Results on Graceful Labeling

M M Jariya
Government Science College

Abstract

In this paper we define smoothness of graceful labeling and we have discussed smoothness of $C_{n}, K_{2, n}$ and P_{n}. Last Theorem shows that any length of path is smooth graceful graph.

Key words : labeling, smooth graceful labeling, bipartite graph. AMS subject classification number : 05C78.

1 Introduction :

Let $G=(V, E)$ be a simple, undirected graph of size (p, q) i.e. $|V|=p,|E|=q$. For all standard terminology and notations we follow Harary (Harary 1972). We will give brief summery of definitions which are used in this paper.

Definition-1.1: If the vertices of the graph are assigned values subject to certain conditions then it is known as graph labeling.

Definition-1.2: A function f is called graceful labeling of a graph $G=(V, E)$ if $f: V \longrightarrow\{0,1, \ldots, q\}$ is injective and the induce function $f^{\star}: E \longrightarrow\{1,2, \ldots, q\}$ defined as $f^{\star}(e)=|f(u)-f(v)|$ is bijective for every edge $e=(u, v) \in E$. A graph G is called graceful graph if it admits a graceful labeling.

Definition-1.3: A bipartite graceful graph G with graceful labeling f is said to be smooth graceful graph if it admits an injective map $g: V \longrightarrow\left\{0,1, \ldots,\left\lfloor\frac{q-1}{2}\right\rfloor,\left\lfloor\frac{q+1}{2}\right\rfloor+l,\left\lfloor\frac{q+3}{2}\right\rfloor+l\right.$, $\ldots, q+l\}$ such that its induce edge labeling map $g^{\star}: E \longrightarrow\{1+l, 2+l, \ldots, q+l\}$ defined as $g^{\star}(e)=|g(u)-g(v)|$, for every edge $e=(u, v) \in E$, for any $l \in N$ is a bijection.

Smooth graceful graph will help to produce new disconnected as well as connected graceful graphs.

2 Main Results :

Theorem-2.1 : A cycle $C_{n},(n \equiv 0(\bmod 4))$ is a smooth graceful graph.
Proof : Let $v_{1}, v_{2}, \ldots, v_{n}$ be vertices of C_{n}. We know that $C_{n}(n \equiv 0(\bmod 4))$ is a bipartite graph and $f: V\left(C_{n}\right) \longrightarrow\{0,1, \ldots, n\}$ defined by

$$
\begin{aligned}
f\left(v_{i}\right) & =\frac{i-1}{2}, & & \forall i=1,3, \ldots, n-1 . \\
& =q-\left(\frac{i-2}{2}\right), & & \forall i=2,4, \ldots, \frac{n}{2} \\
& =q-\left(\frac{i}{2}\right), & & \forall i=\frac{n}{2}+2, \frac{n}{2}+4, \ldots, n
\end{aligned}
$$

is graceful labeling for C_{n}, when $n \equiv 0(\bmod 4)$.
Now we define $g: V\left(C_{n}\right) \longrightarrow\left\{0,1, \ldots,\left\lfloor\frac{n-1}{2}\right\rfloor\left\lfloor\left\lfloor\frac{n+1}{2}\right\rfloor+l,\left\lfloor\frac{n+3}{2}\right\rfloor+l, \ldots, n+l\right\}\right.$ such that its induce edge labeling map $g^{\star}: E\left(C_{n}\right) \longrightarrow\{1+l, 2+l, \ldots, q+l\}$ defined by

$$
\begin{aligned}
g(u) & =f(u), \forall u \in\left\{v_{1}, v_{3}, \ldots, v_{n-1}\right\} \\
& =f(u)+l, \quad \forall u \in\left\{v_{2}, v_{4}, \ldots, v_{n}\right\} \text { and } \\
g^{\star}(e) & =|g(u)-g(v)|, \text { for every edge } e=(u, v) \in E .
\end{aligned}
$$

Since for any $k \in\{1,2, \ldots, n\}, e_{k}=\left(v_{k}, v_{k+1}\right) \in E$, by taking $v_{n+1}=v_{1}$,

$$
\begin{aligned}
g^{\star}\left(e_{k}\right) & =\mid g\left(v_{k}-g\left(v_{k+1}\right) \mid\right. \\
& =\mid f\left(v_{k}-f\left(v_{k+1}\right) \mid+l\right. \\
& =f^{\star}\left(e_{k}\right)+l, \text { so } g^{\star}(E)=\{1+l, 2+l, \ldots, n+l\} .
\end{aligned}
$$

Therefore g^{\star} is a bijective map. Hence $C_{n},(n \equiv 0(\bmod 4))$ is a smooth graceful graph.

Theorem-2.2 : A complete bipartite graph $K_{2, n}$ is a smooth graceful graph.
Proof : Let $u_{1}, u_{2}, v_{1}, v_{2}, \ldots, v_{n}$ be vertices of $K_{2, n}$.
We know that $f: V\left(K_{2, n}\right) \longrightarrow\{0,1, \ldots, 2 n\}$ defined by
$f\left(v_{i}\right)=i-1, \quad \forall i=1,2, \ldots, n$.
$f\left(u_{i}\right)=i n, \quad \forall i=1,2 \quad$ is a graceful labeling $K_{2, n}$.
Now we define $g: V\left(K_{2, n}\right) \longrightarrow\{0,1, \ldots, n-1, n+l, n+1+l, \ldots, n+l\}$ and its induce edge labeling map $g^{\star}: E\left(K_{2, n}\right) \longrightarrow\{1+l, 2+l, \ldots, n+l\}$ defined by

$$
\begin{aligned}
& g(u)=f(u)+l, \forall u \in\left\{u_{1}, u_{2}\right\} \\
& \quad=f(v), \forall v \in\left\{v_{1}, v_{2}, \ldots, v_{n}\right\} \text { and } g^{\star}(e)=|g(u)-g(v)|, \forall e=(u, v) \in E .
\end{aligned}
$$

Since for any $e=\left(u_{i}, v_{j}\right) \in E(i=1,2,1 \leq j \leq n)$,

$$
g^{\star}(e)=\left|g\left(u_{i}\right)-g\left(v_{j}\right)\right|
$$

$$
\begin{aligned}
& =f\left(u_{i}\right)-f\left(v_{j}\right) \mid+l \\
& =f^{\star}(e)+l .
\end{aligned}
$$

So $g^{\star}(E)=\{1+l, 2+l, \ldots, 2 n+l\}$. Therefore g^{\star} is a bijection.
Hence $K_{2, n}$ is a smooth graceful graph.
Theorem-2.3 : A path P_{n} of length $n-1$ is a smooth graceful graph, $\forall n \in N$.
Proof : Let $v_{1}, v_{2}, \ldots, v_{n}$ be vertices of P_{n}. We know that P_{n} is a bipartite and graceful graph with graceful labeling $f: V\left(P_{n}\right) \longrightarrow\{0,1, \ldots, n-1\}$ defined by

$$
\begin{aligned}
f\left(v_{i}\right) & =\frac{i-2}{2}, & & \text { if } i \equiv 0(\bmod 2) \\
& =n-\left(\frac{i+1}{2}\right), & & \text { if } i \equiv 1(\bmod 2), \forall i=1,2, \ldots, n .
\end{aligned}
$$

Now we define $g: V\left(P_{n}\right) \longrightarrow\left\{0,1, \ldots,\left\lfloor\frac{n-2}{2}\right\rfloor\left\lfloor\left\lfloor\frac{n}{2}\right\rfloor+l,\left\lfloor\frac{n+2}{2}\right\rfloor+l, \ldots, n-1+l\right\}\right.$ and its induce edge labeling map $g^{\star}: E\left(P_{n}\right) \longrightarrow\{1+l, 2+l, \ldots, n-1+l\}$ defined by

$$
\begin{array}{rlrl}
g(v)=f(v)+l, & & \text { if } i \equiv 1(\bmod 2) \\
& =f(v), & & \text { if } i \equiv 0(\bmod 2), \forall i=1,2, \ldots, n
\end{array}
$$

and $g^{\star}(e)=|g(u)-g(v)|$, for every $e=(u, v) \in E$.
Since for any $e=\left(v_{i}, v_{i+1}\right) \in E(1 \leq i \leq n-1)$,

$$
\begin{aligned}
g^{\star}(e) & =\left|g\left(v_{i}\right)-g\left(v_{i+1}\right)\right| \\
& =\left|f\left(v_{i}\right)-f\left(v_{i+1}\right)\right|+l \\
& =f^{\star}(e)+l, \text { we shall have } g^{\star}(E)=\{1+l, 2+l, \ldots, n-1+l\} .
\end{aligned}
$$

Therefore g^{\star} is a bijection and so P_{n} of length $n-1$ is a smooth graceful, $\forall n \in N$.

3 Concluding Remarks :

We have introduced a new graph labeling is called smooth graceful labeling. We have proved that $C_{n} n \equiv 0(\bmod 4), K_{2, n}, P_{n}$ are smooth graceful graphs. Using these we have got graceful labeling for two new families of graphs. Present work contribute five new results. The labeling pattern is demonstrated by illustrations.

References

[1] G. S. Bloom and S. W. Golomb, Numbered complete graphs, usual rules and assorted applications, in Theory and applications of Graphs, Lecture Notes in Math., 642, Springer-Verlag, New York (1978) 53-65.
[2] J. A. Gallian, The Electronics Journal of Combinatorics, 16, \#DS6(2013).
[3] R. Frucht, Graceful numbering of wheels and related graphs, Ann. N. Y. Acad. Sci., 319 (1979) 219-229.
[4] F. Harary, Graph theory Addition Wesley, Massachusetts, 1972.
[5] C. Hoede and H. Kuiper, All wheels are graceful, Util. Math., 14 (1987) 311.
[6] A. Rosa, On certain valuation of graph, Theory of Graphs (Rome, July 1966), Goden and Breach, N. Y. and Paris, 1967, 349-355.

