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Abstract 

In this paper we have investigated an anisotropic and spatially homogeneous LRS Bianchi type-II 
universe filled with minimally interacting dark matter and homographic dark energy. The exact solutions of the 

field equations are obtained by applying the hybrid expansion law for the average scale factor of the model. We 

have discussed physical and Kinematical properties of the model and the role of the anisotropic holographic 

dark energy in the evolution of the universe. The universe model is early decelerating and present time 

accelerating and the deceleration parameter has a signature flip at some finite time. We have observed that the 

anisotropy parameter of the universe and skewness parameter of the holographic dark energy approach to zero 

for large cosmic time and the universe can achieve flatness for some finite time throughout its evolution. The 

results are found to be consistent with the recent cosmological observations. 

Keywords --  LRS Bianchi type-II universe. Dark matter. holographic dark energy. Hybrid expansion law. 

Anisotropic EoS parameter. 

I. INTRODUCTION 

Recent observations from distant type Ia supernovac as well as the combination of the anisotropies of 

the Cosmic Microwave Background Radiation (CMBR) and the mass-energy density estimates from galaxy 

clusters, weak lensing and large scale structure suggest that the universe is undergoing a phase of accelerated 

expansion [1, 2]. This expansion has been attributed to an exotic component, called dark energy, with negative 

pressure which can induce repulsive gravitational force causing the accelerated expansion. The evidence for 

dark energy has been indirectly verified by the measurements of wilkinson Microwave Anisotropy Probe 

(WMAP) in the CMBR and the large Scale structure (LSS) observations. WMAP shows that the dark energy 

constitutes about 73% of the energy of our universe and dark matter occupies 23% whereas the baryon matter 

occupies only 4% of the total energy of the universe, Naturally a cosmological model is required to explain the 

accelerated expansion in the present-day universe. The dark energy is considered as a cosmic fluid with the 

equation of state (EoS) parameter  =p/  , where   is the density, p is the pressure and   need not be time 

independent. Many cosmologists consider the Einstein's cosmological constant ( ) as a simplest proposal for 

dark energy because of its weired repulsive gravity for which   = -1. But the cosmological constant problem is 

a long standing problem in physics as it is plauged with the fine-tuning problem. A number of other dynamically 

evolving scalar field proposals of dark energy such as Quintessence (  > -1), k – essence (-1 <   < 
3

1
 ), 

Tachyon (-1 <   < 0), Phantom (  < -1) etc are also considered to explain the present accelerated expansion 

of the universe. Bamba et al. [3] have reviewed different isotropic dark energy cosmologies with early 

deceleration and late-time acceleration. 

Among many proposals to describe the dark cosmological sector, the holographic dark energy models 

have been discussed by many cosmologists. Hooft [4] first put forward the holographic principle in the context 

of black-hole physics according to which the number of degrees of freedom for a system within the finite region 

should be finite and is bounded by the area of its boundary. Holographic dark energy models have been tested 

and constrained by various astronomical observations (Zhang and wu [5]; Enqvist et al [6]; Shen et al [7]; 
Chang et al. [8] etc.) A special class of models in which holographic dark energy is allowed to interact with dark 

matter has been presented by Pavon and Zimdahl [9], Wang et al [10, 11], Carvalho and Saa [12], Gong and 

Zhang [13], Huang and Li [14], Nojiro and Odinstov [15], Hu and Ling [16], Li et al. [17], Setare [18, 19], 

Banerjee and Pavon [20), Kim et al. [21] Zimdahl and Pavon [22], Zimdahl [23] etc. Granda and Oliveros [24] 

have proposed a holographic dark energy density of the from HHA   2
, where H is the Hubble 

parameter and ,  are constants which must satisfy the restrictions imposed by current observational data. This 
model of dark energy represents the accelerated expansion of the universe and is consistent with the current 

observational data. 
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The anisotropy plays a significant role in the study of the early stage of evolution of the universe. 

Bianchi types I-IX space-times are important tools for constructing spatially homogeneous and anisotropic 

cosmological models for describing the early stages of the evolution of universe. The anisotropy of dark energy 

within the frame work of Bianchi space-times has been found useful in generating arbitrary ellipsoidality of the 

universe and to fine-tune the observed CMBR anisotropies (Kumar and Singh [25]). This motivates cosmologist 

to obtain cosmological models in the presence of an anisotropic dark energy within the framework of different 
Bianchi space-times, Pradhan et al. [26] investigated a class of dark energy models in a locally rotationally 

symmetric Bianchi type-II with variable EoS parameter and constant deceleration parameter. Sarkar [27, 28, 29] 

has studied non-interacting holographic dark energy Bianchi type-I and V space-times using linearly varying 

deceleration parameter and interacting holographic dark energy models Bianchi type-II respectively. Further, 

Sarkar [30] studied Kantowshi-Sachs space-time in the presence of minimally interacting dark matter and 

holographic dark energy Adhav et al. [31] studied the spatially Homogeneous and anisotropic Bianchi type-I 

universe with interacting dark matter and holographic dark energy. Besides, some interacting models have been 

studied Besides, some interacting models have been studied by several cosmologist as these models can be 

useful to understand the coincident problem by considering the possible interaction between dark energy and 

cold dark matter due to the unknown nature of dark matter and dark energy. 

Motivated by the above discussions, in the present paper, we consider a locally rotationally symmetric 

(LRS) Bianchi type-II space-time filled with minimally interacting dark matter and holographic dark energy. 
The paper is organized as follows; In Sect. 2, we present the metric and Einstein's field equations. In Sect. 3, we 

obtain the solution of the field equations by applying the hybrid expansion law for the average scale factor of the 

model. The physical and kinematical features of the cosmological model are discussed in Sect. 4. Some 

concluding remarks are outlined in Sect. 5. 

II. METRIC AND FIELD EQUATIONS 

We consider the LRS Bianchi type-II space-time in the form [25]. 

ds2 = )1,1,1,1(, ij

ji

ij      (1) 

where the Cartan bases 
i  are given by 

dtAdzxdzdyBAdx  4321 ,),(,    (2) 

The scale factors A and B being functions of cosmic time t only. 

Here we assume that the universe is filled with dark matter and a hypothetical anisotropic fluid as 

holographic dark energy. The Einstein's field equations (with gravitational units 8G=1 and c=1) are 

)(
2

1 )()(

ijij

m

ijij TTRgR        (3) 

where all symbols have their usual meaning. The energy momentum for dark matter is given by 

]0,0,0,[)(

m

j

i

m diagT           (4) 

m  being the dark matter density. 

The simplest generalization of EoS paramter of perfect fluid may be to determine the EoS parameter 

separately on each spatial axis by preserving the daigonal form of the energy-momentum tensor in a consistent 

way with the considered metric. Therefore the energy-momentum tensor for an anisotropic holographic dark 

energy is taken as 

 
zyx

diagT j

i 

   ,

)(
         (5) 

where   is the energy density of the fluid; 
yx   ,  and 

z
  are pressures is the directions of x, y and z 

respectively. Allowing the anisotropy in the pressure of the holographic dark energy and in its EoS parameter, 
we have 

  

   ZYx

j

i diagT ,,,1)(
     (6) 

    )(,),(,1diag       (7) 
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where   and   are skewness parameters is, deviation from   along x and z - axes respectively. Further, since 

in the metric (1), ,3

3

1

1 GG  we have   , and therefore 

 )(,),(,1)(   diagT j

i      (8) 

The parameters   and   are not necessarily constants and might be functions of cosmic time t  

In comoving coordinate system, Einstein's field equations (3) together with (4) and (8) for the metric (1) lead to 

following system of non-linear equations : 

,)(
4

3
2

4

2

2

2

 
A

B

A

A

A
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4
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 m
A

B

A

A

AB

BA
4

2

2

2

4

12 
       (11) 

where an overdot denotes differentiation with respect to cosmic time t. 

The spatial volume (V) and the average scale factor a for the metric (1) are given by 

V= a3 = A2B        (12) 

The mean Hubble parameter (H) is given by 

 321
3

1
HHHH         (13) 

where H1 = 
B

B
H

A

A 
2,  and H3 = H1 are directional Hubble parameters in the directions of x, y and z -axes 

respectively. 

The scalar expansion  , shear scalar   and the mean anisotropy parameter Am are given by  

,
2

B

B

A

A 
          (14) 

,
3

1
2

2













B

B

A
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         (15) 

Am = 

2
3

13

1









 



i

i

i H

HH
       (16) 

An important observational quantity in cosmology is the deceleration parameter q conventionally defined by 

2a

aa
q




          (17) 

The sign of q indicates where the model inflates or not. The positive sign of q corresponds  to decelerating 
model whereas the negative sign indicates inflation. 

III. COSMOLOGICAL SOLUTIONS OF THE FIELD EQUATIONS 

The field equations (9) – (11) are a system of three independent equations in six unknown parameters A, B, m, 

 ,  and . Three additional constants relating these parameters are required to obtain explicit solution of the 

system. 
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From (9) and (10), we obtain 





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
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

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which can be integrated to give 

dtV
A

B

VV
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B

B

A
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


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where X is an integration constants. The integral term in (19) vanishes when 

4

21

A

B






          (20) 

Using (20) in (19), we get 

,
V

X

B

B

A

A



         (21) 

Differentiation of (12) leads to 

.
2

V

V

B

B

A

A 
         (22) 

Combining (21) and (22), we obtain       

 
V

X

V

V

A

A

33



 ,        (23) 

 
V

X

V

V

B

B

3

2

3



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We can determine the cosmic scale functions A and B from (23) and (24) it the function V is explicity 

known, the power-law and exponential law cosmologies can be used to describe epoch based evolution of the 

universe because of the constancy of deceleration parameter. For instance, the cosmologies do not exhibit the 

transition of universe from deceleration phase to acceleration phase. Akarsu et al. [32] considered the following 

ansatz for the average scale factor of the universe 

  
mtn etata 1)(          (25) 

where a1 > o m  o and n  o are constants. They referred this generalized form of the scale factor as hybrid 
expansion law (HEL), being a mixture of power law and exponential law cosmologies. In HEL cosmology, the 

universe exhibits transition from deceleration to acceleration. Kumar [33] has studied the dynamics of Binanchi 

type V model by considering HEL law. Shri Ram and Chandel [34] have discussed the dynamics of magnetized 
string cosmological models of Bianchi type- V in f (R, T) gravity theory. Chandel and Shri Ram [35] 

investigated Bianchi type V early model decelerating and late-time accelerating cosmological model with 

perfect fluid and heat conduction by using HEL. Here we take a1 = 1 

Substituting (12), (24) into (23), (24) and integrating the results, we obtain the scale factor A and B of 

the form. 
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where k1 and k2 are integration constants and ),( sr  is the lower incomplete lower gamma function without 

loss of generality we can take k1 = k2 = 1. 

The directional Hubble parameters, the average Hubble parameter, scalar expansion, shear scalar and 
the anisotropic parameters have the following values. 

 ,
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For 182  GM p  , the holographic dark energy density is given by 






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


.
23 HH          (34) 

where ,  are constants and H is the average Hubble parameter (Granda and Oliveros [24]). 

Using (28) in (34), we obtain 
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Substitution of (26), (27) and (35) into (11), we find the matter density as 
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From (10), (20) and (35) we can write the dark energy EoS parameter, skewness parameter and anisotropic 

parameter as 
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The deceleration parameter has the value 

 2
1

mtn

n
q


 ,         (40) 

IV. DISCUSSION 

We now discuss the physical and kinematical features of the holographic dark energy model as follows : 

(I) We observe that the spatial volume of the model is zero when t = 0. As this epoch the parameters , , 

m and   are all infinite and therefore the model has a point singularity at t = 0. As time increases, 

these parameters decrease. The expansion scalar  tends to a constant (3m) while the shear scalar tends 

to zero at late time. The matter energy density m and the holographic dark energy density are both 

constants for large time. 

(II) From (40) we observe that the present universe evolves with variable deceleration parameter which is 

positive for t < 
m

nn 
 and negative for t > 

m

nn 
, the transition from deceleration to acceleration 

takes place at the instant t = 
m

nn 
, where n should be in the range 0 < n < 1. Thus the deceleration 

parameter has signature flip at this time. As t  , q = -1 which shows the inflationary behaviour of 
the universe. This further indicates that the present day universe is undergoing through a phase of an 

accelated expansion due to the dominance of the dark energy at late time. 

(III) From (31) we see that the anisotropy parameter of expansion Am is infinite at the initial time of the 
evolution of the universe which decreases as time increases and ultimately tends to zero at late time. 

Therefore the model apparches to isotropy after some finite time which matches with the recent 

observation as the universe is isotropic on large scale. For sufficiently large time we find that mH ~  

which again shows that the universe expands forever with constant expansion state with the dominance 

of dark energy. 

(IV) The EoS parameter  , given by (37), is a function of time which attains the value   = - 


1
 after 

some finite time. We observe that for sufficiently large time the present model approaches to (i) a 

phantom dark energy model ( <-1) for o <  < 1, (ii) a CDM model       ( = -1) for  = 1 and (iii) 

a quintessence scalar field model ( > -1) for  > 1. 

(V) The skewness parameter , given by (38), is infinite at the initial stage of evolution of the universe 
which tends to zero for large cosmic time. Thus, for large time, the anisotropy of the holographic dark 

energy model dies out and the model becomes isotropic. 

(VI) The recent observations demand that the ratio of two energy densities mM  /  is, the coincident 

parameter stays constant or varies very slowly around the present time with respect to the expansion of 

the universe for the present model, we find that  
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It is observed that M converges to a constant value  after some finite time and remains constant 
throughout further evolution of the universe. 

(VII) The matter density parameter (m) and the holography dark energy parameter (  ) are defined by  
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Using (43) and (44) we get the overall density parameter m +   which approaches close to 1, for 

sufficiently large time. This means that the present universe approaches towards a flat spatially 

homogeneous and isotropic universe but the flatness of the universe will occur for some particular 

moment throughout the entire history of the universe. 

V. CONCLUSION 

In this paper, we have studied an anisotropic LRS Bianchi type-II early decelerating and late-time accelerating 

universe filled with minimally interacting dark matter and holographic dark energy components. We have 
obtained exact solution of Einsten's field equations by using hybrid expansion law for the average scale factor of 

the model. We have found that the anisotropy of expansion and the skewness parameter of the holographic dark 

energy vanish for large cosmic time leading to an isotropic universe. The EoS parameter of the dark energy is a 

function of time and assumes a constant negative value for large time and consequently the present and future 

holographic dark energy model behaves like a phantom model, MDC  model and quintessence model for 

specific values of the parameter (). 

The flatness of the universe can be achieved for some particular time throughout the entire history of 

the universe. Since the Hubble parameter tends to a constant and the deceleration parameter approaches to – 1 

for large time the universe is accelerating forever due to the dominance of the dark energy. The results obtained 

in this paper are consistent with recent cosmological observations.   
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