On k* Quasi Normal Operator of Order n

N.Abdul Ali^{#1}, A.Prasanna^{#2}, G.Mathura, A.Keerthiga and T.Gayathri^{#3}

^{#1}Associate Professor, PG and Research Department of Mathematics,
 Jamal Mohamed College (Autonomous), Tiruchirappalli – 620020, Tamilnadu, India.
 ^{#2}Assistant Professor, PG and Research Department of Mathematics,
 Jamal Mohamed College (Autonomous), Tiruchirappalli – 620020, Tamilnadu, India.
 ^{#3}Research Scholar, PG and Research Department of Mathematics,
 Jamal Mohamed College (Autonomous), Tiruchirappalli – 620020, Tamilnadu, India.

Abstract — In this paper, we will give new type of quasi normal operator is called K^* quasi normal operator of order n and as well as, study the tensor product of these operators and some properties of this concept have been given.

Keywords — normal operators, quasi normal operators, n-normal operators.

I. INTRODUCTION

H be a Hilbert space and B(H) be the algebra of all bounded linear operators acting on H. An operator $T \in B(H)$ is said to be quasi normal operator if T commute with T T* this concept was given by A. Brown in 1953 [2].

II. PRELIMINARIES

Let $T \in B(H)$, where H is a hibert space, then T is said to be a K^* quasi normal operator of order N, if satisfy

$$(T^*)^K (T^{*n}T^n) = (T^{*n}T^n) (T^*)^K$$

WHERE, $\,T^*\,$ is the adjoint of the operator $\,T\,$ and $\,N\,$ is a positive number .

III. THEOREMS

3.1 THEOREM

Let $T: H \rightarrow K$ be K^* quasi normal operator of order N such that $T^n T^{*n} = T^{*n} T^n$ then T^* is K^* quasi normal operator of order N.

PROOF:

TO PROVE,

$$((T^*)^*)^{K}((T^*)^{*n}(T^*)^{n}) = ((T^*)^{*n}(T^*)^{n})((T^*)^*)^{K}$$

TAKE L.H.S.,

$$\left((T^*)^* \right)^K \left((T^*)^{*n} (T^*)^n \right) = \left((T^*)^K \right)^* \left((T^{*n})^* (T^n)^* \right)$$

= $\left((T^*)^K \right)^* \left((T^n) (T^{*n}) \right)^*$
= $\left((T^n T^{*n}) (T^*)^K \right)^*$
= $\left((T^*n T^n) (T^*)^K \right)^*$
= $\left((T^*)^K (T^{*n} T^n) \right)^*$

IF T IS SELF ADJOINT OPERATOR THEN T IS $\,K^*\,QUASI\,NORMAL\,OPERATOR\,\,OF\,\,ORDER\,N$.

3.3 PROPOSITION

THEN S IS K^{\ast} QUASI NORMAL OPERATOR OF ORDER N .

$$(S^*)^K (S^{*n} S^n) = (S^{*n} S^n) (S^*)^K$$

THAT IS,

(1) = (2)

TAKE R.H.S,

$$= \cup T^{*K} (T^{*n} T^n) \cup (1)$$

$$(S^*)^K (S^{*n} S^n) = (UT^{*K} U^*) (UT^{*n} U^* UT^n U^*)$$
$$= UT^{*K} U^* UT^{*n} U^* UT^n U^*$$

Т

$$\implies (\mathbf{S}^*)^K (\mathbf{S}^{*n} \mathbf{S}^n) = (\mathbf{S}^{*n} \mathbf{S}^n) (\mathbf{S}^*)^K$$

TO PROVE , S IS $\,K^*\,$ quasi normal operator of order $\,N$.

SO THAT,
$$S^n = \bigcup T^n \bigcup^*$$
 AND $S^{*n} = \bigcup T^{*n} \bigcup^*$

SO THAT,
$$S^n = \bigcup T^n \bigcup^*$$
 AND $S^{*n} = \bigcup T^{*n} \bigcup^*$

SO THAT,
$$S^n = \bigcup T^n \bigcup^*$$
 AND $S^{*n} = \bigcup T^{*n} \bigcup^*$

SO THAT,
$$S^n = UT^n U^*$$
 AND $S^{*n} = UT^{*n} U^*$

IS K* QUASI NORMAL OPERATOR OF ORDER N .

SO THAT,
$$S^n = \bigcup T^n \bigcup^*$$
 AND $S^{*n} = \bigcup T^{*n} \bigcup^*$

SO THAT
$$S^n = \bigcup T^n \bigcup^*$$
 AND $S^{*n} = \bigcup T^{*n} \bigcup^*$

SO THAT,
$$S^n = \bigcup T^n \bigcup^*$$
 AND $S^{*n} = \bigcup T^{*n} \bigcup^*$

SO THAT
$$S^n = \amalg T^n \amalg^*$$
 AND $S^{*n} = \amalg T^{*n} \amalg^*$

Then , T^{\ast} is K^{\ast} quasinormal operator of order N .

SO THAT
$$S^n - U T^n U^*$$
 AND $S^{*n} - U T^{*n} U^*$

SO THAT
$$S^n - U T^n U^*$$
 AND $S^{*n} - U T^{*n} U^*$

THAT
$$S^n = \sqcup T^n \sqcup^*$$
 AND $S^{*n} = \amalg T^{*n} \amalg^*$

SO THAT
$$S^n - U T^n U^*$$
 AND $S^{*n} - U T^{*n} U^*$

SO THAT
$$S^n = \sqcup T^n \sqcup^*$$
 and $S^{*n} = \amalg T^{*n} \sqcup^*$

SO THAT
$$S^n - U T^n U^*$$
 AND $S^{*n} - U T^{*n} U^*$

 $= \left((\,T^{\ast n}\,)^{\ast}\,(\,T^{n}\,)^{\ast}\right)\,\left((\,{\scriptscriptstyle \mathrm{T}}^{\ast}\,\right)^{K}\,\right) \\$

 $((T^*)^*)^{K} ((T^*)^{*n} (T^*)^{n}) = ((T^*)^{*n} (T^*)^{n}) ((T^*)^{*n})^{K}$

SINCE , S IS UNITARILY EQUIVALENCE TO T , THEN THERE EXIST A UNITARY OPERATOR U SUCH
$${\scriptstyle U}^*$$

SINCE, S IS UNITARILY EQUIVALENCE TO T, THEN THERE EXIST A UNITARY OPERATOR U SUCH THAT S =
$$11^{\circ}$$

IF T IS K* QUASI NORMAL OPERATOR OF ORDER N AND S IS UNITARILY EQUIVALENCE TO T THEN S

= U Т

PROOF:

 \therefore L.H.S = R.H.S

3.2 THEOREM

 $= (T^{*n}T^n)^* ((T^*)^K)^*$ $= (T^n T^{*n})^* ((T^*)^K)^*$

[**, T IS K* QUASI NORMAL OPERATOR OF ORDER N]

PROOF:

SINCE, T IS SELF ADJOINT OPERATOR $T = T^*$.

TO PROVE,
$$(T^*)^K (T^{*n} T^n) = (T^{*n} T^n) (T^*)^K$$

TAKE L.H.S.,

$$\Rightarrow (T^*)^K (T^{*n} T^n) = (T^*)^K (T^* T)^n$$

= $T^K (T T)^n$
= $T^K T^{2n}$
 $(T^*)^K (T^{*n} T^n) = T^{K+2n}$ (1)

TAKE R.H.S.,

$$\Rightarrow (T^{*n}T^{n}) (T^{*})^{K} = (T^{*}T)^{n} (T^{*})^{K}$$
$$= (TT)^{n} T^{K}$$
$$= T^{2n}T^{K}$$
$$= T^{2n+K}$$
$$= T^{K+2n}.....(2)$$

∴ (1) = (2)

THEN T IS K^{\ast} QUASI NORMAL OPERATOR OF ORDER N .

3.4 PROPOSITION

Let T_1 , T_2 ,...., T_n are K* quasi normal operators of order N from a hilbert space H then $T_1 \otimes T_2 \otimes \ldots \otimes T_n$ is also K* quasi normal operator N.

PROOF:

TO PROVE,

$$\left((T_1 \otimes T_2 \otimes \ldots \otimes T_n)^* \right)^K \left((T_1 \otimes T_2 \otimes \ldots \otimes T_n)^{*n} (T_1 \otimes T_2 \otimes \ldots \otimes T_n)^n \right)$$

$$= \left((T_1 \otimes T_2 \otimes \ldots \otimes T_n)^{*n} (T_1 \otimes T_2 \otimes \ldots \otimes T_n)^n \right) \left((T_1 \otimes T_2 \otimes \ldots \otimes T_n)^* \right)^K$$

$$\mathsf{TAKE L.H.S.}, \Rightarrow$$

$$\begin{pmatrix} (T_1 \otimes T_2 \otimes \dots \otimes T_n)^{*} \end{pmatrix} \begin{pmatrix} (T_1 \otimes T_2 \otimes \dots \otimes T_n)^{*n} (T_1 \otimes T_2 \otimes \dots \otimes T_n)^n \end{pmatrix}$$

$$= (T_1^* \otimes T_2^* \otimes \dots \otimes T_n^*)^K ((T_1^{*n} \otimes T_2^{*n} \otimes \dots \otimes T_n^{*n})(T_1^n \otimes T_2^n \otimes \dots \otimes T_n^n))$$

$$= ((T_1^*)^K \otimes (T_2^*)^K \otimes \dots \otimes (T_n^*)^K)(T_1^{*n}T_1^n \otimes T_2^{*n}T_2^n \otimes \dots \otimes T_n^{*n}T_n^n)$$

$$= ((T_1^*)^K (T_1^{*n} T_1^n) \otimes (T_2^*)^K (T_2^{*n}T_2^n) \otimes \dots \otimes (T_n^*)^K (T_n^{*n}T_n^n))$$

$$= ((T_1^{*n}T_1^n) (T_1^*)^K \otimes (T_2^{*n}T_2^n) (T_2^*)^K \otimes \dots \otimes (T_n^{*n}T_n^n) (T_n^*)^K)$$

$$[\because, T_1, T_2, \dots, T_n \text{ ARE K* QUASI NORMAL OPERATORS OF ORDER N]$$

$$= (T_1^{*n} T_1^n \otimes T_2^{*n} T_2^n \otimes \dots \otimes T_n^{*n} T_n^n) ((T_1^*)^K \otimes (T_2^*)^K \otimes \dots \otimes (T_n^*)^K)$$

$$= \underbrace{\left(\left(\begin{array}{ccc} T_1^{*n} \otimes T_2^{*n} \otimes \ldots \otimes T_n^{*n} \right) \left(\begin{array}{ccc} T_1^{n} \otimes T_2^{n} \otimes \ldots \otimes T_n^{n} \right) \right)}_{\ldots \ldots \otimes (T_n^*)^K} \left(\left(\begin{array}{ccc} T_1^* \right)^K \otimes \left(\begin{array}{ccc} T_2^* \right)^K \otimes \ldots \otimes (T_n^*)^K \right) \right) \\ = \underbrace{\left(\left(\begin{array}{ccc} T_1 \otimes T_2 \otimes \ldots \otimes T_n \right)^{*n} \left(\begin{array}{ccc} T_1 \otimes T_2 \ldots \otimes T_n \right)^n \right) \left(\begin{array}{ccc} T_1^* \otimes T_2^* \otimes \ldots \otimes T_n^* \right)^K \\ = \underbrace{\left(\left(\begin{array}{ccc} T_1 \otimes T_2 \otimes \ldots \otimes T_n \right)^{*n} \left(\begin{array}{ccc} T_1 \otimes T_2 \ldots \otimes T_n \right)^n \right) \left(\begin{array}{ccc} T_1 \otimes T_2 \otimes \ldots \otimes T_n^* \right)^K \\ = \underbrace{\left(\left(\begin{array}{ccc} T_1 \otimes T_2 \otimes \ldots \otimes T_n \right)^{*n} \left(\begin{array}{ccc} T_1 \otimes T_2 \ldots \otimes T_n \right)^n \right) \left(\left(\begin{array}{ccc} T_1 \otimes T_2 \otimes \ldots \otimes T_n \right)^* \right)^K \end{array} \right) \right) } \right)$$

 \therefore L.H.S = R.H.S

Then $T_1 \otimes T_2 \otimes \ldots \otimes T_n$ is K* quasi normal operators of order N .

REFERENCES

[1]Berberian S.K., 1976. Introduction to Hilbert space. Chelsea Publishing Company, New Yourk. Chapter VI, pp: 139-140
[2]Brown A., On a class of operator, Proce. Amer. Math. Soc, 4 (1953), 723 – 728.

[3]Faisal Ali, Salim Dawood On K* Quasi n-Normal Operator, Mathematical Theory and Modeling, Vol 8, No 6. ISSN : 2224 - 5804 .

[4]Shaakir, Laith K., and Marai, Saad S., 2010. Quasi normal operator of order n. Tikrit Journal of Pure Science, ISSN: 1662 – 1813.
 [5]Veluchamy T., Manikandan K.M., 2016. On n-Power Quasi Normal Operators on the Hilbert Space, IOSR Journal of Mathematics, ISSN: 2319 – 765X.