Riemannian Dynamics on Manifolds

Dr. Safa Ahmed Babikir Alsid

Department of Mathematics, Al majmaah University, The Deanship of Common First Year Khartoum, Sudan

Abstract

This paper aimed at investigating the dynamical systems on manifolds, which is Riemannian dynamics 1-foliation \mathcal{L} on 3-manifolds M [Carri`ere 17]. we explain that every point of a manifold M is a recurrence point and the w – limit sets are diffeomorphic to M. The structure of the attractor is also presented [15,10]. The map named after Hinri Poincare` on a transversal surface for a Riemannian 1-dimentional foliation is used as an isometry such that the nonhyperbolicity of (M, \mathcal{L}) is showed. our argument work for any dimension of a manifolds M.

Keywords: Riemannian Dynamics, Limit sets, recurrence points and attractors Manifolds.

I. INTRODUCTION

The purpose of this paper is to study dynamical systems on manifolds. We focus on dynamics of Riemannian 1dimenstional foliations on 3-manifolds. The notions of hyperbolicity which is a key to understand the figure of the given 1-foliation, w - limit sets, recurrence and attractors of the foliations on the phase space are presented. If there is a Riemannian metric on the normal bundle in the sense of Carri`ere, then we call \mathcal{L} is Riemmannian. We prove many dynamical properties of (M, \mathcal{L}) by using classification in [17] of all the oriented closed 3manifolds equipped with a Riemannian 1-foliations. In ([1],[14]) our assumption is to consider that A nosov 1foliation for a 1-foliation with respect to uniform hyperbolicity for a manifold M. See [1,16] for the concept of hyperbolic 1-foliations in generic dynamics. In particular, recurrence and w - limit sets are basic attributes in dynamical systems. In this paper, an important part is dealt with Conley's definition of attractors, see [5]. And we conclude the nonexistence of proper attractor for a Riemannian 1-foliation on closed 3-manifolds. In ([4], and [3]) the nontrivial attractor is mixing for a generic 3-dimenstion 1-foliations in compact 3-manifolds is proved, and the robust transitivity for 3-manifolds is described. Our study on the Riemannian 1-foliations on 3manifolds is motivated by the classification theory of Brunella [12] and Ghys[7].

It is important to understand some motivation here, which comes from specific cases in [17]. Let T^n be a n-dimensional torus. Recall that for any pair (M, \mathcal{L}) of a closed 3-manifolds and a Riemannian flow is one of the following:

- 1) *M* is a T^{2} and \mathcal{L} is linear with an irrational slope on T^{2} .
- 2) M is also T^3 . And \mathcal{L} has two possibilities:

2A) $M = T^2 \times S^1$. Let \mathcal{L} be a linear 1-foliation on a T^2 with an irrational slope. Then \mathcal{L} is the foliation such that for each $x \in S^1$, the induced flow \mathcal{L}^t of \mathcal{L} lies in $T^2 \times \{x\}$ and it coincides with $(\mathcal{L})^t$.

2B) fix any $c \in SL(2,\mathbb{Z})$ with eigenvalues λ, λ^{-1} where $\lambda > 1$ is defined to be an irrational number. and the corresponding eigenvectors are v, v respectively. Let \mathcal{L} be the linear foliation on \mathbb{R}^2 whose time-1 map maps 0 to v. and \mathcal{L} has an irrational slope. We consider a \mathbb{Z}^2 -action comes from the standard affine translation group action on the first factor \mathbb{R}^2 and the \mathbb{Z}^1 -action is defined by $n \cdot (m, t) = (c^n(m), t + n)$. The $(\mathbb{Z}^2 \times \mathbb{Z})$ -quotient of \mathbb{R}^3 becomes a T^3 . Let $T^3 = M$ and \mathcal{L} be a 1-foliation on M as follows:

Assume that \mathcal{L} is a foliation such that for each $x \in \mathbb{R}^1$, its flow $(\mathcal{L})^t$ lies in $\mathbb{R}^2 \times \{x\}$ and it coincides with $(\mathcal{L})^t$. Therefore \mathcal{L} is set to the induced 1-foliation from \mathcal{L} on the discrete group quotient M.

3) This case is divided as two parts:

3A) *M* is a Lenz space L(p,q), $(p,q \in \mathbb{Z}\setminus 0)$. At p = 1 and q = 0, $L(1,0) \cong S^2$. *M* is defined as the quotient of the S^2 :

$$\begin{split} S^3 &= \{(z_1, z_2) \in \mathbb{C}^2 \mid |z_1|^2 + |z_2|^2 = 1\} \text{ by a } \mathbb{Z}^1 \text{ -action } \\ n \cdot (z_1, z_2) &= (e^{2n\pi i/p} z_1, e^{2n\pi i/q} z_2) \text{ where } \\ z_1 &= x_1 + iy_1 \text{ and } z_2 = x_2 + iy_2 \\ S^3 &= |x_1 + iy_1|^2 + |x_2 + iy_2|^2 = 1. \end{split}$$

Let $\mu, \gamma \in \mathbb{R} \setminus \mathbb{Q}$ with $\gamma \setminus \mu \in \mathbb{R} \setminus \mathbb{Q}$ is the slope of $\mathcal{L}_{(\gamma, \mu)}$ and \mathcal{L} be the induced foliation on the discrete group quotient M from $\mathcal{L}_{(\gamma, \mu)}$. let $\mathcal{L}_{(\gamma, \mu)}$ be the foliation on S^3 whose corresponding flow is

 $\mathcal{L}^t(z_1,z_2)=(e^{i\gamma t}\,z_1,e^{i\mu t}\,z_2\,),\qquad t\,\in\mathbb{R}.$

3B) let $M = S^2 \times S^1 \cong L(0,1)$. Fixing the north and south poles of S^2 we assume that any flow on S^2 given by rotation. Let \mathcal{L} be the corresponding foliation on S^2 and \mathcal{L} be foliation such that for $x \in S^1$ its flow \mathcal{L}^t lies in $S^2 \times \{x\}$ and it coincides with $(\mathcal{L})^t$.

4) M is a Seifert fibration, i.e., an S^{\perp} -fibration over a smooth 2-manifolds. And \mathcal{L} is a foliation such that its flow \mathcal{L}^{t} lies in the fibre direction.

if M is Seifert manifold then M(a,b) = L(b,a) and $M((a_1,b_1),((a_2,b_2)) = L(a_1b_2 + a_2b_1, a_1a_2) = L(p,q).$

Lemma (1.1). Let (M^*, \mathcal{L}^*) be a pair of a smooth manifolds and a 1-foliation. Let $M = M^*/G$ be the group quotient such that G acts on M^* , and $\phi: M^* \to M$ is the quotient map. Suppose that there is a 1-foliation \mathcal{L} on M and ϕ maps the flow \mathcal{L}^{*t} to \mathcal{L}^{t} . then

- i. The ϕ image of a recurrence point of (M^*, \mathcal{L}^*) and any attractor of (M, \mathcal{L}) is given as the ϕ image some attractor of (M^*, \mathcal{L}^*) .
- ii. If G is a finite group, an w limit set of (M, \mathcal{L}) is the ϕ image of some w limit set of (M^*, \mathcal{L}^*) .

Proof. The first case is clear so We will prove the case ii. Since ϕ is a covering map, $\phi^{-1}(A)$ is also an attractor. A is an attractor of (M, \mathcal{L}) .

We have to take an w - limit sets w(x) where $x \in M$. $y \in \phi^{-1}(x)$ and the ϕ - image of set w(y) coincides with set w(x). Its clear that $\phi(w(y)) \subset w(x)$. There exist a sequence t_n with $Z = \lim_{n \to \infty} \mathcal{L}^{*t_n}(y)$ for any point $Z \in w(y)$.

 $\lim_{n \to \infty} \mathcal{L}^{t_n}(x) = \phi(Z).$ We prove the $\phi(w(y)) \supset w(x)$. Let $Z \in w(x)$. Then there exist a sequence t_n with $\lim_{n \to \infty} \mathcal{L}^{t_n}(x) = Z$. By the unique lifting property of covering space of a path, $\mathcal{L}^t(x)$ lifts to $\mathcal{L}^{*}^t(y)$ for any $y \in \phi^{-1}(x)$. There exist a subsequence t_{n_k} because a ϕ -fibre is a finite set. Since ϕ Is a local isomorphism, so the ϕ -image of the limit coincides with Z.

Theorem (1.2). Every point of an oriented closed 3-manifolds is a recurrence point, if \mathcal{L} is a Riemannian 1-foliation on M.

Proof. Our proof depends on [17]. Since any pair (M, \mathcal{L}) of a closed-manifold and a Riemannian flow is one of the cases[17] case (1), then all the positive orbits of the corresponding flow \mathcal{L}^{t} of \mathcal{L} are dense. Thus every point of M is a recurrence point.

Let \mathcal{L}^* be a linear 1-foliation on a 2-tours T^2 with an irrational slope. $M = T^2 \times S^1$. then \mathcal{L} is the foliation such that for each $x \in S^1$, the induced flow \mathcal{L}^* of \mathcal{L} lies in $T^2 \times \{x\}$ and it coincides with $(\mathcal{L}^*)^{t}$. Case (2A) Therefore the $T^2 - fibration$ is trivial then this is easier.

We observe that M is a T^2 – *fibration* over S^1 .

We use the map $\phi: M \to \mathbb{R}^1/\mathbb{Z}$ induced by the projection $\mathbb{R}^2 \times \mathbb{R}^1 \to \mathbb{R}^1$ where $M = \mathbb{R}^2 \times \mathbb{R}^1/\mathbb{Z}^2 \times \mathbb{Z}$ and the \mathbb{Z} - *action on* \mathbb{R}^1 is the standard translation action. $T^2 = \mathbb{R}^2/\mathbb{Z}^2$ are fibres of the induced map. Each positive orbit closure of \mathcal{L} becomes the T^2 - *fibre* itself containing the orbit. Thus every point of M is a recurrence point.

In [17] case (3A). Assume that p = q = 0. $M = S^3$. For any $x \in T_k$ the flow $\mathcal{L}^t(x)$ lies in T_k . Where $0 \le k \le 1$.

 $\begin{array}{l} T_{k} = \{(z_{1}, z_{2}) \in S^{3} \ |z_{1}|^{2} = k, \ |z_{2}|^{2} = 1 - k\}, \\ if \ T_{k} = S^{1} \ \text{then} \ k = 0, 1 \\ \text{at} \ k = 0 \implies T_{0} = \{(z_{1}, z_{2}) \in S^{3} \ |z_{1}|^{2} = 0, \ |z_{2}|^{2} \end{bmatrix}$

at $k = 0 \implies T_0 = \{(z_1, z_2) \in S^3 | |z_1|^2 = 0, ||z_2|^2 = 1\},\$ at $k = 1 \implies T_1 = \{(z_1, z_2) \in S^3 | |z_1|^2 = 1, ||z_2|^2 = 0\}$ Thus every point of T_k is a recurrence point.

By the assumption any positive orbit in T_k is dense in T_k because \mathcal{L}^t has an irrational slope ζ/η . Thus every point of M is a recurrence point.

In the case(3B) [17]. it is clear that every point is a recurrence point since the flow is induced from rotation of the S^2 -factor.

In the case (4) [17]. $\mathcal{L}^{t}(x)$ lies in the $S^{1} - fiber$ containing x for any $x \in M$, the positive orbit of each $p \in M$ is the $S^{1} - fiber$ containing p. Thus p is a recurrence point.

Theorem (1.3). Let (M, \mathcal{L}) be an oriented closed 3-manifolds with a Riemannian 1-foliation. Then the $w - limit \ sets$ are diffeomorphic to either a circle S^1 or a T^2 or M itself. And there does not exist any proper nonempty attractor.

Proof. By a similar argument in [17] we shall proof our theorem. By the same reason in [17] case(1) the w - limit sets of any point coincides with M itself.

Similarly no nonempty proper subset of M can be an attractor.

In [17] case (2A) is easier because the $T^2 - fibration$ is trivial. Thus a similar proof works as in the case(2B) [17].

From [17] case(2B) we also deduce that the w - limit sets of any point is the $T^2 - fibre$ containing the point. In this case we prove that there are no non empty proper attractors. Let A be a nonempty proper attractor if any. Let U be an attractor block of A. And V be an open subset in S^1 such that $\varphi|_{\varphi^{-1}(v)}$ gives a trivial $T^2 - fibration \varphi^{-1}(v)$ intersects A but is not contained in A.

Suppose that $A = (\varphi^{-1}(v) \cap A)$ and $U = ((\varphi^{-1}(v) \cap U))$. Let $p \in A$, since any positive orbit lies in a $T^2 - fibre$, A contains the w - limit w(p). For some proper relatively closed subset B in V, A is the form $T^2 \times B$.

 $A = \bigcap_{t \ge 0} \overline{\mathcal{L}^t(U)} = T^2(\bigcap_{t \ge 0} \overline{\mathcal{L}^t(V)}) = T^2 \times V$ then there exists a proper open subset V in V with $B \subset V$. For any $t \ge 0, \mathcal{L}^t(V) = V$ since the flow is parallel to the $T^2 - fibres$. Since $T^2 \times V$ properly contains A this is a contradiction. Since the $T^2 - fibration$ is trivial therefore case (2A) in [17] is easier. In [15] case (3A) assume that p = q = 0 then $M = S^3$.

 $T_k = \{(z_1, z_2) \in S^3 \mid |z_1|^2 = k, |z_2|^2 = 1 - k\}$ where $0 \le k \le 1$. The flow $\mathcal{L}^t(x)$ lies in T_k for any $x \in T_k$. By the similar argument in the theorem(1.1) the w - limit set is T_k itself . if k = 0.1 then $T_k = S^1 = |x + iy|^2 = x^2 + y^2 = 1$ and it coincides with the positive orbit. If 0 < k < 1 then $T_k = T^2 = S^1 \times S^1$ and any positive orbit in T_k is dense in T_k because \mathcal{L}^t has an irrational slope $\lambda \mid \mu$. Therefore for every point of T_k it w - limit set is T_k itself. We show that there is no nonempty proper attractor. Suppose not, so there exists a nonempty proper attractor A. Let U be an attractor block of A. $\varphi: S^3 \to [0,1]$, $(z_1, z_2) \to |z_1|^2$ restricts to $T^2 - fibration$ over the smaller base (0,1). $T_k = \varphi^{-1}(k)$. Let $A \cap T^2 - fibration = A$ and $U \cap T^2 - fibration = U$ is nonempty then U is also an attractor block of A with respect to the restricted foliation. $\dim U = 3$ but $M \setminus \varphi^{-1}(0,1) = T_0 \sqcup T_1$ has dimension 1. A is empty. By a similar argument in (2B) [17], $\bigcap_{t \ge 0} \mathcal{L}^t(U)$ properly contains A because φ restricts to the trivial fibration in our case.

By assumption $(p, q) \neq (0, 0)$. The result holds after passing to the quotient due to lemma (1.1) then *M* is a finite group quotient of S^3 . In[17] case(3B) if $p \in M = S^2 \times S^1$ projects to the north or south pole of S^2 , w(p) is S^1 . Other wise it is T^2 . By a similar argument of the case p = q = 0 there is no nonempty proper attractor. In [17] case (4) for any $x \in M$ implies $\mathcal{L}^t(x)$ lies in the $S^1 - fibre$ containing x, the positive orbit *M* is the S^1 -fibre for every *point* $p \in M$.therefore w(p) is the $S^1 - fibre$. So there is no proper attractor. This complete the proof.

In the case $H^2(M, \mathcal{O}) = 0$, Brunella classifies all the pairs (M^*, \mathcal{L}^*) where M^* and \mathcal{L}^* are obtained by (complexification of leaves) of Haefliger-Sundararman [2, proposition 2.1].

II. BASIC PROPERTIES, NOTATIONS AND DEFENTIONS.

Let $\mathcal{L}: \mathbb{R} \times M \to M$ be a 1-foliation on Hausdorff topological space M. Since M is Hausdorff then for each $a, b \in M$ there exist two open sets H and G such that $a \in G$ and $b \in H$, $G \cap H = \emptyset$. $\mathcal{L}^t = \mathcal{L}(t, \cdot): M \to M$ denotes short. We dine $w(q) = \{x \in M: x = \lim_{n \to \infty} \mathcal{L}^{t_n}(q) \text{ for some sequence } t_n \to \infty \text{ as } n \to \infty\}$ is the w-limit set of q.

and $\beta(q) = \{ x \in M : x = \lim_{n \to \infty} \mathcal{L}^{-t_n}(q) \text{ for some sequence } t_n \to \infty \text{ as } n \to \infty \} \text{ is } \beta - \text{limit set of } q.$

Definition (2.1). A point $x \in M$ is positively recurrent or w - recurrent with respect to \mathcal{L}^t if $x \in w(x)$ and is $\beta - recurrent$ or negatively recurrent with respect to \mathcal{L}^t if $x \in \beta(x)$. If x is simultaneously positively and negatively recurrent then a point $x \in M$ is (poincare) recurrent with respect to \mathcal{L}^t .

Definition (2.2). Let $\mathcal{L}: \mathbb{R} \times M \to M$ be a 1- foliation on a finite dimensional smooth manifold M. A compact \mathcal{L} - *invirant* set, $\Lambda \subset M$ is called a hyperbolic set for the 1- foliation \mathcal{L} if there exist c > 0 and $0 < \lambda < 1$ therefore for each $x \in \Lambda$, there exists a decomposition $T_x M = E_x^{ss} \oplus E_x^{uu} \oplus E_x^c$ $\partial_t \mathcal{L}(t, x)|_{t=0} \in E_x^c - \{0\}, \dim(E^c(x)) = 1,$ $D_t \mathcal{L}(t,x)(E_x^i) = E_x^i$ with i = ss, uu, and $||D_t \mathcal{L}(t,x)| E_x^{uu}|| \le c\lambda^t$ for $t \le 0$. $||D_t \mathcal{L}(t,x)| E_x^{ss}|| \le c\lambda^t$ for $t \ge 0$. Such that $||\cdot||$ Is a nom induced by the Riemannian metric. The c 1-foliation \mathcal{L} is called an Anosov 1-foliation if the whole manifolds M is a hyperbolic set for \mathcal{L} . The bundle E^{ss} is called strong stable and the bundle E^{uu} is called strong unstable bundle of \mathcal{L} with an Anosov 1-foliation \mathcal{L} on a compact connected manifold M. So a derivative $D_x \mathcal{L}$ of a 1-foliation \mathcal{L} is eventually contracting on E_x^{ss} and expanding on E_x^{uu} .

Definition (2.3). Let (X, d) be a metric space and φ^t be a continuous 1-foliation on X. A nonempty open subset U of X is an attractor block for $\overline{\varphi^t(U)} \subseteq U$ for every t > 0. If there exist an attractor block U satisfying $A = \bigcap_{t \ge 0} \overline{\varphi^t(U)}$ then a proper $A \in X$ is called an attractor for φ^t . Let \mathcal{L} be a nondegenerate 1-foliation on M, i.e., a nowhere vanishing smooth section of the tangent bundle TM. M is smooth manifolds. The corresponding 1-foliation \mathcal{L}^t has nowhere vanishing derivative with respect to t. From our assumption the argument works for any dimension of a manifolds M. Let D_x be any embedded unit disk in M centred at x. $x \in M$ is a fixed point. We suppose that any tangents of D_x are transverse to \mathcal{L} . $\mathcal{L}^{t_0}(x) \in D_x$ with positive t_0 but $\mathcal{L}^t(x) \notin D_x$ for any $t \in (0, t_0)$. There exist an open neighbourhood $U \circ f(x)$ in D_x such that the diffeomorphism of the Poincare map ρD_x assingns $y \in U$ to the first touching point $\mathcal{L}^t(y)$ in $\mathcal{L}^t(y)$, t > 0 in D from U onto the image. $\rho D_x : U \to D_x$. let D_0 be the unit disk in \mathbb{R}^2 and $C_x : D_0 \to D_x$ me the diffeomorphism for the above embedded disk D_x for each $x \in M$. Let $\epsilon_x > 0$ such that ι_x extends to an open embedding $\tilde{\iota}_x = D_0 \times (-\epsilon_x, \epsilon_x) \to M$. $\tilde{\iota}_x(y, t) = \mathcal{L}^t(\iota_x(y)), t \in (-\epsilon_x, \epsilon_x)$ for all $y \in D_0$. the (- ϵ_x, ϵ_x)- direction is parallel to the 1-foliation of \mathcal{L} . The set $\{U_x\}_{x \in M}$ is an open cover of M, U_x denotes the $\tilde{\iota}_x$ image open subset of M. Let δ_{xy} be the composite $p_x \circ \iota_y$. $p_x : U_x \to D_0$ is the composite of $\tilde{\iota}_x \mid_{p_x = \iota_y} U_x^{-1}$ with the projection to D_0 . the composition is not well- defined over D_0 but only over the subset $\iota^{-1}_{y}(U_{x})$. By shrinking domains the composition $\delta_{zx} \circ \delta_{xy} = \delta_{zx}(\delta_{xy}) = p_{z}(\iota_{x}(p_{x}(p_{y})))$ coincides with δ_{zy} over an open subset in D_0 , we have the group law in the set $\Gamma = \{\delta_{xy}\}_{x,y \in M} = \{p_x(p_y)\}$. With the identity and inverses. This called a holonomy pseudo-group.

Lemma (2.4). By shrinking domains $p_z = p_z(\iota_x(p_x))$.

Proof. p_z maps x to another intersection point in D_z with the leaf containing x. Both leaves are same as they contain x. Therefore, we obtain the equivalence of the maps.

Definition (2.5). \mathcal{L} is Riemannian if there exist embeddings $\iota_x : (D_0, 0) \to (M, x), x \in M$ and Riemannian metric on D_0 invariant under all the locally defined diffeomorphism in the associated pseudo- group Γ . Since $\Gamma = \{\delta_{xy}\}_{x,y \in M}$ this called a (holonomy) pseudo-group.

Lemma (2.6). If \mathcal{L} is Riemannian then there is the induced smoothly varying fibre-wise metric g on $t \times D_0$ for each $t \in (\epsilon_x, \epsilon_x)$.

Definition (2.7). We identify \mathbb{R}^2 with \mathbb{C} and D_0 is an analytic open subset. \mathcal{L} is transversely holomorphic if it is nondegenerate and there exist embeddings $\iota_x : (D_0, 0) \to (M, x), x \in M$ satisfying δ_{xy} of the pseudo-group Γ are all holomorphic maps.

III. NONHYPERBOLICITY AND TRANSVERSELY HOLOMORPHIC 1-FOLIATIONS.

Definition (3.1). Let (M, f) be a pair of a finite dimensional smooth manifold and a diffeomorphism on M. M has a hyperbolic structure with respect to of f if there exist a Riemannian metric on M and continuous aplitting of TM into the direct sum of Tf- invariant subbundles E^s and E^u such that for constants A and λ , $0 < \lambda < 1$ and for n = 0, $\|T f^0(v)\| \le A \lambda^0 \|v\|$, $\|T f^0(w)\| \le A \lambda^0 \|w\|$ for all $v \in E^s$, $w \in E^u$ and $\|\cdot\|$ is a norm induced by the Riemannian metric. where n > 0 the inequalities will be $\|T f^n(v)\| \le A \lambda^n \|v\|$, $\|T f^n(w)\| \le A \lambda^n \|w\|$ (3.1)

A hyperbolic subset of M with respect to f is a closed invariant subset of M with hyperbolic structure and restriction of f.

Lemma (3.2). Let (M, \mathcal{L}) be a Riemannian 1- foliation on an oriented closed 3-manifold M, the poincare' map ρD_x on the embedded disk $D_x = \iota_x(D_0)$ for any $x \in M$ is an isometry. Hence it is nonhyperbolic.

Proof. ρD_x is not vacuous for some x. Because the generality of the compactness of M implies the existence of recurrent point (see [11, p.101]). Since every point of M is a recurrent point thus for any $x \in M$, ρD_x is defined. By lemma (2.6) the induced metric D_x does not rely on x. So ρD_x is an isometry. From isometry the nonhyperbolicity is clear. The proof is completed.

Before we apply the next theorem let us take a sheaf \mathcal{O} of germs of function on M which are constant along the leaves holomorphic in the transverse direction.

Theorem (3.3). ([Ghy's theorem[7]) Let \mathcal{L} be a transversely holomorphic foliation on M. If $H^2(M, \mathcal{O}) \neq 0, \mathcal{L}$ is Riemannian. M is closed 3-manifold.

Theorem (3.4). Let (M, \mathcal{L}) be as in theorem (3.2). then (M, \mathcal{L}) is nonhyperbolic with respect to any Riemannian metric M.

Proof. Since a tubular neighbourhood of the path defining ρD_x has the induced Riemannian metric on M as it is diffeomorphic to \mathcal{N} along the path.

We can set up a metric on M from this metric such that its restriction to a smaller tubular neighborhood of the path still has the same induced metric. This is obtained by the partition of unity. By lemma (3.2), ρD_x is nonhyperbolic and thus so is (M, \mathcal{L}) with respect to the metric. In general, (3.1) is independent of the choice of metric. (M, \mathcal{L}) is also nonhyperbolic with any Riemannian metric.

Corollary (3.5). Let \mathcal{L} be a transversely holomorphic foliation on a closed 3-manifold M. If $H^2(M, \mathcal{O}) \neq 0$, the poincare' map ρD_x for each recurrent point x is nonhyperbolic with respect to the induced Riemannian metric. So ρD_x is nonhyperbolic with any Riemannian metric.

Now we take transversely holomorphic 1-foliations instead of Riemannian foliations and complexification of sheaf \mathcal{O} on M. We need to apply Brunella and Ghy's works [12,2]. In [8, proposition 4.1] we will obtain the next corollary.

Corollary (3.6). If \mathcal{L} is a transversely holomorphic 1-foliation, there is $\tilde{\iota}_{x_i}, x_i \in M^n$. $\delta_{x_i y_j}$ is holomorphic and $\tilde{h}_{x_i y_j}$ is harmonic so that: $\tilde{\iota}^{-1}_{x_i} (\tilde{\iota}_{y_j}) : D_{x_i y_j} \times (-\epsilon_{y_j}, \epsilon_{y_j}) \to D_{x_i y_j} \times (-\epsilon_{x_i}, \epsilon_{x_i}),$ $(z, t) \to (\delta_{x_i y_j}(z), t + \tilde{h}_{x_i y_j}(z)).$

Definition (3.7). Let \mathcal{O} be the sheaf on M, we will take all of the sheave along \mathcal{O}_{M}^{∞} such that each open subset U_{i} of M^{n} , $\mathcal{O}_{M}^{\infty}(U_{i})$ is the set of functions on U_{i} and $f_{i} \circ \tilde{\iota}_{x_{i}} | \tilde{\iota}_{x_{i}} (u_{x_{i}} \cap u_{i})$ is holomorphic on D_{0} and constant a long $(-\epsilon_{x_{i}}, \epsilon_{x_{i}})$ for all $x_{i} \in M_{\infty}^{n}$.

Since the compact manifolds can be covered by finitely many coordinate charts, we take many x_i such that u_{x_i} forms an open cover of M. Let $\epsilon = \min_i (\epsilon_{x_i})$. Let \tilde{m}_{ij} be harmonic conjuagate of \tilde{h}_{ij} such that $\tilde{h}_{ii} + i^* \tilde{m}_{ii} : (-\epsilon, \epsilon) \times S^1 \to \mathbb{C}$ is holomorphic such that $(-\epsilon, \epsilon) \times S^1$ is a ring in \mathbb{C} .

$$\begin{split} &\tilde{h}_{ij} + i^* \tilde{m}_{ij} : (-\epsilon, \epsilon) \times S^1 \to \mathbb{C} \text{ is holomorphic such that } (-\epsilon, \epsilon) \times S^1 \text{ is a ring in } \mathbb{C}. \\ &\tilde{\delta}_{ij} : D_{ij} \times : (-\epsilon, \epsilon) \times S^1 \to D_{ij} \times (-\epsilon, \epsilon) \times S^1, \\ &(z, t, s) \to (\delta_{ij}(z), t + \tilde{h}_{ij}(z), s + \tilde{m}_{ij}(z)) \\ &(\text{see } [12, \text{ p.276}]). \end{split}$$

Generally $\hat{\delta}_{im} = \hat{\delta}_{ij} \circ \hat{\delta}_{jm}$ (*) where $\hat{\delta}_{ij}$ do not satisfy 1-cocycle condition(*). If $H^2(M, \mathcal{O}) \neq 0, \mathcal{L}$ is Riemannian by [7, theorem 1.1]. from [12, proposition3] if $H^2(M, \mathcal{O}) = 0$, they form a 1-cocycle.

Corollary (3.8). Let (M, \mathcal{L}) be a Riemannian 1-foliation transversely holomorphic on an oriented closed 3manifold. If $H^2(M, \mathcal{O}) \neq 0$ then (M, \mathcal{L}) is nonhyperbolic with respect to any Riemannian metric on M.

Corollary (3.9). By theorem(3.3) if $H^2(M, \mathcal{O}) \neq 0$, then the w-limit sets are diffeomorphic to S^1 or T^2 or M. And does not exist any proper nonempty attractor.

References

- Arbieto, C. A. Morales and B. Santiago, Lyapunov stability and sectional hyperbolicity for higher-dimensional flows, Math. Ann. 361 (2015), no. 1-2, 67–75.
- [2] Haefliger and D. Sundararaman, Complexifications of transversely holomorphic foliations, Math. Ann. 272 (1985), no. 1, 23–27.
- [3] A. Morales, M. J. Pacifico and E. R. Pujals, Robust transitive singular sets for 3-flows are partially hyperbolic attractors or repellers, Ann. of Math. (2) 160 (2004), no. 2, 375–432.
- [4] A. Morales and M. J. Pacifico, Mixing attractors for 3-flows, Nonlinearity 14 (2001), no. 2, 359–378.

- [5] Conley, Isolated Invariant Sets and the Morse Index, CBMS Regional Conference Series in Mathematics 38, American Mathematical Society, Providence, R.I., 1978.
- [6] V. Anosov, Geodesic flows on closed Riemannian manifolds of negative curvature, Trudy Mat. Inst. Steklov. 90, (1967), 209 pp.
- [7] Ghys, on transversely holomorphic flows II, Invent. Math. 126 (1996), no. 2, 281–286.
- [8] J. Jaeyoo Choy and Hahng-Yun Chu, Taiwanese J. Math.
- [9] Volume 23, Number 1 (2019), 145-157.
- [10] J. Choy, A few remarks on Collet-Eckmann attractors, Lyapunov attractors and asymptotically stable attractors, J. Chungcheong Math. Soc. 22 (2009), no. 3, 593–596.
- [11] J. Milnor, On the concept of attractor, Comm. Math. Phys. 99 (1985), no. 2, 177-195.
- [12] M. Brin and G. Stuck, Introduction to Dynamical Systems, Cambridge University Press, Cambridge, 2002.
- [13] M. Brunella, on transversely holomorphic flows I, Invent. Math. 126 (1996), no. 2, 265-279.
- [14] M. Inoue, on surfaces of class VII0, Invent. Math. 24 (1974), 269–310.
- [15] R. Bowen, Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, Lecture Notes in Mathematics 470, Springer-Verlag, Berlin, 1975.
- [16] W. J. Colmenarez and C. A. Morales, Transverse surfaces and attractors for 3-flows, Trans. Amer. Math. Soc. 354 (2002), no. 2, 795– 806.
- [17] Y. Shi, S. Gan and L. Wen, On the singular-hyperbolicity of star flows, J. Mod. Dyn. 8 (2014), no. 2, 191–219.
- [18] Y. Carri`ere, Flots riemanniens, Ast'erisque 116 (1984), 31-52.