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I. INTRODUCTION,  DEFINITIONS AND PRELIMINARIES 

Let pA  be the class of functions ( )f z , of the form   

               
1

,p n

n

n p

f z z a z p


 

                                                                                              (1.1) 

which are analytic in the unit disc  : 1z z  U . And let 1A A . 

We denote by 
*, ,S C K  and 

*C  the familiar subclasses of A consisting of functions which are 

respectively starlike, convex, close-to-convex and quasi-convex in U .  

A function ( ) pf z A  is said to be p   valently starlike of order  0 p   and  zU  

denoted by
*( )p S , if and only if    

( )
.

( )

zf z
Re

f z


 
 

 
 

A function ( ) pf z A is said to be p  valently convex of order  0 p   and zU denoted 

by ( )p C , if and only if  

( )
1 .

( )

zf z
Re

f z




 
  

 
 

It is easy to see that 
*( )

( ) ( ) ( ).p p

zf z
f z

p
 


  C S  

Furthermore, 
* *(0) , (0)p p p p S S C C  are respectively, the classes of p  valently starlike, convex 

functions in U . Also, let 1p  , the above classes reduced to 
* *

1 ,S S  1(0) C C. 

A function ( ) pf z A  is said to be in the class ( , )pk  US  of k - uniformly p  valent starlike 

of order  0 p    in zU  and satisfies 

( ) ( )
.

( ) ( )

zf z zf z
Re k p

f z f z


  
   

 
 

Further, a function ( ) pf z A  is said to be in the class ( , )pk  UC of k - uniformly p   valent convex 

of order   0 p    in zU  and satisfies  
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( ) ( )
1 1 .

( ) ( )

zf z zf z
Re k p

f z f z


  
     

  
 

In particular, when 1p  , we obtain ( )k UST   and ( )k UCV  , the classes of k   uniformly starlike 

and k  uniformly convex functions of order , 1 1    , respectively which were studied by various 

authors, example see [9]. 

A function ( ) pf z A  is said to be in the class 
*( , )p b S of p  valently starlike of complex order 

  0b b   and type  0 p   , if it satisfies the following inequality 

                 
1 ( )

, ( ).
( )

zf z
Re p p z

b f z


  
     

  
U                                                                         (1.2) 

A function ( ) pf z A  is said to be in the class ( , )p b C of p  valently convex of complex order 

  0b b   and type  0 p   ,  if it satisfies the following inequality 

                 
1 ( )

, ( ).
( )

zf z
Re p z

b f z


 
   

 
U                                                                                     (1.3) 

For 1p   and 0  , the above classes reduced to the following classes: 

  * 1 ( )
( ) 1 1 0, 0 ( )

( )
p

zf z
b Re b z

b f z

    
          

    

 US  

which is defined by Nasr and Aouf [8] and 

  
1 ( )

( ) 1 , 0 ( ) .
( )

p

zf z
b Re b z

b f z


  
        

  
 UC  

defined by Wiatrowski [14]. 

The Hadamard product of two functions 
2

( ) n

n

n

f z z a z




   and 
2

( ) n

n

n

g z z b z




  is given by 

 
2

* ( ) .n

n n

n

f g z z a b z




   

For a function pf A , we define the following operator 

                          

   

0

1

1

0

( ) ( )

1
( ) ( )

( ) ( ) , .k k

D f z f z

D f z zf z
p

D f z D D f z k z









  



 U

                                                     (1.4) 

The differential operator 
kD  was introduced by Shenan et al.[12]. When 1p  , we get a familiar Salagean 

derivative [10]. 

 

By using the above operator, we define the following new classes: 

Definition 1.1:  A function pf A  is said to be in the class 
*

, ( , )p k b S of p   valently starlike of complex 

order   0b b   and type  0 p   , if it satisfies the following inequality 

                             
 ( )1

, ( ).
( )

k

k

z D f z
Re p p z

b D f z


  
  

     
  

  

U                                                  (1.5) 
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Definition 1.2:  A function  
pf A  is said to be in the class 

, ( , )p k b C of p   valently convex of complex 

order   0b b   and type  0 p   , if it satisfies the following inequality 

                                
 

 

( )1
, ( ).

( )

k

k

z D f z
Re p z

b
D f z



 
 

   
 

 

U                                                          (1.6) 

Definition 1.3:  A function pf A  is said to be in the class , ( , )p k  CV and  0 p   , if it satisfies 

the following inequality  

                  
 

 

 

 

( ) ( )
1 1 , ( )

( ) ( )

k k
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z D f z z D f z
Re p z

D f z D f z

 

  
 
      

  
 

U                                (1.7) 

for some 0   and (0 1)   . 

 

The class ,0 ( , )p  CV  introduced and studied by Yang and Owa [15]. For  1, 1p   , we have the class 

( )UC  considered by Owa [9]. Specializing the values of the parameters , ,p k   andb , the above classes 

*

, ( , )p k b S and  , ( , )p k b C  reduces to the several well-known subclasses, which subclasses are introduced and 

investigated by various authors (see [4], [14], [10] and [6]). 
 

Definition 1.4: Let n ,   1 2 0, 0 , ( , , , ) ,n

i i nm m m m        1 2( , , , ),n      

1 2( , , , )n      and    with ( ) 0Re   . For ,i i pf g A  for all 1,2,3, ,i n  , we introduced a 

new general integral operator
,

, , ( , ) :i i

p n i i p pf g
 

 I A A  by 
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p n p p
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D g tD f t
z pt dt

t pt

 


  

 








  
           

I                                      (1.8) 

Remark 1.1: This integral operator 
,

, ,
i i

p n

 

I  generalizes the following several well-known operators introduced 

and studied by various authors: 

 If 0, 0i im    and 1  , then this integral operator reduced to the operator ( )pF z which was 

studied by Frasin [5]. 

 If 0, 1i    and i i  , then this integral operator reduced to the operator  

                     
1

, , ,
0

1

( )
( )

i
iln

z
p i

p n l p
i

D f t
F z pt dt

t









 
  

 
                                                                             (1.9) 

         which was studied by Saltik et al. [11]. 

 For 1, 1, 0ip m    and i i  , then we obtain the operator 

                      
0

1

( )
( ) ( )

i

i
n

z
i

n i

i

f t
G z g t dt

t








 
  

 
                                                                                 (1.10) 

         introduced and studied by Stanciu and Breaz [13]. 

 For 1, 1, 0ip m    and 0i  , then we obtain the operator 

                    
0

1

( )
( )

in
z

i
n

i

f t
F z dt

t





 
  

 
                                                                                                    (1.11) 

        introduced and studied by D. Breaz and N. Breaz [2]. 
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 For 1, 1, 0,i i ip m       and 0i  , then we obtain the operator 

                               
1 2

1 2, , , 1 2
0

( ) ( ) ( ) ( )
n

n

z

nF z g t g t g t dt
  

  

  

                                                     (1.12) 

         introduced and studied by Breaz et al. [3]. 

 For 1, 1, 0,i ip n m        and 0i  , then we obtain the operator 

                         
0

( )
( )

z f t
F z dt

t





 
  

 
                                                                                                      (1.13) 

         introduced and studied in [7]. In particular, for 1  , we obtain Alexander integral operator     

                        
0

( )
( )

z f t
I z dt

t

 
  

 
                  introduced in [1]. 

I. MAIN RESULTS  

In this section, we obtain the sufficient condition for the integral operator
,

, , ( )i i

p n z
 

I . 

 

Theorem 2.1: Let ,i i   be positive real numbers ( 1,2,3, , )i n  . If 
*

, ( , ) (0 1)i p kf b    S  

and , ( , ), ( 1,2,3, , )i p kg b i n  C  then the integral operator 
,

, ,
i i

p n

 

I  defined in (1.8) is in the class ( )p C , 

where  
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Proof: From (1.8), it is easy to see that 
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I                                            (2.1) 

Differentiating (2.1) logarithmically with respect to z  and multiply by z , we get 
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We calculate the real part of (2.2), we get 
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Since 
*

, ( , ) (0 1)i p kf b    S and , ( , ), ( 1,2,3, , )i p kg b i n  C , we obtain 
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Hence
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 I C , where  
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Remark 2.1: For the choices of the parameters , and   , we get the following results for the various 

authors: 

 Letting 1, 1, 0ip m    and i i  , in Theorem 2.1, we obtain Theorem 2.1 in [13]. 

 If 0, 1i    and i i  , in Theorem 2.1, we obtain the result in Theorem 2.1 Saltik et al. [11]. 

 

Theorem 2.2: Let ,i i  be positive real numbers ( 1,2,3, , )i n  . We suppose that the functions if  are 

starlike functions by order
1

i
, that is 

*
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1
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If   

 
1

,
n

i i i

i

p p n p  


       

then the integral operator 
,

, ,
i i

p n

 

I  defined in (1.8}) is in the class ( )C , where  
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Proof: Using a similar argument in Theorem 2.1, we have  
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From (2.5), we have  
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Taking the real part of the above expression, we obtain 
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Since
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Using the hypothesis  
1
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i i i
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      in (2.9), we obtain that the integral operator 
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in the class ( )C , where  
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Taking 1n   in Theorem 2.2, we obtain the following corollary: 

 

Corollary 2.1: Let ,   be positive real numbers. We suppose that the functions f is a starlike functions by 

order
1


, that is 
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S and , ( )i pg  CV . If 
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  1 ,p p p       

then the integral operator 
,

,p

 

I defined in (1.8}) is in the class ( )C , where  

 1 .p p p         

 

Letting 1p  , for the choices of   and   the above Corollary 2.1 reduce to the following result, which was 

proved earlier by [13]. 

Corollary 2.2: Let ,   be positive real numbers. We suppose that the functions f is a starlike functions by 

order
1


, that is 

*

1,

1
1,kf






 
 

S  and 1, ( )ig  CV . If 

 1 2,      

then the integral operator 
,

1,

 

I defined in (1.8}) is in the class ( )C , where  

 2 1 .        
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