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I. Introduction 

 Let G be a finite, simple, connected graph with vertex set V(G) and edge set E(G). The degree dG(v) of 

a vertex v is the number of vertices adjacent to v. The edge connecting the vertices u and v will be denoted by 

uv. The degree of an edge e=uv in a graph G is defined by dG(e)= dG(u)+ dG(v) – 2. Let Se(v) denote the sum of 

the degrees of all edges incident to a vertex v. For undefined term and notation, we refer [1]. Topological indices 

or graph indices have their applications in various disciplines of Science and Technology. 

 In [2], Kulli introduced the first and second multiplicative Kulli-Basava indices of a graph, defined as 
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 Recently, the connectivity Kulli-Basava indices [3], square Kulli-Basava index [4], multiplicative F-

Kulli-Basava index [5], first and second hyper Kulli-Basava indices [6], F-Kulli-Basava index [7] multiplicative 
hyper Kulli-Basava indices [8] were introduced and studied. 

 We introduce the multiplicative sum connectivity Kulli-Basava index and multiplicative product 

connectivity Kulli-Basava index of a graph, defined as 
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 Also we propose the multiplicative atom bond connectivity Kulli-Basava index, multiplicative 

geometric-arithmetic Kulli-Basava index and multiplicative reciprocal Kulli-Basava index of a graph, defined as 
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 Recently, some connectivity indices were studied [ 9, 10, 11, 12, 14, 15, 16,17]. 

 Finally, we introduce the general first and second Kulli-Basava indices of a graph, defined as 
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where a is a real number. 

 Recently some multiplicative topological indices were studied [18, 19, 20, 21].In this paper, some 

multiplicative connectivity Kulli-Basava indices of regular, wheel, helm graphs are computed. 

 

II. Results for regular graphs 

 A graph G is an r-regular graph if the degree of every vertex of G is r. 

 

Theorem 1. Let G be an r-regular graph with n vertices and m edges. Then 
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Proof: If G is an r-regular graph with n vertices and m edges, then Se(u) = 2r(r – 1) for any vertex u in G. 

Thus, 
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Corollary 1.1. If G is an r-regular graph with n vertices and m edges, then 
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Proof: Put a = –½  in equation (1), we get the desired result. 

Corollary 1.2. If Kn is a complete graph with n vertices, then 
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Proof: Put r = n – 1, 
 1

2




n n
m  and a = 

1

2
  in equation (1), we get the desired result. 

Corollary 1.3. If Cn is a cycle with n vertices, then 
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Proof: Put r = 2, m = n and a = 
1

2
  in equation (1), we get the desired result. 

Theorem 2. Let G be an r-regular graph with n vertices and m edges. Then 
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Proof: Let G be an r-regular graph with n vertices and m edges. Then Se(u) = 2r(r – 1) for any vertex u in G. 

Therefore 
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Corollary 2.1. If G is an r-regular graph with n vertices and m edges, then 
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Proof: Put a = –½  in equation (2), we get the desired result. 

Corollary 2.2. If Kn is a complete graph with n vertices and m edges, then 
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Proof: Put r = n – 1, 
 1

2




n n
m  and a = 

1

2
  in equation (2), we get the desired result. 

Corollary 2.3. If Cn is a cycle with n vertices, then 
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Proof: Put r = 2, m = n and a = 
1

2
  in equation (2), we get the desired result. 

Corollary 2.4. If G is an r-regular graph with n vertices and m edges, then 
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Proof: Put a = ½ in equation (2), we get the desired result. 

Corollary 2.5. If Kn is a complete graph with n vertices and m edges, then 
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Proof: Put a = 
1

2
 , r = n – 1 

 1

2




n n
m  in equation (2), we get the desired result. 

Corollary 2.6. If Cn is a cycle with n vertices and m edges, then 
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Proof: Put r = 2, m = n, a = 
1

2
 , in equation (2), we get the desired result. 

 

Theorem 3. Let G be an r-regular graph with n vertices and m edges. Then 
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Proof: If G is an r-regular graph with n vertices and m edges, then Se(u) = 2r(r – 1) for any vertex u in G. 
Therefore 
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Theorem 4. Let G be an r-regular graph with n vertices and m edges. Then 

 GAKBII(G) = 1.
 

Proof: If G is an r-regular graph with n vertices and m edges, then Se(u) = 2r(r – 1) for any vertex u in G. 

Thus 
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III. Results for wheel graphs 

 A wheel Wn is the join of Cn and K1. Then Wn has n+1 vertices and 2n edges. The vertices of Cn are 

called rim vertices and the vertex K1 is called apex.  

Lemma 5. Let Wn be a wheel with n+1 vertices and 2n edges. Then 

 E1 = {uv  E(G) | Se(u) = n(n+1), Se(v) = n+9},  |E1| = n. 

 E2 = {uv  E(G) | Se(u) = Se(v) = n + 9},   |E2| = n. 

 

Theorem 6. Let Wn be a wheel with n+1 vertices and 2n edges, n3. Then 
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Proof: Let Wn be a wheel with n+1 vertices and 2n edges. By using definition and Lemma 5, we deduce 
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Corollary 6.1. If Wn is a wheel graph with n+1 vertices and 2n edges, then 
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Proof: Put a = 
1

2
  in equation (3), we get the desired result. 

 

 

Theorem 7. Let Wn be a wheel with n+1 vertices and 2n edges, n3. Then 
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Proof: Let Wn be a wheel with n+1 vertices and 2n edges. By using definition and Lemma 5, we derive 
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Corollary 7.1. Let Wn be a wheel with n+1 vertices and 2n edges. Then 
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 in equation (4), we get the desired results. 

 

 

Theorem 8. Let Wn be a wheel with n vertices and 2n edges. Then 
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Proof: By using definition and Lemma 5, we obtain 
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Theorem 9. Let Wn be a wheel with n+1 vertices and 2n edges. Then 
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Proof: By using definition and Lemma 5, we obtain 
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IV. Results for helm graphs 

 A helm graph Hn is a graph obtained from Wn by attaching an end edge to each rim vertex. We see that 

Hn has  2n+1 vertices and 3n edges.  

 

Lemma 10. Let Hn be a helm graph with 2n+1 vertices and 3n edges. Then Hn has three types of edges as 
 E1 = {uv  E(Hn) | Se(u) = n(n+2), Se(v) = n+17}, |E1| = n. 

 E2 = {uv  E(Hn) | Se(u) = Se(v) = n + 17},  |E2| = n. 

 E3 = {uv  E(Hn) | Se(u) = n+17, Se(v) = 3},  |E3| = n. 

 

Theorem 11. Let Hn be a helm graph with 2n+1 vertices and 3n edges. Then 
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Proof: Let Hn be a helm graph with 2n+1 vertices and 3n edges. Then 
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Corollary 11.1. If Hn is a helm graph with 2n+1 vertices and 3n edges, then 
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Proof: Put a = 
1

2
  in equation (5), we get the desired result. 

 

Theorem 12. Let Hn be a helm graph with 2n+1 vertices and 3n edges. Then 
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Proof: By using definition and Lemma 10, we deduce 
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Corollary 12.1. Let Hn be a helm graph with 2n+1 vertices and 3n edges. Then 
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Proof: Put a = 
1

,
2


1

2
 in equation (6), we get the desired results. 

Theorem 13. Let Hn be a helm graph with 2n+1 vertices and 3n edges. Then 
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Proof: By using definition and Lemma 10, we deduce 
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Theorem 14. If Hn is a helm graph with 2n+1 vertices and 3n edges, then 
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Proof: By using definition and Lemma 5, we obtain 
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