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Abstract - Many tests for the analysis of continuous data have the underlying assumption that the data in 

question follows a normal distribution (ex. ANOVA, regression, etc.). Within certain research topics, it is 

common to end up with a dataset that has a disproportionately high number of zero-values but otherwise might 

follow a normal or a Poisson distribution. These datasets are often referred to as ‘zero-inflated’ and their 

analysis can be challenging. An example of where these zero-inflated datasets arise is in plant science. We 

conducted a simulation study to compare the performance of the Poisson zero-inflated model to a standard 

ANOVA model and also to a regular Poisson model on different types of zero-inflated data. Underlying 
distributions, number of populations, sample sizes, and percentages of zeros were variables of consideration. In 

this study, we conduct a Type I error assessment followed by a power comparison between the models. 
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I. Introduction 

Many tests for the analysis of continuous data have the underlying assumption that the samples under 
consideration come from a normal distribution (ex. ANOVA, regression, etc.). In some fields of research, it is 

common to end up with samples having a disproportionately high number of zero-values but appear to come 

from populations that are approximately normally distributed. These samples are often referred to as ‘zero-

inflated’ [1]. Because of the high number of zeros, the distributions from which the samples are drawn are not 

normal. Thus, analysis techniques with the underlying assumption of normality could be misleading.  Analysis 

of variance (ANOVA) will allow for small deviations from normal populations and still give accurate results, 

but the effect of large percentages of zeros on ANOVA has not been quantified. 

An example of where these zero-inflated datasets arise is in plant science. Suppose an experiment is 

designed where treatments are applied to seeds or their soil, and the height of the emerging plants is measured as 

the dependent variable. Generally, some percentage of the seeds do not grow; this results in a zero-inflated 

height dataset. Other sources of zero-inflated datasets are research on cold spells, defects in manufacturing, 

household expenditures on durable goods, alcohol consumption, insurance benefits, healthcare expenditures, and 
motor vehicle crash records [2, 3, 4]. 

Analysis of variance (ANOVA) is a statistical method that can be used to test if population means are 

equal using samples from the populations in question [5]. Within the context of testing for equality of means, 

ANOVA is an extension of the two-sample t-test that can be used for more than two samples. Both ANOVA and 

the two-sample t-test share the assumptions of sample independence, samples having an underlying normal 

distribution, and homogeneity of variance. The potential problem with using ANOVA on zero-inflated normal 

data is that the zero-inflation violates the assumption that the samples have an underlying normal distribution. 

Zero-inflation can also lead to a violation in the homogeneity of variance assumption. 

Models designed for dealing with zero-inflated data exist, but they have not been compared to the 

results from using the standard ANOVA. Examples of zero-inflated models include hurdle, Tobit, and zero-

inflated Poisson [6, 7, 8]. These models utilize different means to differentiate between zero and non-zero 
portions of the model to account for the extra zero values. With these different methods comes the potential for 

optimization on which methods are most powerful in a given set of circumstances. It is also possible that in 

some situations the zero-inflated models don’t provide any advantage over standard ANOVA, and subsequently 

aren’t worth dealing with the added complexity. 

The purpose of this research is to compare the results from ANOVA with the results from the Poisson 

model, and the zero-inflated Poisson model (ZIP) when the underlying distributions are either normal or Poisson 

with various percentages of zero-inflation.  We will conduct two phases of analysis. The first will be a Type I 

error assessment, and the second will be a power comparison. For the Type I error assessment, we will sample 

from both the normal and the Poisson distributions with varying levels of zero-inflation and sample sizes. For 

each combination of underlying distribution, level of zero-inflation, and sample size, we will estimate the Type 
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1 errors in the ANOVA and estimate the Type 1 errors using the regular Poisson model and using ZIP.  

Throughout the study, the stated Type 1 error is always 0.05.  Thus, we will compare our estimated Type 1 

errors with 0.05.  For cases in which the Type 1 errors are approximately 0.05 or less for all the models, we will 

compare the powers.   In this phase, each distribution will again be sampled with varying levels of zero-inflation 

and sample size. We again fit the models and calculate the power of each across many samples. To conduct the 

various phases of this study, we will select the distribution parameters by analyzing samples from an existing 

study from plant science. The parameters we find in the plant science study will be used for our simulations. 

Type 1 errors will be estimated for two and eight populations.  Powers will be estimated for two 
populations for various changes in means, various sample sizes, and various zero-inflation percentages, when 

appropriate.  In the case of eight populations, powers will be estimated for various sample sizes and zero-

inflation percentages, where appropriate, when the first mean is different and all the remaining means are the 

same, and then when the first four means are equal, and the last four means are equal, but different from the first 

four.   

In this study we will also seek to answer the following research questions:  

1) How does Type I error compare between the ANOVA, the Poisson model, and the ZIP when the 

underlying distributions are normal or Poisson, but with various percentages of zero-inflated data? 

2) Does the ZIP model, which is designed for zero-inflated Poisson data exhibit improved power over 

ANOVA or using a regular Poisson model across different percentages of zero-inflation for both 

normal and Poisson distributions? 

3) What level of zero-inflation significantly affects the Type I error and power of ANOVA? 
 

II. Background 

In this section we will provide additional information on the current state of zero-inflated data analysis 

and present past research on the topic. This will include discussion around the sources of zero-inflated data, the 

problems associated with using ANOVA on zero-inflated data, and proposed alternative solutions for analyzing 

zero-inflated data.  

Zero-Inflated Data 

In addition to the zero-inflated datasets that can arise in plant sciences, many other areas of study can 

produce this type of data. Research on defects in manufacturing, and healthcare expenditures are two of these 

areas [2, 3]. Regarding defects in manufacturing, when a machine is properly aligned the number of defects it 

will produces is consistently close to zero. When a machine is misaligned however, the number of defects it will 
produce may follow a Poisson distribution [3]. When both the aligned and misaligned machine states are 

simultaneously considered, a zero-inflated dataset can result.  

An additional source of zero-inflated data is within clinical trials. Measures such as the number of 

symptoms that a subject may exhibit or the number of risky behaviors that an individual engages in are often 

zero-inflated distributions [9, 10]. Finally, zero-inflated distributions can also be found in motor vehicle crash 

records [4]. On any given day, most motor vehicles traveling on a given stretch of road will not experience a 

crash. The crashes that do occur follow a discrete distribution. When we consider both the motor vehicles that 

do, and do not crash, we arrive at a zero-inflated distribution. The abundance of research areas that deal with 

zero-inflated data highlights the need for accurate models.  Since zero-inflation violates the assumptions of 

ANOVA, this can present problems. When using ANOVA in a zero-inflated context, the estimation of effects 

and inference can be biased [11]. 

 

Zero-Inflated Methods 

Two different models for dealing with zero-inflation in linear models are zero-inflated and hurdle 

models. Both models rely on a binary divider between two different states of the model; the states can be 

thought of as ‘on’ or ‘off’. With a hurdle model, zero values can only exist in the ‘on’ state. With a zero-inflated 

model, zero values are possible in both the ‘on’ and ‘off’ states [6]. A further description of hurdle models can 

be found in Mullahy [12]. 

Another approach to dealing with zero-inflation is the Tobit model [6] which originated for application 

with truncated data [13]. Like the zero-inflated and hurdle models, the Tobit model utilizes an ‘on’ and ‘off’ 

state to differentiate between two pieces of the model. The Tobit model utilizes a latent variable which above a 

certain threshold is linearly related to the dependent variable. When the latent variable is below a certain 

threshold, the dependent variable is always zero. While the Tobit model was originally intended for use with 
truncated data [14] it can be applied to zero-inflated data [15]. 

The ‘zero-inflated Poisson’ (also referred to as ‘ZIP’) model has been proposed as a solution for 

dealing with zero-inflation in a Poisson distribution [7]. With reference to manufacturing machine defects, the 

zero-inflated Poisson model allows both the aligned and misaligned states to be captured by a single 

distribution. A parameter (p) is used to control what percentage of the time the machine is properly aligned [3]. 

Greene also discusses the importance of distinguishing between zero-inflated and over dispersed distributions 
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[7]. A method for dealing with over dispersed Poisson or lack of fit to a Poisson distribution is to make 

likelihood adjustments [11]. Though papers discussing the comparison of zero-inflated models exist [1, 2], a 

simulation study to quantify the relative Type I error and power while considering the variables of interest will 

provide additional insight. 

 

III.  Simulation Study 

In this section we will review the methods used to conduct this study. We will begin with an overview 

of the simulation study, followed by an explanation of the simulation parameters and how they were selected. 
We will then discuss our method for assessing Type I error. Finally, we will introduce the idea of ‘realized 

effect size’ and review our method for comparing power between the models. 

 

Simulation Study Overview 

For this simulation study, we will be estimating Type I errors for the ANOVA, Poisson model and ZIP 

model when the underlying distribution means are the same. This will be done by simulating 10,000 sets of 

samples from the distributions and conducting a test for each set of samples. The Type I error will be estimated 

by counting the number of times H0 was rejected and dividing by 10,000. We will consider two types of 

underlying distributions with varying levels of zero-inflation when simulating the samples. The distributions we 

will consider are normal and Poisson. The levels of zero-inflation we will consider for each distribution are 0%, 

10%, 20%, 30%, 40%, and 50%.  

The number of populations we will consider are two and eight. Type I errors will be estimated first 
when the underlying distribution means are the same. Powers will be estimated next. Two scenarios will be 

considered when estimating the powers with eight populations. The first scenario is when µ1 is different than the 

others (µ2, µ3, µ4, µ5, µ6, µ7, and µ8) and the remaining 7 means are equal; this will be referred to as the ‘1 vs 7’ 

scenario.  The second scenario is when the first four means (µ1, µ2, µ3, and µ4) are equal, and the last four means 

(µ5, µ6, µ7, and µ8) are equal but different than the first four; this will be referred to as the ‘4 vs 4’ scenario. In 

the two-population scenarios, one population is the treatment and the other is the control. In the 1 vs 7 eight-

population scenario, the single population could be considered a treatment that is being compared to 7 control 

populations. In the 4 vs 4 eight-population scenario, 4 populations could be considered treatment populations 

that are different than the control, while 3 treatment populations do not differ from the control. 

Within each experimental design scenario, varying levels of sampling effort will be under 

consideration. For the two-population scenarios, we will consider equal sample sizes of n = 10, n = 15, n = 20, n 
= 30, n = 50, and n = 100 per population. For the eight-population scenarios, we will consider equal sample 

sizes of n = 3, n = 5, and n = 10 per population. For every combination of underlying distribution, level of zero-

inflation, experimental design scenario, and sampling effort, 10,000 sets of samples will be generated.  

During our preliminary investigation, hurdle and Tobit models were proving to be problematic for use 

in this study. They both exhibited poor Type I error control and power. We therefore favored additional 

investigation with the zero-inflated Poisson model instead, which did not exhibit these issues. Subsequently, we 

will consider three models for each set of samples: ANOVA, Poisson, and zero-inflated Poisson (ZIP). The 

terms ‘ANOVA’ and ‘normal’ with reference to the model we’re considering may be used interchangeably in 

the remainder of this report; the ANOVA model is built on the assumption of normality. Each model will be fit 

and tested on its ability to discern a difference between the population means for each set of samples using SAS. 

PROC GENMOD will be used to fit each of the models. Minor changes to the SAS code will allow us to change 

the distributional assumptions between models (normal, Poisson, ZIP). Aside from changes to the distributional 
assumption for each model, we applied a Pearson scale to the normal and Poisson model to address any potential 

issues with over dispersion. Without the Pearson over dispersion correction, Type I error (further explained 

below) could be affected and make power comparison of the Poisson model challenging [6].  

 

Simulation Parameters 

To select the underlying parameters for the two types of distributions considered in this study, we 

referenced the dataset that originally inspired this investigation. That dataset was from a plant science study with 

a continuous response variable, which enabled us to mimic it for our simulated normal samples. We calculated a 

mean of 20 and a variance of 4 from the reference dataset and used those same parameters for the simulated 

normal samples. For consistency, we also set the lambda parameter of the Poisson simulated samples to 20. This 

value of lambda kept the shape of the Poisson samples symmetric and relatively normal. Though, the variance is 
not the same between the two distributions, the mean is 20 for each.  

 

Type I Error Assessment 

When conducting a comparative power analysis, it is important to verify that each model being 

compared has controlled Type I error. Comparing the power between two models that do not have similar Type 
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I error rates could lead to incorrect conclusions about which model is more powerful; seemingly small 

deviations in Type I error can cause significant changes in apparent power.  

For this study, we estimated Type I error for the two-population scenarios by simulating two samples 

from the same distribution, fitting the models to each pair of samples, and tallying rejections to the null and 

alternative hypothesis below: 

H0: µ1 = µ2 

Ha: µ1 ≠ µ2 

The Type I error for each model was estimated by taking the number of samples that resulted in a rejection of 
the null hypothesis and dividing by 10,000 (the number of sample pairs simulated). We used a stated alpha value 

(α) of 0.05 for this study. Type I error was estimated for each combination of sample distribution (normal, 

Poisson, negative binomial), model, sampling effort, and level of zero-inflation. 

For the eight-population scenarios, we compared Type I error by conducting a test with different null 

and alternative hypothesis from the two-population scenarios. The null and alternative hypothesis for the eight-

population treatment scenarios are as follows: 

H0: µ1 = µ2 = µ3 = µ4 = µ5 = µ6 = µ7 = µ8 

Ha: At least one µx is different from the others 

As with the two-population case, Type I error for each model was estimated by taking the number of samples 

that resulted in a rejection of the null hypothesis and dividing by 10,000 (the number of sample pairs simulated). 

Type I error was estimated for each combination of sample distribution (normal, Poisson, negative binomial), 

model, sampling effort, and level of zero-inflation. 
 

Realized Effect Size 

We next conducted a power analysis. To do this, it is important to understand the impact that zero-

inflation has on treatment effect size. Consider a sample from a normal distribution with mean 20 and variance 

4. Without any zero-inflation, the expected value for the sample mean and variance are respectively 20 and 4. 

Now let’s consider another sample in which half of the values are from the same normal distribution, and the 

other half of the values are zeros (50% zero-inflation, p = 0.5). For this sample, the expected value for the mean 

and variance are respectively 10 and 102.  

To understand this within the context of effect size, let’s consider a normally distributed population 

with mean 22 and variance 4, and another population with mean 20 and variance 4. The normalized effect size 

between these two populations is 1σ ((22 - 20) / 2). If we apply 50% zero-inflation to those samples, the means 
and variance will change significantly, which will also change the normalized effect size between the two 

populations. For the purposes of this study, we have defined the term ‘realized effect size’ as the difference 

between the zero-inflated means divided by the variance before zero-inflation was added. While this may be a 

somewhat overly simplistic approach, it succinctly illustrates the point of decreasing effect size on the non-zero 

portion of the data as zero-inflation increases. Applying this calculation to the previously mentioned normal 

populations, with means 22 and 20 respectively, we are left with a realized effect size of 0.5σ ((11 - 10) / 2 = 

0.5σ). In Table 1 below, the realized effect size for each level of zero-inflation and target effect size has been 

calculated. It is important to keep in mind the diminishing realized effect size as zero-inflation increases because 

we expect lower statistical power on samples from populations with a smaller effect size. 

 

 

Table 1. Realized Effect Size. 

Zero-Inflation p = 0.0 p = 0.1 p = 0.2 p = 0.3 p = 0.4 p = 0.5 

1σ Realized Effect Size 1.0σ 0.9σ 0.8σ 0.7σ 0.6σ 0.5σ 

2σ Realized Effect Size 2.0σ 1.8σ 1.6σ 1.4σ 1.2σ 1.0σ 

 

Power Comparison 

The purpose of a power comparison is to determine if certain models perform better under specific 

circumstances. In general, a statistical test will have higher power when the effect size is large. To quantify the 

difference between means, the term ‘standardized effect size’ is used and refers to the difference in population 

means divided by the standard deviation of the samples. For example, if we were sampling from the 

distributions N(22,4) and N(20,4), where the variance of each distribution is equal to 4 (standard deviation equal 
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to 2), we would have an effect size of (22 - 20) / 2 = 1σ. For the purposes of this study, we considered effect 

sizes of 1σ and 2σ for each of the experimental design scenarios. 

For the two-population scenarios in this study, we compared power by simulating two samples from 

distributions with a set effect size, fitting the models to the samples, and tallying rejections to the null and 

alternative hypothesis below: 

H0: µ1 = µ2  

Ha: µ1 ≠ µ2 

Since the two samples were taken from distributions with different means, the models arrive at the correct 
conclusion when they reject H0 and conclude that the there is a difference between the population means. For 

each combination of sample distribution (normal, Poisson, negative binomial), model, sampling effort, and level 

of zero-inflation, we tallied results for 10,000 samples of the test described above. An overall power for each 

scenario was calculated by taking the number of samples that resulted in a rejection of the null hypothesis and 

dividing by 10,000. 

For the eight-population scenarios, we compared power by conducting a test with different null and 

alternative hypothesis from the two-population scenarios. The null and alternative hypothesis for both eight-

population treatment scenarios are as follows: 

H0: µ1 = µ2 = µ3 = µ4 = µ5 = µ6 = µ7 = µ8 

Ha: At least one µx is different from the others 

Like the two-population scenarios, the eight-population scenarios arrived at the correct conclusion when H0 was 

rejected to conclude that at least one of the groups had a different population mean.  
Again, for each combination of sample distribution (normal, Poisson, negative binomial), model, 

sampling effort, and level of zero-inflation, we tallied results for 10,000 samples of the test described above. An 

overall power for each scenario was calculated by taking the number of samples that resulted in a rejection of 

the null hypothesis and dividing by 10,000. 

 

Simulation Study Outline 

To more succinctly describe this simulation study, we have created the outline below: 

1) Type I error assessment with two populations, µ1 = µ2. 

a) Underlying distributions: Normal, Poisson 

b) Zero-inflation of 0%, 10%, 20%, 30%, 40%, and 50% 

c) Sampling effort of n = 10, n = 15, n = 20, n = 30, n = 50, n = 100 (per population) 
d) Models: ANOVA, Poisson, Zero-Inflated Poisson 

e) Samples taken / models fit for each combination of parameters above: 10,000 

2) Type I error assessment with eight populations, µ1 = µ2 = µ3 = µ4 = µ5 = µ6 = µ7 = µ8. 

a) Underlying distributions: Normal, Poisson 

b) Zero-inflation of 0%, 10%, 20%, 30%, 40%, and 50% 

c) Sampling effort of n = 3, n = 5, n = 10 (per population) 

d) Models: ANOVA, Poisson, Zero-Inflated Poisson 

e) Samples taken / models fit for each combination of parameters above: 10,000 

3) Power comparison with two populations, µ1 ≠ µ2. 

a) Underlying distributions: Normal, Poisson 

b) Zero-inflation of 0%, 10%, 20%, 30%, 40%, and 50% 

c) Sampling effort of n = 10, n = 15, n = 20, n = 30, n = 50, n = 100 (per population) 
d) Models: ANOVA, Poisson, Zero-Inflated Poisson 

e) Effect sizes of 1σ and 2σ 

f) Samples taken / models fit for each combination of parameters above: 10,000 

4) Power comparison with eight populations, µ1 ≠ µ2 = µ3 = µ4 = µ5 = µ6 = µ7 = µ8. 

a) Underlying distributions: Normal, Poisson 

b) Zero-inflation of 0%, 10%, 20%, 30%, 40%, and 50% 

c) Sampling effort of n = 3, n = 5, n = 10 (per population) 

d) Models: ANOVA, Poisson, Zero-Inflated Poisson 

e) Effect sizes of 1σ and 2σ 

f) Samples taken / models fit for each combination of parameters above: 10,000 

5) Power comparison with eight populations, µ1 = µ2 = µ3 = µ4 ≠ µ5 = µ6 = µ7 = µ8. 
a) Underlying distributions: Normal, Poisson 

b) Zero-inflation of 0%, 10%, 20%, 30%, 40%, and 50% 
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c) Sampling effort of n = 3, n = 5, n = 10 (per population) 

d) Effect sizes of 1σ and 2σ 

e) Samples taken / models fit for each combination of parameters above: 10,000 

 

IV.  Results 

In this section we will provide an overview of the results from the Type I error assessment and review 

the results from the power comparison for each sample distribution we considered. 

 

Two-Population Type I Error Assessment 

As stated in the ‘Methods’ section, because a target Type I error rate of α = 0.05 was selected for this 

study, values for Type I error should be near 0.05. To create a reference for the interpretation of our Type I error 

rates, we calculated a 95% confidence interval on the binomial proportion with the point estimator set to 0.05 

(and n = 10,000); the resulting interval is [0.0457, 0.0543]. For comparison, the 90% and 99% intervals are 

respectively [0.0464, 0.0536] and [0.0444, 0.0556]. 

The results of the two-population Type I error assessment on normal samples can be found in Tables 2, 

3, and 4 below. In these tables, we see Type I error maintained near the stated level of alpha for the normal 

model. The Poisson model also has Type I error maintained near the stated level of alpha for samples of n = 15 

and larger. This model is exhibiting conservative Type I error for samples of n = 10 (except for the p = 0.0 

case). The ZIP model applied to zero-inflated normal data has a consistent Type I error rate near zero for each of 

the test cases. 
 

Table 2. Normal Sample – Normal Model Two-Population Type I Error. 

Zero-Inflation p = 0.0 p = 0.1 p = 0.2 p = 0.3 p = 0.4 p = 0.5 

n = 10 4.95 2.82 4.78 4.92 4.98 5.06 

n = 15 4.94 4.09 4.63 5.55 4.99 5.29 

n = 20 4.95 4.52 4.94 4.81 5.10 4.87 

n = 30 5.03 4.36 4.70 5.30 4.71 5.10 

n = 50 4.94 4.65 5.11 4.93 4.88 5.23 

n = 100 5.05 5.02 4.95 4.74 5.14 4.90 

 

Table 3. Normal Sample – Poisson Model Two-Population Type I Error. 

Zero-Inflation p = 0.0 p = 0.1 p = 0.2 p = 0.3 p = 0.4 p = 0.5 

n = 10 6.54 2.43 3.51 3.84 3.72 3.29 

n = 15 5.64 3.64 4.53 4.45 3.80 3.76 

n = 20 6.03 4.10 4.58 4.70 4.70 4.20 

n = 30 5.50 4.34 4.47 4.77 4.49 4.59 

n = 50 5.47 4.23 4.77 4.43 5.09 4.87 

n = 100 5.21 5.00 4.65 4.83 5.04 5.42 

 

 

Table 4. Normal Sample – ZIP Model Two-Population Type I Error. 

Zero-Inflation p = 0.0 p = 0.1 p = 0.2 p = 0.3 p = 0.4 p = 0.5 

n = 10 0.00 0.00 0.00 0.00 0.00 0.00 

n = 15 0.00 0.00 0.00 0.00 0.01 0.00 

n = 20 0.00 0.00 0.00 0.00 0.01 0.00 
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n = 30 0.00 0.00 0.00 0.00 0.00 0.00 

n = 50 0.00 0.00 0.00 0.00 0.00 0.00 

n = 100 0.00 0.00 0.01 0.00 0.00 0.00 

 

 

The results of the two-population Type I error analysis on zero-inflated Poisson samples can be found 

in Tables 5, 6, and 7. For the normal model, Type I error is being controlled across sampling effort and zero-
inflation.  

 

Table 5. Poisson Sample – Normal Model Two-Population Type I Error. 

Zero-Inflation p = 0.0 p = 0.1 p = 0.2 p = 0.3 p = 0.4 p = 0.5 

n = 10 5.07 4.19 4.85 4.97 5.02 4.97 

n = 15 5.02 4.86 5.42 4.81 5.14 4.88 

n = 20 4.97 4.82 4.88 5.16 4.77 5.13 

n = 30 5.07 5.14 5.21 5.26 5.20 5.01 

n = 50 4.57 5.22 5.12 5.19 5.06 5.02 

n = 100 5.10 5.40 4.84 5.10 4.97 4.96 

 
Table 6. Poisson Sample – Poisson Model Two-Population Type I Error. 

Zero-Inflation p = 0.0 p = 0.1 p = 0.2 p = 0.3 p = 0.4 p = 0.5 

n = 10 6.42 4.80 4.45 4.15 4.10 3.53 

n = 15 5.96 5.10 4.96 4.15 4.02 4.16 

n = 20 5.73 4.61 4.78 4.87 4.62 4.49 

n = 30 5.54 5.08 5.25 4.75 4.84 4.22 

n = 50 5.02 4.74 4.93 4.80 4.91 5.01 

n = 100 5.31 5.18 5.00 4.81 4.42 4.76 

 

Table 7. Poisson Sample – ZIP Model Two-Population Type I Error. 

Zero-Inflation p = 0.0 p = 0.1 p = 0.2 p = 0.3 p = 0.4 p = 0.5 

n = 10 4.86 4.73 4.95 4.85 4.92 4.57 

n = 15 4.78 5.07 4.87 5.11 4.71 4.85 

n = 20 5.00 4.67 4.89 5.11 4.78 5.26 

n = 30 5.04 4.89 4.95 4.68 4.64 5.00 

n = 50 4.77 4.82 4.95 4.78 5.04 4.92 

n = 100 5.15 5.35 4.89 5.08 4.87 4.71 

 

Eight-Population Type I Error Assessment 

The results of the eight-population Type I error assessment on normal samples can be found in Tables 
8, 9, and 10. For the normal model, we see maintained Type I error across levels of sampling size and zero-
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inflation. The n = 10 case for the Poisson model applied to normal data is borderline acceptable and power 

results will need to be interpreted with caution. In Table 13 we see near zero Type I error for all levels of sample 

size and zero-inflation for the ZIP model applied to normal samples. 

 

Table 8. Normal Sample – Normal Model Eight-Population Type I Error. 

Zero-Inflation p = 0.0 p = 0.1 p = 0.2 p = 0.3 p = 0.4 p = 0.5 

n = 3 4.89 4.33 5.12 5.21 6.01 5.62 

n = 5 5.17 4.20 5.34 4.97 5.26 5.34 

n = 10 4.93 4.16 5.13 4.82 5.32 4.86 

 

Table 9. Normal Sample – Poisson Model Eight-Population Type I Error. 

Zero-Inflation p = 0.0 p = 0.1 p = 0.2 p = 0.3 p = 0.4 p = 0.5 

n = 3 12.14 2.51 5.93 12.18 14.68 10.79 

n = 5 8.62 2.64 2.86 3.99 7.59 11.42 

n = 10 6.33 3.58 3.78 4.06 4.39 4.23 

 

Table 10. Normal Sample – ZIP Model Eight-Population Type I Error. 

Zero-Inflation p = 0.0 p = 0.1 p = 0.2 p = 0.3 p = 0.4 p = 0.5 

n = 3 0.00 0.17 0.40 0.63 1.24 1.28 

n = 5 0.00 0.00 0.13 0.41 0.33 0.78 

n = 10 0.00 0.00 0.00 0.00 0.06 0.31 

 

The results of the eight-population Type I error analysis on zero-inflated Poisson samples can be found 

in Tables 11, 12, and 13. In Table 12 we see inflated or deflated Type I error except for the n = 10 case with the 

Poisson model. In Table 16 we see Type I error only being controlled for the n = 10 cases for the ZIP model. 

 

Table 11. Poisson Sample – Normal Model Eight-Population Type I Error. 

Zero-Inflation p = 0.0 p = 0.1 p = 0.2 p = 0.3 p = 0.4 p = 0.5 

n = 3 5.22 4.71 5.11 5.74 5.30 5.19 

n = 5 4.83 4.51 4.75 4.32 5.43 5.15 

n = 10 4.86 4.93 5.32 5.19 4.89 5.55 

 

Table 12. Poisson Sample – Poisson Model Eight-Population Type I Error. 

Zero-Inflation p = 0.0 p = 0.1 p = 0.2 p = 0.3 p = 0.4 p = 0.5 

n = 3 12.02 4.57 6.96 12.32 14.18 12.24 

n = 5 8.38 3.98 4.33 4.54 7.39 10.70 

n = 10 6.35 4.51 4.22 4.50 4.86 5.11 

 

Table 13. Poisson Sample – ZIP Model Eight-Population Type I Error. 
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Zero-Inflation p = 0.0 p = 0.1 p = 0.2 p = 0.3 p = 0.4 p = 0.5 

n = 3 5.42 5.78 8.08 11.21 13.92 16.99 

n = 5 5.22 4.79 5.22 6.21 8.34 11.78 

n = 10 4.47 5.36 5.10 4.97 5.23 5.88 

 

Zero-Inflated Normal Power Comparison 

For two-population zero-inflated normal samples, we see the ZIP model having stronger power than the 

normal or Poisson models for sampling efforts above n = 30. Without zero inflation (p = 0.0) the normal and 

Poisson models have higher power than the ZIP model. It is worth noting that the ZIP model applied to two-

population normal samples had low Type I error which suggests that the power shown in the figures below 

could improve if the Type I error were closer to the desired 5%. The 1σ effect size power comparison plots for 
the normal, Poisson, and ZIP models applied to zero-inflated normal samples can be found in Figures 1, 2, and 3 

for percentage of zero inflation being 0%, 20%, and 50%. The relative power of the models at the 1σ effect size 

were amplified in the 2σ effect size simulations.  

 

 

For eight-population zero-inflated normal samples, we only saw acceptable Type I error for samples of 

n = 10 when using the Poisson model. Subsequently, we will only compare models for this distribution at the n 

= 10 sample size. The zip model had low power in comparison to the other models when the zero-inflation 

percentage was zero.  There is no distinct power advantage for any of the models for higher percentages of zero-

inflation. Figures 4 and 5 are given for the powers for each model for 20% and 50% zero-inflation. This power 

result did not vary when the treatment was applied to 1 population (1 vs 7) versus when the treatment was 

applied to 4 populations (4 vs 4).  
 

 

Figure 1. Normal Sample – p = 0.0 Two-Population Power (1σ). 
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Figure 2. Normal Sample – p = 0.2 Two-Population Power (1σ). 

 

Figure 3. Normal Sample – p = 0.5 Two-Population Power (1σ). 
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Figure 4. Normal Sample – p = 0.2 Eight-Population Power (1 vs 7, 1σ). 

 

Figure 5. Normal Sample – p = 0.5 Eight-Population Power (1 vs 7, 1σ). 

Zero-Inflated Poisson Power Comparison 

For two-population zero-inflated Poisson samples, the normal and Poisson models had comparable 

power across levels of zero-inflation and sampling effort. Both the normal and Poisson models were however 

outperformed by the ZIP model for all combinations of zero-inflation (except at 0%) and sample sizes. . Figures 
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6 and 7 show the comparison the powers of all three models for the 1σ effect size when the percentage of zero-

inflation was 20% and 50%.   

 

 

Figure 6. Poisson Sample – p = 0.2 Two-Population Power (1σ). 

 

Figure 7. Poisson Sample – p = 0.5 Two-Population Power (1σ). 
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Figure 8. Poisson Sample – p = 0.0 Eight-Population Power (1 vs 7, 1σ). 

For eight-population zero-inflated Poisson samples, we only saw acceptable Type I error for samples of n = 10 

for the Poisson model. Subsequently, we will only compare models for this distribution at the n = 10 sample 

size. We again saw there was power improvement with the ZIP model over the normal and Poisson models. The 

normal and Poisson models again performed similarly. The relative strength of the models did not change for 

the 1 population (1 vs 7) or 4 population (4 vs 4) treatment group scenarios, but there was improved power for 

all models with the 4 population treatment group scenarios. Power comparison plots for the 1 population 
treatment samples (1 vs 7) can be found in Figures 8, 9, and 10 for percentages of zero-inflation of 0%, 30% and 

50%. 

 

Figure 9. Poisson Sample – p = 0.3 Eight-Population Power (1 vs 7, 1σ). 
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V. Conclusions 

Research Questions 

Let’s review the research questions proposed in the introduction to this study:  

1) How does Type I error compare between the ANOVA, the Poisson model, and the ZIP when the 

underlying distributions are normal or Poisson, but with various percentages of zero-inflated data? 

2) Does the ZIP model, which is designed for zero-inflated Poisson data, exhibit improved power 

over ANOVA or using a regular Poisson model across different percentages of zero-inflation for 

both normal and Poisson distributions? 
3) What level of zero-inflation significantly affects the Type I error and power of ANOVA? 

 

For the normal model applied to normal samples, Type I error is well controlled. For the Poisson model applied 

to normal samples with sampling sizes of n = 15 or greater, Type I error is also well controlled. The ZIP model 

had low Type I error that was consistently near zero for normal samples. For Poisson samples, we saw 

controlled Type I error for the normal model.  Type 1 error was controlled for the Poisson model and the ZIP 

model for sample sizes of at least 10. To more specifically answer the Type I error research question, for the 

models and two data distributions considered in this study, the zero-inflated method only seems to have better 

Type I error control when applied to Poisson samples. 

Regarding the power of zero-inflated methods when compared to standard ANOVA, in the two-

population normal sample treatment scenarios, the ZIP model with samples of n = 30 or greater had improved 

power over the normal or Poisson models. For two-population Poisson samples, the ZIP model showed 
improved power over the normal or Poisson models for all combinations of sample size and level of zero 

inflation. In general, these results held true for the eight-population test cases. The notable exception being when 

we applied the ZIP model to eight-population normal samples; this resulted in extremely low power for all test 

cases.  

 

Figure 10. Poisson Sample – p = 0.5 Eight-Population Power (1 vs 7, 1σ). 

To address the question on what level of zero-inflation compromises the accuracy of ANOVA, we will 

review Type I error and power for the normal model. We did not see significant changes in Type I error control 

for the normal model across levels of zero-inflation for any of our two sample distributions. Regarding power, 

the normal model becomes significantly compromised with nearly any level of zero inflation for all considered 

sample distributions. We found that the decrease in power was larger for the two-population scenarios than the 
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eight-population scenarios, but an immediate and considerable decrease in power was discovered with all levels 

of zero-inflation. 

 

REFERENCES 

[1] Min, Y. & Agresti, A. (2002) Modeling Nonnegative Data with Clumping at Zero: A Survey. Journal of Iranian Statistical 

Society Vol. 1, pp. 7-33. 

[2] Eggers, J. (2015). On Statistical Methods for Zero-Inflated Models. Technical Report U.U.D.M. Project Report 2015:9, Uppsala 

University. 

[3] Lambert, D. (1992) Zero-Inflated Poisson Regression, with an Application to Defects in Manufacturing. Technometrics Vol. 34, 

No. 1, pp. 1-14. 

[4] Lord, D., Washington, S., & Ivan, J. (2005) Poisson, Poisson-Gamma and Zero-Inflated Regression Models of Motor Vehicle 

Crashes: Balancing Statistical Fit and Theory. Accident Analysis and Prevention Vol. 37, No. 1, pp. 35-46. 

[5] Fisher, R. (1963) Statistical Methods for Research Workers, 13th ed. Edinburgh: Oliver and Boyd. 

[6] Stroup, W. (2013) Generalized Linear Mixed Models: Modern Concepts, Methods and Applications. CRC Press. 

[7] Tobin, J. (1958) Estimation of Relationships for Limited Dependent Variables. Econometrica Vol. 26, No. 1, pp. 24-36. 

[8] Greene, W. (1994) Accounting for Excess Zeros and Sample Selection in Poisson and Negative Binomial Regression Models. 

Stern School of Business working paper no. 94-10. 

[9] Hu, M., Pavlicovia, M. & Nunes, E. (2011) Zero-inflated and hurdle models of count data with extra zeros: examples from an 

HIV-risk reduction intervention trial. The American journal of drug and alcohol abuse Vol. 37, No. 5, pp. 367-375.  

[10] Yang, S., Harlow, L., Puggioni, G., & Redding, C. (2017) A Comparison of Different Methods of Zero-Inflated Data Analysis 

and an Application in Health. Journal of Modern Applied Statistical Methods Vol 16, No. 1, pp. 518-543. 

[11] Sileshi, G. (2008) The Excess-Zero Problem in Soil Animal Count Data and Choice of Appropriate Models for Statistical 

Inference. Pedobiologia Vol. 52, pp. 1-17. 

[12] Mullahy, J. (1986) Specification of Some Modified Count Data Models. Journal of Econometrics Vol. 33, pp. 341-365 

[13] Amemiya, T. (1973) Regression Analysis when the Dependent Variable Is Truncated Normal. Econometrica Vol. 41, No. 6, pp. 

997-1016. 

[14] McDonald, F. & Moffitt, R. (1980) The Uses of Tobit Analysis. The Review of Economics and Statistics Vol. 62, No. 2, pp. 318-

321. 

[15] Hall, D. & Zhang, Z (2004) Marginal models for zero inflated clustered data. Statistical Modeling Vol. 4, pp. 161-180 

 


