and an 

invertible operator. It is also proved that   unitary equivalence is an equivalence relation. More results on 

unitary operators are also proved in terms of the polar decomposition of an operator Finally, -

hyponormal operators are stated and then prove the result that an  -skew- adjoint opetator   is  unitary  but 
not unitary. 
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I. INTRODUCTION 

In this research thesis Hilbert spaces or subspaces will be denoted by capital letters,  etc 

and , , ,  denote bounded linear operators where an operator means a bounded linear transformation. 

   will denote the bounded linear operators on a complex separable Hilbert space   .   denotes the 

set of bounded linear transformations from  to  , which is equipped with the (induced uniform) norm.The 
following definitions are of essence: 

 

Definition 1.1: Let    be a linear (vector) space over a field   

 An inner product  is a bilinear function  with the following properties: 

1.  ∀   and  , that is, linearity to the first 

argument is satisfied; 

2.  ∀    and ,  that is, semi-linearity to the second 

argument is satisfied; 

3.  ∀   . This property is called the complex conjugation; 

4.  ∀     and  if and only if . This is the non-negative (or positive 

definite) property. 

A linear space equipped with an inner product is called an inner product space. This will be denoted by the set 

 A Hilbert space  is a complete inner product space. The norm  of a vector    is defined 

as the positive square-root      . 

We note that the restriction of the bilinear function  to a subspace   satisfies the properties of an 
inner product and by this fact, every subspace of an inner product space is itself an inner product space. 

 

Definition 1.2: If   then its adjoint  is the unique operator in   such that    

∀  . 
 

Definition 1.3: A contraction on   is an operator  such that                (i.e. 

.  A  strict or proper  contraction is an operator   with    (i.e.  .  

If   , then    is called  a non-strict contraction. 
 

Definition 1.4: An operator    which is self adjoint is said to be positive if    ∀   . 
 

Definition 1.5: An operator    is said to be isometric if   . 
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Definition 1.6: An operator    is said to be invertible if there exists an operator    

such that    for every    and     for every . The operator    is called the 

inverse of   . 
 

Definition 1.7: Suppose    is a positive operator, then an operator            is called an  

   on    if  . If equality holds, that is , then   is called an  

. Here is a self adjoint and invertible operator. Such operators were extensively studied by 
Suciu [19]. 

 

Definition 1.8: Let    be a linear operator on a Hilbert space  . We define the   of  to be an 

operator  such that  where   is self adjoint and invertible. 
 

Remark 1.9: The existence of such an operator in the above definition is not guaranteed. It may or may not 

exist. In fact a given   may admit many adjoints and if such an   of   exists, we 

denote it as  . Thus  . Since   is invertible   . 
We also need the following terminologies in this paper:  

An operator     is said to be: 

an  if   = , 

 or   if  or equivalently, if     ∀  , 

  if , 

a    if    and , 

  if , 

a    if , that is    is a self-adjoint unitary, 

 if     (equivalently, if   ), 

If  and  are Hilbert spaces, then their (orthogonal) direct sum will be denoted by ⊕ , which itself is a 
Hilbert space. 

By a subspace of a Hilbert space  we mean a closed linear manifold of  , which is also a Hilbert space.  If   

and  are orthogonal (denoted by  ) subspaces of a Hilbert space  , then their (orthogonal) direct sum 

⊕  is a given subspace of  .  For any set   ⊆  ,   will denote the orthogonal complement of   in  

which is a subspace of   . If   is a subspace of  , then  can be decomposed as  H=M⊕  . 

A set    in is invariant for    if .   is an invariant subspace for    if it is a subspace of 

which, as a subset of , is invariant for  .  A subspace   of is invariant for   if and only if    is 

invariant for . 

A subspace  reduces    (or is a reducing subspace for ) if both  M  and   are invariant under  

(equivalently, if   is invariant for both   and  ). 

If  is an invariant subspace for   then, relative to the decomposition  M⊕ , the operator  can be 
written as   

=      for operators :   and  , 

where   is the restriction of   on   

A    of an operator  is a restriction of  to an invariant subspace.  Conversely, if an operator   on  can 

be written as the triangulation  =  in terms of the decomposition  H=M⊕ , then    is 

a part of   if and only if  reduces .  In a such a case, the operator   is decomposed (reduced) 

into the (orthogonal) direct sum of the operators   and  .        With respect to the 

decomposition  H=M⊕ ,  the projection onto   (i.e. the unique projection    such that  

  can be written as  = .     Therefore,  is invariant if and only if  and    

reduces  if and only if . 

An operator    is said to be    if it has a normal extension. That is, if there exists a normal 

operator   on a Hilbert space   such that   is a subspace of   and the subspace  is invariant under the 

operator   and the restriction of  to    coincide with    That is  

  i.e   is normal ,  where and  . 

Let    be a Hilbert space and    .  The set   of all complex number   for which   is 

invertible is called the   .  Equivalently,                                                                                                    

    and                                                  

The complement of the resolvent set    denoted by    is called the   i.e,   
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          which is the set of all    such that  

  fails to be invertible (i.e. fails to have a bounded inverse on   On the basis of this 
failure, the spectrum can be split into many disjoint parts.  A classical disjoint partition comprises of three parts: 

the set of those    such that   has no inverse, denoted by   is called the point spectrum of, 

i.e, 

      }, which is exactly the set of all eigenvalues of . 

The set of all those     for which   has a densely defined but unbounded inverse on its range, 

denoted by     is called the continuous spectrum of , i.e,  

    and . 

If      has an inverse that is not densely defined, then   belongs to the residual spectrum of   , denoted   

  . That is,       }. 

The parts     ,     are pairwise disjoint and     

An operator    is said to be   if    or equivalently if       (i.e., 

the self-commutator of   is a non-negative operator). 

Two operators   and   are unitarily equivalent  (denoted ), if there exists a  

operator such that  . 

Suppose   is a   and   operator, not necessarily unique.     

An operator     is said to be: 

 equivalently,  . 

 Equivalently,  . 

 if  or equivalently, T  

 if  or equivalently,  . 

 if   or equivalently, if   T  

  

II. BOUNDEDNESS AND ADJOINTS OF HILBERT SPACE OPERATORS 

 
In what follows we briefly describe the concept of bounded linear operators using already known results and 

illustrate boundedness with a specific example of an integral operator.  The following definitions, remarks and 

Theorems are required: 

 

Definition 2.1: The graph of a linear operator    is the set given by  . This 

is a linear subspace of the Hilbert space   that has the full information about the operator  . 

The graph norm of    is the scalar product defined on the domain   and is given by  

,  . 
 

Definition 2.2: An operator   is called closed if its graph   is a closed subset of    and   is closable 

if there exists a closed linear operator   from   to    such that   

For a linear operator   , its domain is denoted by    and is basically a subspace of   . To 

describe the adjoint of a linear operator   in a Hilbert space(s), consider a dense domain   in  by setting  

{ }. 

Using the   [2],  is an element of    exactly when      is a 

continuous linear functional on . 

Because   is dense in , the vector   satisfying  for all     is uniquely 

determined by   

Thus a linear transformation      which is well defined and linear can be obtained by settin   

  

  is called the adjoint of     which is simply defined by the equality   

. In particular, if    we say that   is   and  

   if its closure     is self-adjoint, that is the operator     is called the closure of the 

closable operator   ([5] Definition 3.1.2). Some slight formulation of closed and closable operators are 
illustrated in Konrad ([5], Propositions 1.4 and 1.5). Other properties of the adjoint of an operator have been 

extensively studied by Huston et al [2]. 

 

Remark 2.3: The adjoint in a Hilbert space for an operator     and a given scalar    , will be 

defined as   where we use the fact that        
We shall also require the following results to describe the adjoint of an operator: 
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Definition 2.4: If   and   are Hilbert spaces, a     is a transformation 
that satisfies the following properties:  

1.  and  

2.    and all     and all scalars   and  

. 

Further, it has to be noted that a sesquilinear form    is bounded if there exists a finite constant   such that  

    and   . The following theorem describes all bounded sesquilinear 
forms: 

 

Theorem 2.5:  Let   and    be Hilbert Spaces and suppose that      is a bounded sesquilinear 

form.  Then there exists a unique    such that   =    and   . 

As a consequence of this theorem, if   and then define   by =   
(which is a bounded sesquilinear form) we obtain a unique operator  

  that satisfies the equation  =    and   . Taking conjugates leads us 
to the following result. 

 

Theorem 2.6: Given Hilbert Spaces   and   and   there exists a unique   such that  

   and      .  We call     the Hilbert space adjoint of .  In particular, if   

  and    the operator    is said to be  or  .     
Orthogonal projections onto closed subspaces are some of the examples of self-adjoint operators. A generalized 

result on self-adjointness of bounded linear operators is as follows: 

 

Theorem 2.7: Let  Then  

a) If  is self-adjoint,  is real for all  . 

b) If  is complex and  is real for all , then the operator  is   self-adjoint. 

 

Remark 2.8: The products (composites) and sequences of self-adjoint operators in many instances appear in 

applications of analysis. Related generalizations for these are seen in ([6], Theorems 3.10.4 and 3.10.5) and they 

also outline basic ideas about the properties of self-adjoint operators. These results are also helpful in the 

analysis of their spectral pictures. 

Example 2.9: The adjoint of an   can be illustrated by considering a   finite measure 

space   and a measurable function     with . Then the mapping   

  is the integral operator defined by     where     

for      is the kernel of the integral operator  .  We determine the adjoint of   by finding an 

operator   such that   . Writing the inner product as an integral and 

using    to interchange the order of integration, we have 

=  

  =  

       =  

= =  ,  

that is  is the adjoint of the integral operator  with kernel  . In other terms,   is self 

adjoint if and only if its kernel is Hermitian, that is       or in the real case symmetric, that is  

. 

III. UNITARY OPERATORS AND   - UNITARY EQUIVALENCE OF OPERATORS 

 

In what follows, we describe the relationship between   - self-adjoint operators, unitary equivalence and     

-unitarily equivalent of operators on a Hilbert space  It is well known that unitary equivalence is an 
equivalence relation. It has also to be noted that unitary equivalence need not preserve  A-self-adjointness of 

operators in general.  

 

Definition 3.1: Recall also that two linear operators      and   are said to be   unitary 

equivalent (denoted ), if there exists an     operator   such that  
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 ,that is,    and  , that is .     

      Remark 3.2: Every  -unitary operator     is invertible. We note that if     is       -

unitary then  is also     -unitary. This follows from the fact that    =  

                                                                      is   -unitary.  

The following result, however gives a condition which ensures that unitary equivalence preserves   -self 
adjointness of operators. 

 

Theorem 3.4 ([12], Theorem 5.2): Let   be an  -unitary operator .Then    is invertible and similar 

to  .  

Proof: Since   is  -unitary , we have   Since   is invertible, so is    and . Invertibility of  

 implies invertibility of   and .To see this, note that for any    we have that  

     and  

  and we conclude that  

 ; and hence  .Computations reveal that   

     as required. 
 

Theorem 3.5 ([12], Theorem 5.3): Let   be an  -unitary operator .Then  the eigenvalues  of  are 

unimodular( i.e ) or they come in inverse complex conjugate pairs  or . This means that 

the eigenvalues of    come in quartets   , .  

Proof: Suppose   where  and  . Then   

 ie 

  ie, 

. 

Since    is invertible,  and    for  . Thus,   which means that   is an eigen 

value of  corresponding to the eigenvector  .But eigenvalues of    are complex conjugates of those of  . 

Therefore  is an eigenvalue of   We thus have   which implies that   and hence  

 or  is a pair of distinct inverse complex-conjugate eigenvalues  of  . 

The following results will enable us establish the relationship between -unitary equivalent and   -normal 
operators. 

 

Remark 3.6: The automorphism group of  -unitary operators is the set      : . 
 

Theorem 3.7 ([3], Theorem 4.3): Every unitary operator is unitary. 
 

Theorem 3.8: For bounded linear operators on a Hilbert space  ,  i.e   ,  unitary 
equivalence is an equivalence relation . 

Proof:  First, recall that two linear operators  unitarily equivalent (denoted ), if there 

exists an   unitary  operator  such that   .That is,    and . This is equivalent 

to saying that   and   . Clearly,     To see this, simply let  . This proves that 

the relation     is reflexive.             

Suppose that   Then by definition, there exists an  - unitary operator  such that   and  

 .Rewriting gives  and  . This proves that  . Thus the relation       is 

symmetric.     

Now suppose that  and that and  . Then by definition, there exist two - unitary 

operators  such that   and   and        and   .  A simple 
computation shows that  

 and     

                     ,   and    

                                      ,   and                 . 

From , we have that   .Premultiplication by   and post-multiplication by   both sides we get 

 . That is  .  

Now let  . By ([12], Theorem 5.2), every  -unitary operator is invertible and similar to the adjoint of 

its inverse. From ([12], Theorem 5.8), the product of -unitary operators is  -unitary. From the remark 
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immediately after ([12], Theorem 5.1), if an operator is -unitary, then its adjoint is also  -unitary. Combining 

these results we conclude that  is also -unitary. Thus,  becomes   and  . This 

proves that  . Therefore   is transitive. This proves the claim.  

Remark 3.9: In view of Theorem 3.8, it is evident that -unitary equivalence is stronger than similarity, but 
weaker than unitary equivalence for operators in a Hilbert space. That is 

Unitary equivalence  -unitary equivalence Similarity. 
The following results are well known and are needed in the sequel. 

 

Theorem 3.10 (Nzimbi, et al [12]): If    is a normal operator and   is unitarily equivalent to   , then  

 is normal. 
 

Theorem 3.11 (Nzimbi, et al [12]): Every normal operator   is   -normal. 

The following result shows that -unitary equivalence preserves  -normality of operators. 
 

Corollary 3.12: Let   . If     is an  - normal operator and    is  - unitary equivalent 

to   then   is   -normal. 

Proof: By definition of A-unitary equivalence of operators    and  ,     and 

 .  Since    is  -normal , we have that    or equivalently,                                       

   . To prove that   is  -normal we need to prove that        . 
This follows from the fact that 

   

=       (since   ) 

=     since   

= )      (since    ) 

=  

                            =       (since  ) 

                           =       (since   ) 

                           =       (since   ) 

                           =     (since  ). This proves that    is  -normal as required. 

 

IV. DESCRIBING -UNITARY OPERATORS USING POLAR DECOMPOSITIONS. 

An operator   is said to be a quasi-isometry if   , that is, if it is a isometry. (See more 
results in [12], [13] and [18]). In view of this it clear that every isometry is a quasi-isometry, however the 

converse is not true. It has also been shown in [12] that a quasi-isometry which is an m-isometry is an isometry. 

Further, it has been proved that any quasi-isometry    its norm is unity is hyponormal. 
 

Proposition 4.1([12], Proposition 5.11): Let   be an invertible quasinormal operator on a Hilbert Space    

and let     be the polar decomposition of   Then   is a   unitary. 

Corollary 4.2 ([18], Corollary 4.4.3). Let   be a hyponormal contraction on    with   . Then   is a 

normal isometry   exactly when    is a   unitary. 
Using these two results together with other results proved in [11] and [18], the following results can also be 

proved: 

 

Theorem 4.3: Let   be an invertible self-adjoint quasi-isometry and suppose           . Then   is a 

normal if and only if     is a  unitary.   
 

Proof: Suppose     is the polar decomposition of  . Since    is a quasi-isometry of norm one, by ([11], 

Theorem 2.2),  is hyponormal. If   is normal, then by ([18], Corollary 4.3.8) it is a partial isometry. Again by 

([11], Theorem 2.3)    is quasi normal. Hence the result follows from Corollary 4.2 above. 
 

Proposition 4.4: Let    be   -unitary.Then    reduces   and    is  -unitary. 

Proof: First, note that  Since   is self-adjoint and invertible, we have               

 and hence   .This means that   and hence 

   Note that     , which shows that    is  

invariant.Note also that   ⊕   . 
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Remark 4.5: It has been shown in ([12], Proposition 5.15) that if  is skew-adjoint, then  is unitary for all  

.This claim is also true if   is self-adjoint. If  is self-adjoint, then the operator   is unitary for all  

. However, this is not the case if  is skew-adjoint .We now illustrate that an interesting relationship 

between        -skew adjoint operators and  -unitary operators in the following Theorem. 
 

Theorem 4.6: Let   -skew-adjoint.Then the time evolution operator     is -unitary but not 
unitary. 

Proof: By computation, it is established that     meaning that the time evolution operator is   -

unitary. However,   .This completes the proof. 
 

Remark 4.7: Results have been shown that the principal square root    of   exists exactly when the 

operator    has no eigenvalues on    and that    is unique whenever it exists. If this is 

the case, we can write   (See related results in [12], Lemma 5.20 and Theorem 5.21). 
 

Theorem 4.8: Suppose    is  -unitary.In the polar decomposition     the factors    and   are    

-unitary . 

Proof: Since  is  -unitary,   is invertible and so   and   exist and are unique. We have     -unitary if 

and only if     . Clearly,   is unitary and   is self-

adjoint and positive.Thus    is another polar decomposition of  . Uniqueness of polar factors 

implies that     and .  Thus    and   are -unitary as required. 

Example 4.9: Consider the skew -adjoint matrix   . This matrix has polar decompositions     

 , where  is not  -skew- adjoint ,                                  

 , where  is  -skew- adjoint  and     

 , where  is  -skew- adjoint. 

By these decompositions, it is evident that the set of invertible matrices is dense in the class of  -skew- adjoint 

operators. Thus a singular -skew- adjoint operator may have polar decomposition with an -skew- adjoint or 

non- -skew- adjoint unitary factor   as well as having more than one polar decomposition, with the unitary 

factor being   -skew- adjoint. 
 

Theorem 4.10([12], Theorem 5.23): Suppose    is either -skew- adjoint or  -self- adjoint.Then    is self-

adjoint if and only if   is normal. 

Proof:      -self- adjoint implies that    is  -self- adjoint. That is     . Thus,  

       

But   -skew- adjoint means that   , so 

     which proves that    is normal.   

Conversely, we note that if   is  -skew- adjoint , then so is  . Since  is normal, we have     is  -self- 

adjoint.  Thus,  is A-self –adjoint by ([12], Theorem 5.21). 

Corollary 4.11: Suppose  is  -unitary, with   an invertible, self-adjoint and involutory(i.e.  is a symmetry, 

). Then . 

Proof: Clearly, from the claim that   , the result follows immediately, since . 
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V. CONCLUSION 

 

a) -unitary equivalence is stronger than similarity, but weaker than unitary equivalence for operators in a 

Hilbert space. That is 

Unitary equivalence  -unitary equivalence Similarity. 

b)  

c) Every normal operator  is A-normal. However, it has to be noted that there exist -normal operators 

which are not normal. For example, if    and  , computations show that    

 and  . Therefore,  is  -normal but not normal. 

In fact, -self-adjoint, -skew-adjoint and -unitary operators are special cases of  -normal 

operators. 

d) It has been established that every hyponormal operator is  -hyponormal. Moreover, every  -skew-

adjoint , -unitary operators and   -normal operator  is -hyponormal.(See [12], Theorems 6.1,6.2 

and 6.3).We thus have the following class inclusions: 

and 

. 

 
In addition the intersection of the class of self-adjoint and unitary operators yields a symmetry, i.e.  

. 
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