A New General Multivalent Integral Operator

G. Thirupathi
Assistant Professor,
Department of Mathematics, Ayya Nadar Janaki Ammal College
Sivakasi-626124,
Tamilnadu, India.

Abstract

In this paper, we define a new multivalent integral operator for certain subclass of analytic functions in the open unit disc U . We obtain some interesting properties for this integral operator.

Keywords - analytic function, multivalent function, integral operator, starlike and convex functions.

I. INTRODUCTION, DEFINITIONS AND PRELIMINARIES

Let A_{p} be the class of functions $f(z)$, of the form

$$
\begin{equation*}
f(z)=z^{p}+\sum_{n=p+1}^{\infty} a_{n} z^{n}, \quad(p \in \square) \tag{1.1}
\end{equation*}
$$

which are analytic in the unit disc $\mathrm{U}=\{z \in \square:|z|<1\}$. And let $\mathrm{A}=\mathrm{A}_{1}$.
We denote by S^{*}, C, K and C^{*} the familiar subclasses of A consisting of functions which are respectively starlike, convex, close-to-convex and quasi-convex in U.

A function $f(z) \in \mathrm{A}_{p}$ is said to be $p-$ valently starlike of order $\delta(0 \leq \delta<p)$ and $\quad z \in \mathrm{U}$ denoted by $\mathrm{S}_{p}^{*}(\delta)$, if and only if

$$
\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>\delta
$$

A function $f(z) \in \mathrm{A}_{p}$ is said to be p-valently convex of order $\delta(0 \leq \delta<p)$ and $z \in \mathrm{U}$ denoted by $\mathrm{C}_{p}(\delta)$, if and only if

$$
\operatorname{Re}\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>\delta
$$

It is easy to see that $f(z) \in \mathrm{C}_{p}(\delta) \Leftrightarrow \frac{z f^{\prime}(z)}{p} \in \mathrm{~S}_{p}^{*}(\delta)$.
Furthermore, $\mathrm{S}_{p}^{*}(0)=\mathrm{S}_{p}^{*}, \mathrm{C}_{p}(0)=\mathrm{C}_{p}$ are respectively, the classes of $p-$ valently starlike, convex functions in U . Also, let $p=1$, the above classes reduced to $\mathrm{S}_{1}^{*}=\mathrm{S}^{*}, \mathrm{C}_{1}(0)=\mathrm{C}$.

A function $f(z) \in \mathrm{A}_{p}$ is said to be in the class $k-\mathrm{US}_{p}(\delta, \lambda)$ of k - uniformly p-valent starlike of order $\delta(0 \leq \delta<p)$ in $z \in \mathrm{U}$ and satisfies

$$
\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}-\delta\right\} \geq k\left|\frac{z f^{\prime}(z)}{f(z)}-p\right|
$$

Further, a function $f(z) \in \mathrm{A}_{p}$ is said to be in the class $k-\mathrm{UC}_{p}(\delta, \lambda)$ of k - uniformly $p-$ valent convex of order $\delta(0 \leq \delta<p)$ in $z \in \mathrm{U}$ and satisfies

$$
\operatorname{Re}\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\delta\right\} \geq k\left|1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-p\right| .
$$

In particular, when $p=1$, we obtain $k-\operatorname{UST}(\delta)$ and $k-\operatorname{UCV}(\delta)$, the classes of k - uniformly starlike and k - uniformly convex functions of order $\delta,-1<\delta<1$, respectively which were studied by various authors, example see [9].

A function $f(z) \in \mathrm{A}_{p}$ is said to be in the class $\mathrm{S}_{p}^{*}(b, \delta)$ of p-valently starlike of complex order $b(b \in \square-\{0\})$ and type $\delta(0 \leq \delta<p)$, if it satisfies the following inequality

$$
\begin{equation*}
\operatorname{Re}\left\{p+\frac{1}{b}\left(\frac{z f^{\prime}(z)}{f(z)}-p\right)\right\}>\delta, \quad(z \in \mathrm{U}) \tag{1.2}
\end{equation*}
$$

A function $f(z) \in \mathrm{A}_{p}$ is said to be in the class $\mathrm{C}_{p}(b, \delta)$ of p-valently convex of complex order $b(b \in \square-\{0\})$ and type $\delta(0 \leq \delta<p)$, if it satisfies the following inequality

$$
\begin{equation*}
\operatorname{Re}\left\{p+\frac{1}{b} \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>\delta, \quad(z \in \mathrm{U}) \tag{1.3}
\end{equation*}
$$

For $p=1$ and $\delta=0$, the above classes reduced to the following classes:

$$
\mathrm{S}_{p}^{*}(b)=\left\{\operatorname{Re}\left\{1+\frac{1}{b}\left(\frac{z f^{\prime}(z)}{f(z)}-1\right)\right\}>0, \quad(b \in \square-\{0\}) \quad(z \in \mathrm{U})\right\}
$$

which is defined by Nasr and Aouf [8] and

$$
\mathrm{C}_{p}(b)=\left\{\operatorname{Re}\left\{1+\frac{1}{b} \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>\delta, \quad(b \in \square-\{0\}) \quad(z \in \mathrm{U})\right\} .
$$

defined by Wiatrowski [14].
The Hadamard product of two functions $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$ and $g(z)=z+\sum_{n=2}^{\infty} b_{n} z^{n}$ is given by

$$
(f * g)(z)=z+\sum_{n=2}^{\infty} a_{n} b_{n} z^{n}
$$

For a function $f \in \mathrm{~A}_{p}$, we define the following operator

$$
\begin{align*}
D^{0} f(z) & =f(z) \\
D^{1} f(z) & =\frac{1}{p} z f^{\prime}(z) \tag{1.4}\\
& \vdots \\
D^{k} f(z) & =D\left(D^{k-1} f(z)\right) \quad\left(k \in \square_{0}, z \in \mathrm{U}\right) .
\end{align*}
$$

The differential operator D^{k} was introduced by Shenan et al.[12]. When $p=1$, we get a familiar Salagean derivative [10].

By using the above operator, we define the following new classes:
Definition 1.1: A function $f \in \mathrm{~A}_{p}$ is said to be in the class $\mathrm{S}_{p, k}^{*}(b, \delta)$ of p - valently starlike of complex order $b(b \in \square-\{0\})$ and type $\delta(0 \leq \delta<p)$, if it satisfies the following inequality

$$
\begin{equation*}
\operatorname{Re}\left\{p+\frac{1}{b}\left(\frac{z\left(D^{k} f(z)\right)^{\prime}}{D^{k} f(z)}-p\right)\right\}>\delta, \quad(z \in \mathrm{U}) \tag{1.5}
\end{equation*}
$$

Definition 1.2: A function $f \in \mathrm{~A}_{p}$ is said to be in the class $\mathrm{C}_{p, k}(b, \delta)$ of p - valently convex of complex order $b(b \in \square-\{0\})$ and type $\delta(0 \leq \mu<p)$, if it satisfies the following inequality

$$
\begin{equation*}
\operatorname{Re}\left\{p+\frac{1}{b} \frac{z\left(D^{k} f(z)\right)^{\prime \prime}}{\left(D^{k} f(z)\right)^{\prime}}\right\}>\delta, \quad(z \in \mathrm{U}) \tag{1.6}
\end{equation*}
$$

Definition 1.3: A function $f \in \mathrm{~A}_{p}$ is said to be in the class $\mathrm{CV}_{p, k}(\lambda, \mu)$ and $\delta(0 \leq \delta<p)$, if it satisfies the following inequality

$$
\begin{equation*}
\operatorname{Re}\left\{1+\frac{z\left(D^{k} f(z)\right)^{\prime \prime}}{\left(D^{k} f(z)\right)^{\prime}}\right\} \geq \lambda\left|1+\frac{z\left(D^{k} f(z)\right)^{\prime \prime}}{\left(D^{k} f(z)\right)^{\prime}}-p\right|+\mu, \quad(z \in \mathrm{U}) \tag{1.7}
\end{equation*}
$$

for some $\lambda \geq 0$ and $\mu(0 \leq \mu<1)$.

The class $\mathrm{CV}_{p, 0}(\lambda, \mu)$ introduced and studied by Yang and Owa [15]. For $p=1, \lambda=1$, we have the class $\mathrm{UC}(\mu)$ considered by Owa [9]. Specializing the values of the parameters p, k, δ and b, the above classes $\mathrm{S}_{p, k}^{*}(b, \delta)$ and $\mathrm{C}_{p, k}(b, \delta)$ reduces to the several well-known subclasses, which subclasses are introduced and investigated by various authors (see [4], [14], [10] and [6]).

Definition 1.4: Let $n \in \square, \alpha_{i}, \beta_{i} \in \square+\cup\{0\}, m=\left(m_{1}, m_{2}, \ldots, m_{n}\right) \in \square_{0}^{n}, \alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)$, $\beta=\left(\beta_{1}, \beta_{2}, \ldots, \beta_{n}\right)$ and $\gamma \in \square$ with $\operatorname{Re}(\gamma)>0$. For $f_{i}, g_{i} \in \mathrm{~A}_{p}$ for all $i=1,2,3, \ldots, n$, we introduced a new general integral operator $\mathrm{I}_{p, n, \gamma}^{\alpha_{i}, \beta_{i}}\left(f_{i}, g_{i}\right): \mathrm{A}_{p} \rightarrow \mathrm{~A}_{p}$ by

$$
\begin{equation*}
\mathrm{I}_{p, n, \gamma}^{\alpha_{i}, \beta_{i}}(z)=\left[\int_{0}^{z} \gamma p t^{\gamma p-1} \prod_{i=1}^{n}\left(\frac{D^{m_{i}} f_{i}(t)}{t^{p}}\right)^{\alpha_{i}}\left(\frac{\left(D^{m_{i}} g_{i}(t)\right)^{\prime}}{p t^{p-1}}\right)^{\beta_{i}} d t\right]^{\frac{1}{\gamma}} \tag{1.8}
\end{equation*}
$$

Remark 1.1: This integral operator $\mathrm{I}_{p, n, \gamma}^{\alpha_{i}, \beta_{i}}$ generalizes the following several well-known operators introduced and studied by various authors:

- If $\beta_{i}=0, m_{i}=0$ and $\gamma=1$, then this integral operator reduced to the operator $F_{p}(z)$ which was studied by Frasin [5].
- If $\beta_{i}=0, \gamma=1$ and $\alpha_{i}=\mu_{i}$, then this integral operator reduced to the operator

$$
\begin{equation*}
F_{p, n, l, \mu}(z)=\int_{0}^{z} p t^{p-1} \prod_{i=1}^{n}\left(\frac{D^{l_{i}} f_{i}(t)}{t^{p}}\right)^{\mu_{i}} d t \tag{1.9}
\end{equation*}
$$

which was studied by Saltik et al. [11].

- For $p=1, \gamma=1, m_{i}=0$ and $\beta_{i}=\gamma_{i}$, then we obtain the operator

$$
\begin{equation*}
G_{n}(z)=\int_{0}^{z} \prod_{i=1}^{n}\left(\frac{f_{i}(t)}{t}\right)^{\alpha_{i}}\left(g_{i}^{\prime}(t)\right)^{\gamma_{i}} d t \tag{1.10}
\end{equation*}
$$

introduced and studied by Stanciu and Breaz [13].

- For $p=1, \gamma=1, m_{i}=0$ and $\beta_{i}=0$, then we obtain the operator

$$
\begin{equation*}
F_{n}(z)=\int_{0}^{z} \prod_{i=1}^{n}\left(\frac{f_{i}(t)}{t}\right)^{\alpha_{i}} d t \tag{1.11}
\end{equation*}
$$

introduced and studied by D. Breaz and N. Breaz [2].

- For $p=1, \gamma=1, m_{i}=0, \beta_{i}=\gamma_{i}$ and $\alpha_{i}=0$, then we obtain the operator

$$
\begin{equation*}
F_{\gamma_{1}, \gamma_{2}, \ldots, \gamma_{n}}(z)=\int_{0}^{z}\left(g_{1}^{\prime}(t)\right)^{\gamma_{1}}\left(g_{2}^{\prime}(t)\right)^{\gamma_{2}} \cdots\left(g_{n}^{\prime}(t)\right)^{\gamma_{n}} d t \tag{1.12}
\end{equation*}
$$

introduced and studied by Breaz et al. [3].

- For $p=n=1, \gamma=1, m_{i}=0, \alpha_{i}=\alpha$ and $\beta_{i}=0$, then we obtain the operator

$$
\begin{equation*}
F_{\alpha}(z)=\int_{0}^{z}\left(\frac{f(t)}{t}\right)^{\alpha} d t \tag{1.13}
\end{equation*}
$$

introduced and studied in [7]. In particular, for $\alpha=1$, we obtain Alexander integral operator

$$
I(z)=\int_{0}^{z}\left(\frac{f(t)}{t}\right) d t \quad \quad \text { introduced in [1]. }
$$

I. MAIN RESULTS

In this section, we obtain the sufficient condition for the integral operator $\mathrm{I}_{p, n, \gamma}^{\alpha_{i}, \beta_{i}}(z)$.
Theorem 2.1: Let α_{i}, β_{i} be positive real numbers $(i=1,2,3, \ldots, n)$. If $f_{i} \in \mathrm{~S}_{p, k}^{*}(b, \delta)(0 \leq \delta<1)$ and $g_{i} \in \mathrm{C}_{p, k}(b, \delta),(i=1,2,3, \ldots, n)$ then the integral operator $\mathrm{I}_{p, n, \gamma}^{\alpha_{i}, \beta_{i}}$ defined in (1.8) is in the class $\mathrm{C}_{p}(\eta)$, where

$$
\eta=p+\sum_{i=1}^{n}\left[\alpha_{i}\left(\delta_{i}-p\right)+\beta_{i}\left(\lambda_{i}-p\right)-\beta_{i} \frac{\operatorname{Re}\{b\}}{|b|^{2}}(p-1)\right]+(p-1) \frac{\operatorname{Re}\{b\}}{|b|^{2}} .
$$

Proof: From (1.8), it is easy to see that

$$
\begin{equation*}
\mathrm{I}_{p, n, \gamma}^{\prime}(z)=p z^{p-1} \prod_{i=1}^{n}\left(\frac{D^{m_{i}} f_{i}(z)}{z^{p}}\right)^{\alpha_{i}}\left(\frac{\left(D^{m_{i}} g_{i}(z)\right)^{\prime}}{p z^{p-1}}\right)^{\beta_{i}} \tag{2.1}
\end{equation*}
$$

Differentiating (2.1) logarithmically with respect to z and multiply by z, we get

$$
\frac{z \mathrm{I}_{p, n, \gamma}^{\prime \prime}(z)}{\mathrm{I}_{p, n, \gamma}^{\prime}(z)}=(p-1)+\sum_{i=1}^{n} \alpha_{i}\left[\frac{z\left(D^{m_{i}} f_{i}(z)\right)^{\prime}}{\left(D^{m_{i}} f_{i}(z)\right)^{\prime}}-p\right]+\sum_{i=1}^{n} \beta_{i}\left[\frac{z\left(D^{m_{i}} g_{i}(z)\right)^{\prime \prime}}{\left(D^{m_{i}} g_{i}(z)\right)^{\prime}}-(p-1)\right],
$$

which implies

$$
\begin{align*}
p+\frac{1}{b} \frac{z \mathrm{I}_{p, n, \gamma}^{\prime \prime}(z)}{\mathrm{I}_{p, n, \gamma}(z)} & =\frac{(p-1)}{b}+\sum_{i=1}^{n} \alpha_{i}\left[p+\frac{1}{b}\left(\frac{z\left(D^{m_{i}} f_{i}(z)\right)^{\prime}}{\left(D^{m_{i}} f_{i}(z)\right)}-p\right)\right] \\
& +\sum_{i=1}^{n} \beta_{i}\left[p+\frac{1}{b} \frac{z\left(D^{m_{i}} g_{i}(z)\right)^{\prime \prime}}{\left(D^{m_{i}} g_{i}(z)\right)^{\prime}}\right]-\sum_{i=1}^{n} \beta_{i}\left(\frac{p-1}{b}\right)-p \sum_{i=1}^{n} \alpha_{i}-p \sum_{i=1}^{n} \beta_{i}+p . \tag{2.2}
\end{align*}
$$

We calculate the real part of (2.2), we get

$$
\begin{align*}
\operatorname{Re}\left(p+\frac{1}{b} \frac{z \mathrm{I}_{p, n, \gamma}^{\prime \prime}(z)}{\mathrm{I}_{p, n, \gamma}^{\prime}(z)}\right) & =p+\operatorname{Re}\left(\frac{p-1}{b}\right)+\sum_{i=1}^{n} \alpha_{i} \operatorname{Re}\left[p+\frac{1}{b}\left(\frac{z\left(D^{m_{i}} f_{i}(z)\right)^{\prime}}{\left(D^{m_{i}} f_{i}(z)\right)}-p\right)\right] \\
& +\sum_{i=1}^{n} \beta_{i} \operatorname{Re}\left[p+\frac{1}{b} \frac{z\left(D^{m_{i}} g_{i}(z)\right)^{\prime \prime}}{\left(D^{m_{i}} g_{i}(z)\right)^{\prime}}\right]-\sum_{i=1}^{n} \beta_{i} \operatorname{Re}\left(\frac{p-1}{b}\right)-p \sum_{i=1}^{n} \beta_{i}-p \sum_{i=1}^{n} \alpha_{i} \tag{2.3}
\end{align*}
$$

Since $f_{i} \in \mathrm{~S}_{p, k}^{*}(b, \delta)(0 \leq \delta<1)$ and $g_{i} \in \mathrm{C}_{p, k}(b, \lambda),(i=1,2,3, \ldots, n)$, we obtain

$$
\begin{align*}
\operatorname{Re}\left(p+\frac{1}{b} \frac{z \mathrm{I}_{p, n, \gamma}^{\prime \prime}(z)}{\mathrm{I}_{p, n, \gamma}^{\prime}(z)}\right) & >p+\operatorname{Re}\left(\frac{p-1}{b}\right)+\sum_{i=1}^{n} \alpha_{i} \delta_{i}+\sum_{i=1}^{n} \beta_{i} \lambda_{i} \\
& -\sum_{i=1}^{n} \beta_{i} \operatorname{Re}\left(\frac{p-1}{b}\right)-p \sum_{i=1}^{n} \alpha_{i}-p \sum_{i=1}^{n} \beta_{i} \tag{2.4}\\
& >p+\sum_{i=1}^{n}\left[\alpha_{i}\left(\delta_{i}-p\right)+\beta_{i}\left(\lambda_{i}-p\right)-\beta_{i}(p-1) \frac{\operatorname{Re}(b)}{|b|^{2}}\right]+(p-1) \frac{\operatorname{Re}(b)}{|b|^{2}}
\end{align*}
$$

Hence $\mathrm{I}_{p, n, \gamma}^{\alpha_{i}, \beta_{i}} \in \mathrm{C}_{p}(\eta)$, where

$$
\eta=p+\sum_{i=1}^{n}\left[\alpha_{i}\left(\delta_{i}-p\right)+\beta_{i}\left(\lambda_{i}-p\right)-\beta_{i}(p-1) \frac{\operatorname{Re}(b)}{|b|^{2}}\right]+(p-1) \frac{\operatorname{Re}(b)}{|b|^{2}} .
$$

Remark 2.1: For the choices of the parameters γ, β and α, we get the following results for the various authors:

- Letting $p=1, \gamma=1, m_{i}=0$ and $\beta_{i}=\gamma_{i}$, in Theorem 2.1, we obtain Theorem 2.1 in [13].
- If $\beta_{i}=0, \gamma=1$ and $\alpha_{i}=\mu_{i}$, in Theorem 2.1, we obtain the result in Theorem 2.1 Saltik et al. [11].

Theorem 2.2: Let α_{i}, β_{i} be positive real numbers $(i=1,2,3, \ldots, n)$. We suppose that the functions f_{i} are starlike functions by order $\frac{1}{\alpha_{i}}$, that is $f_{i} \in \mathrm{~S}_{p, k}^{*}\left(1, \frac{1}{\alpha_{i}}\right)$ and $g_{i} \in \mathrm{CV}_{p, \lambda_{i}}\left(\mu_{i}\right), 0 \leq \mu_{i}<1, i=1,2, \ldots, n$. If

$$
\sum_{i=1}^{n}\left[\beta_{i}\left(p-\mu_{i}\right)+p \alpha_{i}\right]-n<p
$$

then the integral operator $\mathrm{I}_{p, n, \gamma}^{\alpha_{i}, \beta_{i}}$. defined in (1.8\}) is in the class $\mathrm{C}(v)$, where

$$
v=p+n+\sum_{i=1}^{n}\left[\beta_{i}\left(\mu_{i}-p\right)-p \alpha_{i}\right]
$$

Proof: Using a similar argument in Theorem 2.1, we have

$$
\begin{aligned}
\frac{z \mathrm{I}_{p, n, \gamma}^{\prime \prime}(z)}{\mathrm{I}_{p, n, \gamma}^{\prime}(z)} & =(p-1)+\sum_{i=1}^{n}\left[\alpha_{i}\left(\frac{z\left(D^{m_{i}} f_{i}(z)\right)^{\prime}}{\left(D^{m_{i}} f_{i}(z)\right)^{\prime}}-p\right)+\beta_{i}\left(\frac{z\left(D^{m_{i}} g_{i}(z)\right)^{\prime \prime}}{\left(D^{m_{i}} g_{i}(z)\right)^{\prime}}-(p-1)\right]\right. \\
& =(p-1)+\sum_{i=1}^{n}\left[\alpha_{i}\left(\frac{z\left(D^{m_{i}} f_{i}(z)\right)^{\prime}}{\left(D^{m_{i}} f_{i}(z)\right)}\right)-\alpha_{i} p+\beta_{i}\left(\frac{z\left(D^{m_{i}} g_{i}(z)\right)^{\prime \prime}}{\left(D^{m_{i}} g_{i}(z)\right)^{\prime}}-(p-1)\right] .\right.
\end{aligned}
$$

(2.5)

From (2.5), we have

$$
\begin{equation*}
1+\frac{z \mathrm{I}_{p, n, \gamma}^{\prime \prime}(z)}{\mathrm{I}_{p, n, \gamma}^{\prime}(z)}=p+\sum_{i=1}^{n}\left[\alpha_{i}\left(\frac{z\left(D^{m_{i}} f_{i}(z)\right)^{\prime}}{\left(D^{m_{i}} f_{i}(z)\right)}\right)-\alpha_{i} p+\beta_{i}\left(\frac{z\left(D^{m_{i}} g_{i}(z)\right)^{\prime \prime}}{\left(D^{m_{i}} g_{i}(z)\right)^{\prime}}-(p-1)\right]\right. \tag{2.6}
\end{equation*}
$$

Taking the real part of the above expression, we obtain

$$
\begin{align*}
\operatorname{Re}\left(1+\frac{z \mathrm{I}_{p, n, r}^{\prime \prime}(z)}{\mathrm{I}_{p, n, \gamma}(z)}\right) & =p+\sum_{i=1}^{n} \alpha_{i} \operatorname{Re}\left(\frac{z\left(D^{m_{i}} f_{i}(z)\right)^{\prime}}{\left(D^{m_{i}} f_{i}(z)\right)}\right)-p \sum_{i=1}^{n} \alpha_{i} \\
& +\sum_{i=1}^{n} \beta_{i} \operatorname{Re}\left(\frac{z\left(D^{m_{i}} g_{i}(z)\right)^{\prime \prime}}{\left(D^{m_{i}} g_{i}(z)\right)^{\prime}}+1\right)-p \sum_{i=1}^{n} \beta_{i} \\
& =p+\sum_{i=1}^{n} \alpha_{i} \operatorname{Re}\left(\frac{z\left(D^{m_{i}} f_{i}(z)\right)^{\prime}}{\left(D^{m_{i}} f_{i}(z)\right)}\right)-p \sum_{i=1}^{n} \alpha_{i} \tag{2.7}\\
& +\sum_{i=1}^{n} \beta_{i} \operatorname{Re}\left(\frac{z\left(D^{m_{i}} g_{i}(z)\right)^{\prime \prime}}{\left(D^{m_{i}} g_{i}(z)\right)^{\prime}}+1\right)-p \sum_{i=1}^{n} \beta_{i} .
\end{align*}
$$

But $f_{i} \in \mathrm{~S}_{p, k}^{*}\left(1, \frac{1}{\alpha i}\right)$, so $\operatorname{Re}\left(\frac{z\left(D^{m_{i}} f_{i}(z)\right)^{\prime}}{\left(D^{m_{i}} f_{i}(z)\right)}\right)>\frac{1}{\alpha_{i}}$ and since $g_{i} \in \mathrm{CV}_{p, \lambda_{i}}\left(\mu_{i}\right)$ for $\mu_{i} \geq 0$ and $0 \leq \lambda_{i}<1, i=1,2, \ldots, n$, from (2.7),

$$
\begin{align*}
\operatorname{Re}\left(1+\frac{z \mathrm{I}_{p, n, r}^{\prime \prime}(z)}{\mathrm{I}_{p, n, \gamma}^{\prime}(z)}\right) & >p+n-p \sum_{i=1}^{n} \alpha_{i}+\sum_{i=1}^{n} \beta_{i}\left(\lambda_{i}\left|1+\frac{z\left(D^{m_{i}} g_{i}(z)\right)^{\prime \prime}}{\left(D^{m_{i}} g_{i}(z)\right)^{\prime}}-p\right|+\mu_{i}\right)-p \sum_{i=1}^{n} \beta_{i} \tag{2.8}\\
& >p+n-p \sum_{i=1}^{n} \alpha_{i}+\sum_{i=1}^{n} \beta_{i} \lambda_{i}\left|1+\frac{z\left(D^{m_{i}} g_{i}(z)\right)^{\prime \prime}}{\left(D^{m_{i}} g_{i}(z)\right)^{\prime}}-p\right|+\sum_{i=1}^{n} \beta_{i}\left(\mu_{i}-p\right)
\end{align*}
$$

Since $\beta_{i} \lambda_{i}\left|1+\frac{z\left(D^{m_{i}} g_{i}(z)\right)^{\prime \prime}}{\left(D^{m_{i}} g_{i}(z)\right)^{\prime}}-p\right|>0$, we obtain

$$
\begin{align*}
\operatorname{Re}\left(1+\frac{z \mathrm{I}_{p, n, \gamma}^{\prime \prime}(z)}{\mathrm{I}_{p, n, \gamma}^{\prime}(z)}\right) & >p+n-p \sum_{i=1}^{n} \alpha_{i}+\sum_{i=1}^{n} \beta_{i}\left(\mu_{i}-p\right) \tag{2.9}\\
& >p+n+\sum_{i=1}^{n}\left[\beta_{i}\left(\mu_{i}-p\right)-p \alpha_{i}\right] .
\end{align*}
$$

Using the hypothesis $\sum_{i=1}^{n}\left[\beta_{i}\left(p-\mu_{i}\right)+p \alpha_{i}\right]-n<p$ in (2.9), we obtain that the integral operator $\mathrm{I}_{p, n, \gamma}^{\alpha_{i}, \beta_{i}}$ is in the class $\mathrm{C}(v)$, where

$$
v=p+n+\sum_{i=1}^{n}\left[\beta_{i}\left(\mu_{i}-p\right)-p \alpha_{i}\right]
$$

Taking $n=1$ in Theorem 2.2, we obtain the following corollary:
Corollary 2.1: Let α, β be positive real numbers. We suppose that the functions f is a starlike functions by order $\frac{1}{\alpha}$, that is $f \in \mathrm{~S}_{p, k}^{*}\left(1, \frac{1}{\alpha}\right)$ and $g_{i} \in \mathrm{CV}_{p, \lambda}(\mu)$. If

$$
\beta(p-\mu)+p \alpha<1+p
$$

then the integral operator $\mathrm{I}_{p, \gamma}^{\alpha, \beta}$ defined in (1.8\}) is in the class $\mathrm{C}(v)$, where

$$
v=p+1+\beta(\mu-p)-p \alpha
$$

Letting $p=1$, for the choices of v and β the above Corollary 2.1 reduce to the following result, which was proved earlier by [13].

Corollary 2.2: Let α, β be positive real numbers. We suppose that the functions f is a starlike functions by order $\frac{1}{\alpha}$, that is $f \in \mathrm{~S}_{1, k}^{*}\left(1, \frac{1}{\alpha}\right)$ and $g_{i} \in \mathrm{CV}_{1, \lambda}(\mu)$. If

$$
\beta(1-\mu)+\alpha<2
$$

then the integral operator $\mathrm{I}_{1, \gamma}^{\alpha, \beta}$ defined in $\left.(1.8\}\right)$ is in the class $\mathrm{C}(v)$, where

$$
v=2+\beta(\mu-1)-\alpha
$$

REFERENCES

[1] J. W. Alexander, Functions which map the interior of the unit circle upon simple regions, Ann. of Math. (2), 17, no. 1, 12-22, 1915.
[2] D. Breaz and N. Breaz, "Two integral operators," Studia Universitatis Babes-Bolyai, Mathematica, Cluj-Napoca, 47, no.3, pp. 1319, 2002.
[3] D. Breaz, S. Owa, N. Breaz, A new integral univalent operator, Acta Univ. Apulensis Math. Inform. no. 16, 11-16, 2008.
[4] B. A. Frasin, Family of analytic functions of complex order, Acta Math. Acad. Paedagog. Nyh?zi. (N.S.), 22, no. 2, 179-191, 2006.
[5] B. A. Frasin, Convexity of integral operators of \$p-\$valent functions, Mathematical and Computer Modelling, An International Journal, 51, no.5-6, p.601-605, 2010.
[6] R. J. Libera, Univalent α-spiral functions, Canad. J. Math. 19, 449-456, 1967.
[7] S. S. Miller, P. T. Mocanu, M. O. Reade, Starlike integral operators, Pacific J. Math., 79, no. 1, 157—168, 1978.
[8] M. A. Nasr, M. K. Aouf, Starlike function of complex order, J. Natur. Sci. Math., 25, no. 1, 1-12, 1985.
[9] S. Owa, On uniformly convex functions, Math. Japon, 48, no. 3, 377-384, 1998.
[10] G. S. Salagean, Subclasses of univalent functions, Complex Analysis - Fifth Romanian Finish Seminar, Bucharest, 1, 362-372, 1983.
[11] G Saltik, E Deniz, E Kadioglu, Two new general \$p\$-valent integral operators, Math. Comput. Modelling, 52,, no. 9-10, 1605-1609, 2010.
[12] G. M. Shenan, T. O. Salim, M. S. Marouf, A certain class of multivalent prestarlike functions, involving the Srivastava-Saigo-Owa fractional integral operator, Kyungpook Math. J. 44, no. 3, 353-362, 2004.
[13] L. Stanciu, D. Breaz, Some properties of a general integral operator, Bull. Iranian Math. Soc. 40, no. 6, 1433-1439, 2014.
[14] P. Wiatrowski, The coefficients of a certain family of holomorphic functions, (Polish) Zeszyty Nauk. Uniw. Lódz. Nauki Mat. Przyrod. Ser. II No. 39, Mat. 75-85, 1971.
[15] D. Yang, S. Owa, Properties of certain \$p-\$ valently convex functions, IJMMS, 41, 2603-2608, 2003.

