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Abstract

In this paper we define smoothness of graceful labeling and we have discussed

smoothness of Cn, K2,n and Pn. Last Theorem shows that any length of path is

smooth graceful graph.
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1 Introduction :

Let G = (V,E) be a simple, undirected graph of size (p, q) i.e. |V | = p, |E| = q. For

all standard terminology and notations we follow Harary (Harary 1972). We will give

brief summery of definitions which are used in this paper.

Definition−1.1: If the vertices of the graph are assigned values subject to certain

conditions then it is known as graph labeling.

Definition−1.2: A function f is called graceful labeling of a graph G = (V,E) if

f : V −→ {0, 1, . . . , q} is injective and the induce function f ? : E −→ {1, 2, . . . , q}

defined as f ?(e) = |f(u)− f(v)| is bijective for every edge e = (u, v) ∈ E. A graph G is

called graceful graph if it admits a graceful labeling.

Definition−1.3: A bipartite graceful graph G with graceful labeling f is said to be smooth

graceful graph if it admits an injective map g : V −→ {0, 1, . . . , b q−1
2
c, b q+1

2
c+ l, b q+3

2
c+ l,

. . . , q+ l} such that its induce edge labeling map g? : E −→ {1+ l, 2+ l, . . . , q+ l} defined

as g?(e) = |g(u)− g(v)|, for every edge e = (u, v) ∈ E, for any l ∈ N is a bijection.

Smooth graceful graph will help to produce new disconnected as well as connected

graceful graphs.
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2 Main Results :

Theorem−2.1 : A cycle Cn, (n ≡ 0 (mod 4)) is a smooth graceful graph.

Proof : Let v1, v2, . . . , vn be vertices of Cn. We know that Cn (n ≡ 0 (mod 4)) is a

bipartite graph and f : V (Cn) −→ {0, 1, . . . , n} defined by

f(vi) = i−1
2

, ∀ i = 1, 3, . . . , n− 1.

= q − ( i−2
2

), ∀ i = 2, 4, . . . , n
2

= q − ( i
2
), ∀ i = n

2
+ 2, n

2
+ 4, . . . , n

is graceful labeling for Cn, when n ≡ 0 (mod 4).

Now we define g : V (Cn) −→ {0, 1, . . . , bn−1
2
c, bn+1

2
c+ l, bn+3

2
c+ l, . . . , n+ l} such that

its induce edge labeling map g? : E(Cn) −→ {1 + l, 2 + l, . . . , q + l} defined by

g(u) = f(u), ∀ u ∈ {v1, v3, . . . , vn−1}

= f(u) + l, ∀ u ∈ {v2, v4, . . . , vn} and

g?(e) = |g(u)− g(v)|, for every edge e = (u, v) ∈ E.

Since for any k ∈ {1, 2, . . . , n}, ek = (vk, vk+1) ∈ E, by taking vn+1 = v1,

g?(ek) = |g(vk − g(vk+1)|

= |f(vk − f(vk+1)|+ l

= f ?(ek) + l, so g?(E) = {1 + l, 2 + l, . . . , n + l}.

Therefore g? is a bijective map. Hence Cn, (n ≡ 0 (mod 4)) is a smooth graceful

graph.

Theorem−2.2 : A complete bipartite graph K2,n is a smooth graceful graph.

Proof : Let u1, u2, v1, v2, . . . , vn be vertices of K2,n.

We know that f : V (K2,n) −→ {0, 1, . . . , 2n} defined by

f(vi) = i− 1, ∀ i = 1, 2, . . . , n.

f(ui) = in, ∀ i = 1, 2 is a graceful labeling K2,n.

Now we define g : V (K2,n) −→ {0, 1, . . . , n−1, n+ l, n+1+ l, . . . , n+ l} and its induce

edge labeling map g? : E(K2,n) −→ {1 + l, 2 + l, . . . , n + l} defined by

g(u) = f(u) + l, ∀ u ∈ {u1, u2}

= f(v), ∀ v ∈ {v1, v2, . . . , vn} and g?(e) = |g(u)− g(v)|, ∀ e = (u, v) ∈ E.

Since for any e = (ui, vj) ∈ E (i = 1, 2, 1 ≤ j ≤ n),

g?(e) = |g(ui)− g(vj)|
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= f(ui)− f(vj)|+ l

= f ?(e) + l.

So g?(E) = {1 + l, 2 + l, . . . , 2n + l}. Therefore g? is a bijection.

Hence K2,n is a smooth graceful graph.

Theorem−2.3 : A path Pn of length n− 1 is a smooth graceful graph, ∀ n ∈ N .

Proof : Let v1, v2, . . . , vn be vertices of Pn. We know that Pn is a bipartite and graceful

graph with graceful labeling f : V (Pn) −→ {0, 1, . . . , n− 1} defined by

f(vi) = i−2
2

, if i ≡ 0 (mod 2)

= n− ( i+1
2

), if i ≡ 1 (mod 2), ∀ i = 1, 2, . . . , n.

Now we define g : V (Pn) −→ {0, 1, . . . , bn−2
2
c, bn

2
c+ l, bn+2

2
c+ l, . . . , n− 1 + l} and its

induce edge labeling map g? : E(Pn) −→ {1 + l, 2 + l, . . . , n− 1 + l} defined by

g(v) = f(v) + l, if i ≡ 1 (mod 2)

= f(v), if i ≡ 0 (mod 2), ∀ i = 1, 2, . . . , n

and g?(e) = |g(u)− g(v)|, for every e = (u, v) ∈ E.

Since for any e = (vi, vi+1) ∈ E (1 ≤ i ≤ n− 1),

g?(e) = |g(vi)− g(vi+1)|

= |f(vi)− f(vi+1)|+ l

= f ?(e) + l, we shall have g?(E) = {1 + l, 2 + l, . . . , n− 1 + l}.

Therefore g? is a bijection and so Pn of length n− 1 is a smooth graceful, ∀ n ∈ N .

3 Concluding Remarks :

We have introduced a new graph labeling is called smooth graceful labeling. We have

proved that Cn n ≡ 0 (mod 4), K2,n, Pn are smooth graceful graphs. Using these we have

got graceful labeling for two new families of graphs. Present work contribute five new

results. The labeling pattern is demonstrated by illustrations.
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