Some New Multiplicative Connectivity Kulli-Basava Indices

V.R.Kulli
Department of Mathematics. Gulbarga University, Gulbarga 585106, India

Abstract

A topological index for a graph is used to determine some property of the graph of molecular by a single number. In this paper, we introduce the multiplicative sum connectivity Kulli-Basava index, multiplicative product connectivity Kulli-Basava index, multiplicative ABC Kulli-Basava index and multiplicative GA KulliBasava index of a graph. We compute these multiplicative connectivity Kulli-Basava indices of regular, wheel and helm graphs.

Keywords: Multiplicative sum connectivity Kulli-Basava index, multiplicative product connectivity KulliBasava index, multiplicative ABC Kulli-Basava index, multiplicative GA Kulli-Basava index, graph.

Mathematics Subject Classification: 05C05, 05C07, 05C12, 05C35.

I. Introduction

Let G be a finite, simple, connected graph with vertex set $V(G)$ and edge set $E(G)$. The degree $d_{G}(v)$ of a vertex v is the number of vertices adjacent to v. The edge connecting the vertices u and v will be denoted by $u v$. The degree of an edge $e=u v$ in a graph G is defined by $d_{G}(e)=d_{G}(u)+d_{G}(v)-2$. Let $S_{e}(v)$ denote the sum of the degrees of all edges incident to a vertex v. For undefined term and notation, we refer [1]. Topological indices or graph indices have their applications in various disciplines of Science and Technology.

In [2], Kulli introduced the first and second multiplicative Kulli-Basava indices of a graph, defined as

$$
\begin{aligned}
& K B_{1} I I(G)=\prod_{u v \in E(G)}\left[S_{e}(u)+S_{e}(v)\right], \\
& K B_{2} I I(G)=\prod_{u v \in E(G)}\left[S_{e}(u) S_{e}(v)\right] .
\end{aligned}
$$

Recently, the connectivity Kulli-Basava indices [3], square Kulli-Basava index [4], multiplicative F -Kulli-Basava index [5], first and second hyper Kulli-Basava indices [6], F-Kulli-Basava index [7] multiplicative hyper Kulli-Basava indices [8] were introduced and studied.

We introduce the multiplicative sum connectivity Kulli-Basava index and multiplicative product connectivity Kulli-Basava index of a graph, defined as

$$
\begin{aligned}
& \operatorname{SKBII}(G)=\prod_{u v \in E(G)} \frac{1}{\sqrt{S_{e}(u)+S_{e}(v)}} \\
& \operatorname{PKBII}(G)=\prod_{u v \in E(G)} \frac{1}{\sqrt{S_{e}(u) S_{e}(v)}}
\end{aligned}
$$

Also we propose the multiplicative atom bond connectivity Kulli-Basava index, multiplicative geometric-arithmetic Kulli-Basava index and multiplicative reciprocal Kulli-Basava index of a graph, defined as

$$
\begin{aligned}
& \operatorname{ABCKBII}(G)=\prod_{u v \in E(G)} \sqrt{\frac{S_{e}(u)+S_{e}(v)-2}{S_{e}(u) S_{e}(v)}}, \\
& \operatorname{GAKBII}(G)=\prod_{u v \in E(G)} \frac{2 \sqrt{S_{e}(u) S_{e}(v)}}{S_{e}(u)+S_{e}(v)} \\
& \operatorname{RKBII}(G)=\prod_{u v \in E(G)} \sqrt{S_{e}(u) S_{e}(v)}
\end{aligned}
$$

Recently, some connectivity indices were studied [$9,10,11,12,14,15,16,17]$.
Finally, we introduce the general first and second Kulli-Basava indices of a graph, defined as
$K B_{1}^{a} I I(G)=\prod_{u v \in E(G)}\left[S_{e}(u)+S_{e}(v)\right]^{a}$,

$$
K B_{2}^{a} I I(G)=\prod_{u v \in E(G)}\left[S_{e}(u) S_{e}(v)\right]^{a},
$$

where a is a real number.
Recently some multiplicative topological indices were studied [18, 19, 20, 21].In this paper, some multiplicative connectivity Kulli-Basava indices of regular, wheel, helm graphs are computed.

II. Results for regular graphs

A graph G is an r-regular graph if the degree of every vertex of G is r.
Theorem 1. Let G be an r-regular graph with n vertices and m edges. Then

$$
\begin{equation*}
K B_{1}^{a} I I(G)=[4 r(r-1)]^{a m} . \tag{1}
\end{equation*}
$$

Proof: If G is an r-regular graph with n vertices and m edges, then $S_{e}(u)=2 r(r-1)$ for any vertex u in G. Thus,

$$
\begin{aligned}
K B_{1}^{a} I I(G) & =\prod_{u v \in E(G)}\left[S_{e}(u)+S_{e}(u)\right]^{a}=[2 r(r-1)+2 r(r-1)]^{a m} \\
& =[4 r(r-1)]^{a m}
\end{aligned}
$$

Corollary 1.1. If G is an r-regular graph with n vertices and m edges, then

$$
\operatorname{SKBII}(G)=\left[\frac{1}{\sqrt{4 r(r-1)}}\right]^{m}
$$

Proof: Put $a=-1 / 2$ in equation (1), we get the desired result.
Corollary 1.2. If K_{n} is a complete graph with n vertices, then

$$
\operatorname{SKBII}\left(K_{n}\right)=\left[\frac{1}{2 \sqrt{(n-1)(n-2)}}\right]^{\frac{n(n-1)}{2}} .
$$

Proof: Put $r=n-1, m=\frac{n(n-1)}{2}$ and $a=-\frac{1}{2}$ in equation (1), we get the desired result.
Corollary 1.3. If C_{n} is a cycle with n vertices, then

$$
\operatorname{SKBII}\left(C_{n}\right)=\left[\frac{1}{2 \sqrt{2}}\right]^{n}
$$

Proof: Put $r=2, m=n$ and $a=-\frac{1}{2}$ in equation (1), we get the desired result.
Theorem 2. Let G be an r-regular graph with n vertices and m edges. Then

$$
\begin{equation*}
K B_{2}^{a} I I(G)=\left[4 r^{2}(r-1)^{2}\right]^{a m} . \tag{2}
\end{equation*}
$$

Proof: Let G be an r-regular graph with n vertices and m edges. Then $S_{e}(u)=2 r(r-1)$ for any vertex u in G. Therefore

$$
K B_{2}^{a} I I(G)=\prod_{u v \in E(G)}\left[S_{e}(u) S_{e}(v)\right]^{a}=[2 r(r-1) 2 r(r-1)]^{a m}=\left[4 r^{2}(r-1)^{2}\right]^{a m}
$$

Corollary 2.1. If G is an r-regular graph with n vertices and m edges, then

$$
\operatorname{PKBII}(G)=\left[\frac{1}{2 r(r-1)}\right]^{m} .
$$

Proof: Put $a=-1 / 2$ in equation (2), we get the desired result.
Corollary 2.2. If K_{n} is a complete graph with n vertices and m edges, then

$$
\operatorname{PKBII}\left(K_{n}\right)=\left[\frac{1}{2(n-1)(n-2)}\right]^{\frac{n(n-1)}{2}} .
$$

Proof: Put $r=n-1, m=\frac{n(n-1)}{2}$ and $a=-\frac{1}{2}$ in equation (2), we get the desired result.
Corollary 2.3. If C_{n} is a cycle with n vertices, then

$$
\operatorname{PKBII}\left(C_{n}\right)=\left[\frac{1}{4}\right]^{n}
$$

Proof: Put $r=2, m=n$ and $a=-\frac{1}{2}$ in equation (2), we get the desired result.
Corollary 2.4. If G is an r-regular graph with n vertices and m edges, then

$$
\operatorname{RKBII}(G)=[2 r(r-1)]^{m}
$$

Proof: Put $a=1 / 2$ in equation (2), we get the desired result.
Corollary 2.5. If K_{n} is a complete graph with n vertices and m edges, then

$$
\operatorname{RKBII}\left(K_{n}\right)=\left[\frac{1}{2(n-1)(n-2)}\right]^{\frac{n(n-1)}{2}}
$$

Proof: Put $a=-\frac{1}{2}, r=n-1 m=\frac{n(n-1)}{2}$ in equation (2), we get the desired result.
Corollary 2.6. If C_{n} is a cycle with n vertices and m edges, then

$$
R K B I I\left(C_{n}\right)=4^{n}
$$

Proof: Put $r=2, m=n, a=-\frac{1}{2}$, in equation (2), we get the desired result.
Theorem 3. Let G be an r-regular graph with n vertices and m edges. Then

$$
\operatorname{ABCKBII}(G)=\left(\frac{\sqrt{4 r(r-1)-2}}{2 r(r-1)}\right)^{m}
$$

Proof: If G is an r-regular graph with n vertices and m edges, then $S_{e}(u)=2 r(r-1)$ for any vertex u in G. Therefore

$$
\begin{aligned}
\operatorname{ABCKBII}(G) & =\prod_{u v \in E(G)} \sqrt{\frac{S_{e}(u)+S_{e}(v)-2}{S_{e}(u) S_{e}(v)}} \\
& =\left(\sqrt{\frac{2 r(r-1)+2 r(r-1)-2}{2 r(r-1) 2 r(r-1)}}\right)^{m}=\left(\frac{\sqrt{4 r(r-1)-2}}{2 r(r-1)}\right)^{m}
\end{aligned}
$$

Theorem 4. Let G be an r-regular graph with n vertices and m edges. Then

$$
\operatorname{GAKBII}(G)=1
$$

Proof: If G is an r-regular graph with n vertices and m edges, then $S_{e}(u)=2 r(r-1)$ for any vertex u in G. Thus

$$
\begin{aligned}
\operatorname{GAKBII}(G) & =\prod_{u v \in E(G)} \frac{2 \sqrt{S_{e}(u) S_{e}(v)}}{S_{e}(u)+S_{e}(v)} \\
& =\left(\frac{2 \sqrt{2 r(r-1) 2 r(r-1)}}{2 r(r-1)+2 r(r-1)}\right)^{m}=1
\end{aligned}
$$

III. Results for wheel graphs

A wheel W_{n} is the join of C_{n} and K_{1}. Then W_{n} has $n+1$ vertices and $2 n$ edges. The vertices of C_{n} are called rim vertices and the vertex K_{1} is called apex.
Lemma 5. Let W_{n} be a wheel with $n+1$ vertices and $2 n$ edges. Then

$$
\begin{array}{ll}
\mathrm{E}_{1}=\left\{u v \square E(G) \mid S_{e}(u)=n(n+1), S_{e}(v)=n+9\right\}, & \left|E_{1}\right|=n . \\
\mathrm{E}_{2}=\left\{u v \square E(G) \mid S_{e}(u)=S_{e}(v)=n+9\right\}, & \left|E_{2}\right|=n .
\end{array}
$$

Theorem 6. Let W_{n} be a wheel with $n+1$ vertices and $2 n$ edges, $n \square 3$. Then

$$
\begin{equation*}
K B_{1}^{a} I I\left(W_{n}\right)=\left(n^{2}+2 n+9\right)^{a n} \times(2 n+18)^{a n} \tag{3}
\end{equation*}
$$

Proof: Let W_{n} be a wheel with $n+1$ vertices and $2 n$ edges. By using definition and Lemma 5 , we deduce

$$
\begin{aligned}
K B_{1}^{a} I I\left(W_{n}\right) & =\prod_{u v \in E\left(W_{n}\right)}\left[S_{e}(u)+S_{e}(v)\right]^{a}=[n(n+1)+n+9]^{a n} \times[(n+9)+(n+9)]^{a n} \\
& =\left(n^{2}+2 n+9\right)^{a n} \times(2 n+18)^{a n}
\end{aligned}
$$

Corollary 6.1. If W_{n} is a wheel graph with $n+1$ vertices and $2 n$ edges, then

$$
\operatorname{SKBII}\left(W_{n}\right)=\left(\frac{1}{\sqrt{n^{2}+2 n+9}}\right)^{n} \times\left(\frac{1}{\sqrt{2 n+18}}\right)^{n}
$$

Proof: Put $a=-\frac{1}{2}$ in equation (3), we get the desired result.

Theorem 7. Let W_{n} be a wheel with $n+1$ vertices and $2 n$ edges, $n \square 3$. Then

$$
\begin{equation*}
K B_{2}^{a} I I\left(W_{n}\right)=[n(n+1)]^{a n} \times(n+9)^{3 a n} \tag{4}
\end{equation*}
$$

Proof: Let W_{n} be a wheel with $n+1$ vertices and $2 n$ edges. By using definition and Lemma 5, we derive

$$
\begin{aligned}
K B_{2}^{a} I I\left(W_{n}\right) & =\prod_{u v \in E\left(W_{n}\right)}\left[S_{e}(u) S_{e}(v)\right]^{a}=[n(n+1)(n+9)]^{a n} \times[(n+9)(n+9)]^{a n} \\
& =[n(n+1)]^{a n} \times(n+9)^{3 a n} .
\end{aligned}
$$

Corollary 7.1. Let W_{n} be a wheel with $n+1$ vertices and $2 n$ edges. Then
i) $\quad \operatorname{PKBII}\left(W_{n}\right)=\left(\frac{1}{\sqrt{n(n+1)}}\right)^{n} \times\left(\frac{1}{n+9}\right)^{\frac{3}{2} n}$.
ii) $\quad \operatorname{RKBII}\left(W_{n}\right)=(\sqrt{n(n+1)})^{n} \times(n+9)^{\frac{3}{2} n}$.

Proof: Put $a=-\frac{1}{2}, \frac{1}{2}$ in equation (4), we get the desired results.

Theorem 8. Let W_{n} be a wheel with n vertices and $2 n$ edges. Then

$$
\operatorname{ABCKBII}\left(W_{n}\right)=\left(\frac{n^{2}+2 n+7}{n(n+1)(n+7)}\right)^{\frac{n}{2}} \times\left(\frac{2 n+16}{(n+9)^{2}}\right)^{\frac{n}{2}}
$$

Proof: By using definition and Lemma 5, we obtain

$$
\begin{aligned}
\operatorname{ABCKBII}\left(W_{n}\right) & =\prod_{u v \in E(G)} \sqrt{\frac{S_{e}(u)+S_{e}(v)-2}{S_{e}(u) S_{e}(v)}} \\
& =\left(\sqrt{\frac{n(n+1)+n+9-2}{n(n+1)(n+9)}}\right)^{n} \times\left(\sqrt{\frac{n+9+n+9-2}{(n+9)(n+9)}}\right)^{n} \\
& =\left(\frac{n^{2}+2 n+7}{n(n+1)(n+9)}\right)^{\frac{n}{2}} \times\left(\frac{2 n+16}{(n+9)^{2}}\right)^{\frac{n}{2}}
\end{aligned}
$$

Theorem 9. Let W_{n} be a wheel with $n+1$ vertices and $2 n$ edges. Then

$$
\operatorname{GAKBII}\left(W_{n}\right)=\left(\frac{2 \sqrt{n(n+1)(n+9)}}{n^{2}+2 n+9}\right)^{n}
$$

Proof: By using definition and Lemma 5, we obtain

$$
\operatorname{GAKBII}\left(W_{n}\right)=\prod_{u v \in E\left(W_{n}\right)} \frac{2 \sqrt{S_{e}(u) S_{e}(v)}}{S_{e}(u)+S_{e}(v)}
$$

$$
\begin{aligned}
& =\left(\frac{2 \sqrt{n(n+1)(n+9)}}{n(n+1)+(n+9)}\right)^{n} \times\left(\frac{2 \sqrt{(n+9)(n+9)}}{(n+9)+(n+9)}\right)^{n} \\
& =\left(\frac{2 \sqrt{n(n+1)(n+9)}}{n^{2}+2 n+9}\right)^{n}
\end{aligned}
$$

IV. Results for helm graphs

A helm graph H_{n} is a graph obtained from W_{n} by attaching an end edge to each rim vertex. We see that H_{n} has $2 n+1$ vertices and $3 n$ edges.

Lemma 10. Let H_{n} be a helm graph with $2 n+1$ vertices and $3 n$ edges. Then H_{n} has three types of edges as

$$
\begin{array}{lll}
\mathrm{E}_{1}=\left\{u v \square E\left(H_{n}\right) \mid S_{e}(u)=n(n+2), S_{e}(v)=n+17\right\}, & & \left|E_{1}\right|=n . \\
\mathrm{E}_{2}=\left\{u v \square E\left(H_{n}\right) \mid S_{e}(u)=S_{e}(v)=n+17\right\}, & \left|E_{2}\right|=n . \\
\mathrm{E}_{3}=\left\{u v \square E\left(H_{n}\right) \mid S_{e}(u)=n+17, S_{e}(v)=3\right\}, & \left|E_{3}\right|=n .
\end{array}
$$

Theorem 11. Let H_{n} be a helm graph with $2 n+1$ vertices and $3 n$ edges. Then

$$
\begin{equation*}
K B_{1}^{a} I I\left(H_{n}\right)=\left(n^{2}+3 n+17\right)^{a n} \times(2 n+34)^{a n} \times(n+20)^{a n} \tag{5}
\end{equation*}
$$

Proof: Let H_{n} be a helm graph with $2 n+1$ vertices and $3 n$ edges. Then

$$
\begin{aligned}
K B_{2}^{a} I I\left(H_{n}\right) & =\prod_{u v \in E\left(H_{n}\right)}\left[S_{e}(u)+S_{e}(v)\right]^{a} \\
& =[n(n+1)+n+17]^{a n} \times[(n+17)+(n+17)]^{a n} \times[n+17+3]^{a n} \\
& =\left(n^{2}+3 n+17\right)^{a n} \times(2 n+34)^{a n} \times(n+20)^{a n}
\end{aligned}
$$

Corollary 11.1. If H_{n} is a helm graph with $2 n+1$ vertices and $3 n$ edges, then

$$
\operatorname{SKBII}\left(H_{n}\right)=\left(\frac{1}{n^{2}+3 n+17}\right)^{\frac{n}{2}} \times\left(\frac{1}{2 n+34}\right)^{\frac{n}{2}} \times\left(\frac{1}{n+20}\right)^{\frac{n}{2}}
$$

Proof: Put $a=-\frac{1}{2}$ in equation (5), we get the desired result.
Theorem 12. Let H_{n} be a helm graph with $2 n+1$ vertices and $3 n$ edges. Then

$$
\begin{equation*}
K B_{2}^{a} I I\left(H_{n}\right)=[n(n+2)(n+17)]^{a n} \times(n+17)^{2 a n} \times[3(n+17)]^{a n} \tag{6}
\end{equation*}
$$

Proof: By using definition and Lemma 10, we deduce

$$
\begin{aligned}
K B_{2}^{a} I I\left(H_{n}\right) & =\prod_{u v \in E\left(H_{n}\right)}\left[S_{e}(u) S_{e}(v)\right]^{a} \\
& =[n(n+2)(n+17)]^{a n} \times[(n+17)(n+17)]^{a n} \times[(n+17) 3]^{a n} \\
& =[n(n+2)(n+17)]^{a n} \times(n+17)^{2 a n} \times[3(n+17)]^{a n} .
\end{aligned}
$$

Corollary 12.1. Let H_{n} be a helm graph with $2 n+1$ vertices and $3 n$ edges. Then
i) $\quad \operatorname{PKBII}\left(H_{n}\right)=\left(\frac{1}{n(n+2)(n+17)}\right)^{\frac{n}{2}} \times\left(\frac{1}{n+17}\right)^{n} \times\left(\frac{1}{n(n+17)}\right)^{\frac{n}{2}}$.
ii) $\quad \operatorname{RKBII}\left(H_{n}\right)=[n(n+1)(n+17)]^{\frac{n}{2}} \times(n+17)^{n} \times[3(n+17)]^{\frac{n}{2}}$.

Proof: Put $a=-\frac{1}{2}, \frac{1}{2}$ in equation (6), we get the desired results.
Theorem 13. Let H_{n} be a helm graph with $2 n+1$ vertices and $3 n$ edges. Then

$$
\operatorname{ABCKBII}\left(H_{n}\right)=\left(\frac{n^{2}+3 n+15}{n(n+2)(n+17)}\right)^{\frac{n}{2}} \times\left(\frac{2 n+32}{(n+17)^{2}}\right)^{\frac{n}{2}} \times\left(\frac{n+18}{3(n+17)}\right)^{\frac{n}{2}}
$$

Proof: By using definition and Lemma 10, we deduce

$$
\begin{aligned}
& \operatorname{ABCKBII}\left(H_{n}\right)=\prod_{u v E E\left(H_{n}\right)} \sqrt{\frac{S_{e}(u)+S_{e}(v)-2}{S_{e}(u) S_{e}(v)}} \\
& =\left(\frac{n(n+2)+n+17-2}{n(n+2)(n+17)}\right)^{\frac{n}{2}} \times\left(\frac{n+17+n+17-2}{(n+17)(n+17)}\right)^{\frac{n}{2}} \times\left(\frac{n+17+3-2}{3(n+17)}\right)^{\frac{n}{2}} \\
& =\left(\frac{n^{2}+3 n+15}{n(n+2)(n+17)}\right)^{\frac{n}{2}} \times\left(\frac{2 n+32}{(n+17)^{2}}\right)^{\frac{n}{2}} \times\left(\frac{n+18}{3(n+17)}\right)^{\frac{n}{2}} .
\end{aligned}
$$

Theorem 14. If H_{n} is a helm graph with $2 n+1$ vertices and $3 n$ edges, then

$$
\operatorname{GAKBII}\left(H_{n}\right)=\left(\frac{2 \sqrt{n(n+2)(n+17)}}{n^{2}+3 n+17}\right)^{n} \times\left(\frac{2 \sqrt{3(n+17)}}{n+20}\right)^{n} .
$$

Proof: By using definition and Lemma 5, we obtain

$$
\begin{aligned}
\operatorname{GAKBII}\left(H_{n}\right) & =\prod_{u v \in E\left(H_{n}\right)} \frac{2 \sqrt{S_{e}(u) S_{e}(v)}}{S_{e}(u)+S_{e}(v)} \\
& =\left(\frac{2 \sqrt{n(n+2)(n+17)}}{n(n+2)+(n+17)}\right)^{n} \times\left(\frac{2 \sqrt{(n+7)(n+17)}}{n+17+n+17}\right)^{n} \times\left(\frac{2 \sqrt{(n+17) 3}}{n+17+3}\right)^{n} \\
& =\left(\frac{2 \sqrt{n(n+2)(n+17)}}{n^{2}+3 n+17}\right)^{n} \times\left(\frac{2 \sqrt{3(n+17)}}{n+20}\right)^{n} .
\end{aligned}
$$

References

[1] V.R.Kulli, College Graph Theory, Vishwa International Publications, Gulbarga, India (2012).
[2] V.R. Kulli, Multiplicative Kulli-Basava and multiplicative hyper Kulli-Basava indices of some graphs, International Journal of Mathematical Archive, 10(8) (2019) 18-24.
[3] V.R. Kulli, New connectivity topological indices, Annals of Pure and Applied Mathematics, 20(1) (2019) 1-8.
[4] V.R. Kulli, Some new Kulli-Basava topological indices, Earthline Journal of Mathematical Sciences, 2(2) (2019) 343-354.
[5] V.R. Kulli, Multiplicative Kulli-Basava indices, International Journal of Fuzzy Mathematical Archive, 17(1) (2019) 61-67.
[6] V.R. Kulli, Some new topological indices of graphs, International Journal of Mathematical Archive, 10(5) (2019) 62-70.
[7] V.R. Kulli, New Kulli-Basava indices of graphs, International Research Journal of Pure Algebra, 9(7) (2019) 58-63.
[8] V.R. Kulli, Multiplicative Kulli-Bsava and multiplicative hyper Kulli-Basava indices of some graphs, International Journal of Mathematical Archive, 10(8) (2019) 18-24.
[9] V.R. Kulli, Multiplicative connectivity KV indices of dendrimers, Journal of Mathematics and Informatics, 15(2019) 1-7.
[10] V.R. Kulli, Sum connectivity leap index and geometric-arithmetic, leap index of certain windmill graphs, Journal of Global Research in Mathematical Archives, 6(1) (2019) 15-20.
[11] V.R. Kulli, On connectivity KV indices of certain families of dendrimers, International Journal of Mathematical Archive 10(2) (2019) 14-17.
[12] V.R.Kulli, B. Chaluvaraju and T.V. Asha, Multiplicative product connectivity and sum connectivity indices of chemical structures in drugs, Research Review International Journal of Multidisciplinary, 4(2) (2019) 949-953.
[13] V.R. Kulli, Multiplicative connectivity Revan indices of certain families of benzenoid systems, International Journal of Mathematical Archive, 9(3) (2018) 235-241.
[14] V.R.Kulli, Multiplicative product connectivity and multiplicative sum connectivity indices of dendrimer nanostars, International Journal of Engineering Sciences and Research Technology, 7(2) (2018) 278-283.
[15] V.R. Kulli, Sum connectivity leap index and geometric-arithmetic, leap index of certain windmill graphs, Journal of Global Research in Mathematical Archives, 6(1) (2019) 15-20.
[16] V.R. Kulli, B. Chaluvaraju and H.S. Boregowda, Computation of connectivity indices of Kulli path windmill graphs, TWMS Journal of Applied and Engineering Mathematics 8(1a) (2018) 178.
[17] V.R. Kulli, Computing reduced connectivity indices of certain nanotubes, Journal of Chemistry and Chemical Sciences, 8(11) (2018) 1174-1180.
[18] V.R. Kulli, On multiplicative F-indices and multiplicative connectivity F-indices of chemical networks, International Journal of Current Research in Science and Technology, 5(2)(2019)1-10.
[19] V.R. Kulli, Multiplicative Dakshayani indices, International Journal of Engineering Sciences and Research Technology, 7(10) (2018) 75-81.
[20] V.R. Kulli, Multiplicative KV and multiplicative hyper KV indices of certain dendrimers, International Journal of Fuzzy Mathematical Archive, 17(1) (2019) 13-19.
[21] V.R. Kulli, Multiplicative neighborhood indices, Annals of Pure and Applied Mathematics, 19(2) (2019) 175-181.

