Differential Subordination And Convex Univalent Functions

S.Aarthi ${ }^{1}$
Assistant Professor, Department of Career Development, SRM Institute of Science and Technology, SRM nagar, potheri- 603203,Kancheepuram (District),India.

Abstract

In this work, we study about the first order differential subordination equation. Then consider the analytic function p and a univalent function q. We are proposing the work to make the function q to satisfy the best dominant's conditions of the differential subordination by making suitable changes for the functions p and q. Finally study the general differential subordination equation wherein we apply some derivatives to get an fascinating results about starlike property.

KEYWORDS: Starlikeness, univalent functions, dominant, subordination equations.

I. INTRODUCTION

Let the class of function f be A and is analytic in the unit disc U . The unit disc is defined by the function $U=\{z:|z|<1\}$ and these functions are normalized by the conditions $f(0)=0$ and $f^{\prime}(0)=1$. Denoting the subclass of functions f by A^{\prime} which are analytic by in U and satisfy the conditions $f(0)=0$. Let the analytic function be p and h and q be the univalent function in the unit disc. Then the analytic function should satisfy the following first order differential subordination equation,

$$
\begin{align*}
& \Psi\left(p(z), z p^{\prime}(z)\right) \prec h(z), z \in U, \\
& \Psi(p(0), 0)=h(0)
\end{align*}
$$

is defined by the author in [12]
When the univalent function q satisfy the above equation, if $p(0)=q(0)$ and $p \prec q$ for all p then it is known as the dominant of the equation. When a dominant \tilde{q} which satisfies $\tilde{q} \prec q$ for all dominants q of above equation then it is known as the best dominant of the above differential equation.

Consider $\lambda, \lambda>0$, be any real number and α be any complex number with $\operatorname{Re} \alpha>0$, we study the first order differential subordination of the form

$$
\begin{equation*}
\phi(\alpha, \lambda ; p(z)) \prec \phi(\alpha, \lambda ; q(z)), z \in U \tag{1.2}
\end{equation*}
$$

and here we have to search out the conditions for the function q to become the best dominant of the above differential subordination equation.

II.PRELIMINARIES

Theorem 2.1

Let $L(z, t): U \times[0, \infty) \rightarrow C$ be the function which is in the format of $L(z, t)=a_{1}(t) z+\ldots$ with $a_{1}(t) \neq 0$ for all $t \geq 0$, and $\lim _{t \rightarrow \infty}\left|a_{1}(t)\right|=\infty$, is a subordination chain $\leftrightarrow \operatorname{Re}\left[\frac{z \frac{\partial L}{\partial z}}{\frac{\partial L}{\partial t}}\right]>0$ for all $z \in U$ and $t \geq 0$.

Theorem 2.2

Let F and G be analytic function in unit disc U, and \bar{U} respectively. In addition to that let G be an univalent function in \bar{U} having some exception for the points ζ such that $\lim _{z \rightarrow \zeta} F(z)=\infty$, with $F(0)=G(0)$. If F and G is not subordinate to eachother in U, then there exist points $z_{0} \in U, \zeta_{0} \in \partial U$ (boundary of U) and an $m \geq 1 \quad$ such that $F\left(|z|<\left|z_{0}\right|\right) \subset G(U), \quad F\left(z_{0}\right)=G\left(\zeta_{0}\right) \quad$ and $z_{0} F^{\prime}\left(z_{0}\right)=m \zeta_{0} G^{\prime}\left(\zeta_{0}\right)$.

III. MAIN RESULTS

Theorem 3.1

Let α be any complex number with Re $\alpha>0$. Suppose the following conditions are satisfied by the convex univalent function $q \in A^{\prime}$,
(a) Re $q(z)>0$, in U when $\operatorname{Re} \alpha \geq|\alpha|^{2}$;
(b) $\operatorname{Re} q(z)>\frac{|\alpha|^{2}-\operatorname{Re} \alpha}{2|\alpha|^{2}} \quad$, in U when $\operatorname{Re} \alpha<|\alpha|^{2}$.

For any real number $\lambda, \lambda>0$, then the following differential subordination equation is satisfied by the function $p \in A^{\prime}$

$$
\begin{equation*}
\phi(\alpha, \lambda ; \mathrm{p}(z)) \prec \phi(\alpha, \lambda ; q(z)) \tag{3.1.1}
\end{equation*}
$$

in U, then $p(z) \prec q(z)$ in U and q is the best dominant.
is defined by the author in [12].

Note:

$$
\phi(\alpha, \lambda ; p(z))=(1-\alpha) p(z)+\alpha(p(z))^{2}+\alpha \lambda z p^{\prime}(z)
$$

$$
\operatorname{put} p(z)=\frac{z f^{\prime}(z)}{f(z)}
$$

By the general differential subordination of the form,

$$
\begin{equation*}
\phi\left(\alpha, \lambda ; \frac{z f^{\prime}(z)}{f(z)}\right)=\frac{z f^{\prime}(z)}{f(z)}\left(1-\alpha+\alpha(1-\lambda) \frac{z f^{\prime}(z)}{f(z)}+\alpha \lambda\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right), \tag{3.1.2}
\end{equation*}
$$

putting $\lambda=1$ in (3.1.2), we get

$$
\begin{aligned}
& \phi\left(\alpha, 1 ; \frac{z f^{\prime}(z)}{f(z)}\right)=\frac{z f^{\prime}(z)}{f(z)}\left(1-\alpha+\alpha(1-1) \frac{z f^{\prime}(z)}{f(z)}+\alpha(1)\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right), \\
& \phi\left(\alpha, 1 ; \frac{z f^{\prime}(z)}{f(z)}\right)=\frac{z f^{\prime}(z)}{f(z)}\left(1-\alpha+\alpha(0) \frac{z f^{\prime}(z)}{f(z)}+\alpha\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right), \\
& \phi\left(\alpha, 1 ; \frac{z f^{\prime}(z)}{f(z)}\right)=\frac{z f^{\prime}(z)}{f(z)}\left(1-\alpha+\alpha+\alpha \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right), \\
& \phi\left(\alpha, 1 ; \frac{z f^{\prime}(z)}{f(z)}\right)=\frac{z f^{\prime}(z)}{f(z)}+\alpha\left(\frac{z f^{\prime}(z)}{f(z)}\right)\left(\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right), \\
& \phi\left(\alpha, 1 ; \frac{z f^{\prime}(z)}{f(z)}\right)=\frac{z f^{\prime}(z)}{f(z)}+\alpha\left(\frac{z^{2} f^{\prime \prime}(z)}{f(z)}\right),
\end{aligned}
$$

By putting $\alpha=1$ in (3.1.2), we get

$$
\begin{aligned}
& \phi\left(1, \lambda ; \frac{z f^{\prime}(z)}{f(z)}\right)=\frac{z f^{\prime}(z)}{f(z)}\left(1-1+1(1-\lambda) \frac{z f^{\prime}(z)}{f(z)}+(1) \lambda\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right), \\
& \phi\left(1, \lambda ; \frac{z f^{\prime}(z)}{f(z)}\right)=\frac{z f^{\prime}(z)}{f(z)}\left(1-1+(1-\lambda) \frac{z f^{\prime}(z)}{f(z)}+\lambda\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right), \\
& \phi\left(1, \lambda ; \frac{z f^{\prime}(z)}{f(z)}\right)=\frac{z f^{\prime}(z)}{f(z)}\left((1-\lambda) \frac{z f^{\prime}(z)}{f(z)}+\lambda\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right) .
\end{aligned}
$$

Theorem 3.2

The general subordination theorem's conditions

Let α, λ and q be a complex number with Re $\alpha>0$. If $f \in A, \frac{f(z)}{z} \neq 0$ be a function in U satisfies the following,

$$
\phi(\alpha, \lambda ; \mathrm{p}(z)) \prec \phi(\alpha, \lambda ; q(z)), z \in U .
$$

Setting $p(z)=\frac{z f^{\prime}(z)}{f(z)}$ in above first order differential subordination equation, we get

$$
\phi\left(\alpha, \lambda ; \frac{z f^{\prime}(z)}{f(z)}\right) \prec \phi(\alpha, \lambda ; q(z)), z \in U,
$$

so

$$
\frac{z f^{\prime}(z)}{f(z)} \prec q(z), \forall \mathrm{z} \in \mathrm{U} .
$$

Theorem 3.3

Let α and q be a complex number with Re $\alpha>0$. If $f \in A, \frac{f(z)}{z} \neq 0$ be a function in U, satisfies the following,

$$
\frac{z f^{\prime}(z)}{f(z)}+\alpha \frac{z^{2} f^{\prime \prime}(z)}{f(z)} \prec(1-\alpha) q(z)+\alpha(q(z))^{2}+\alpha z q^{\prime}(z), z \in U
$$

then

$$
\frac{z f^{\prime}(z)}{f(z)} \prec q(z), \forall z \in U
$$

PROOF
Let,

$$
\phi\left(\alpha, \lambda ; \frac{z f^{\prime}(z)}{f(z)}\right)=\frac{z f^{\prime}(z)}{f(z)}\left(1-\alpha+\alpha(1-\lambda) \frac{z f^{\prime}(z)}{f(z)}+\alpha \lambda\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right),
$$

putting $\lambda=1$ in above equation, we get

$$
\begin{gathered}
\phi\left(\alpha, 1 ; \frac{z f^{\prime}(z)}{f(z)}\right)=\frac{z f^{\prime}(z)}{f(z)}\left(1-\alpha+\alpha(1-1) \frac{z f^{\prime}(z)}{f(z)}+\alpha(1)\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right), \\
\phi\left(\alpha, 1 ; \frac{z f^{\prime}(z)}{f(z)}\right)=\frac{z f^{\prime}(z)}{f(z)}\left(1-\alpha+\alpha(0) \frac{z f^{\prime}(z)}{f(z)}+\alpha\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right), \\
\phi\left(\alpha, 1 ; \frac{z f^{\prime}(z)}{f(z)}\right)=\frac{z f^{\prime}(z)}{f(z)}\left(1-\alpha+\alpha\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right),
\end{gathered}
$$

$$
\begin{align*}
& \phi\left(\alpha, 1 ; \frac{z f^{\prime}(z)}{f(z)}\right)=\frac{z f^{\prime}(z)}{f(z)}\left(1-\alpha+\alpha+\alpha \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right), \\
& \phi\left(\alpha, 1 ; \frac{z f^{\prime}(z)}{f(z)}\right)=\frac{z f^{\prime}(z)}{f(z)}\left(1+\alpha \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right), \\
& \phi\left(\alpha, 1 ; \frac{z f^{\prime}(z)}{f(z)}\right)=\frac{z f^{\prime}(z)}{f(z)}+\alpha\left(\frac{z f^{\prime}(z)}{f(z)}\right)\left(\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right), \\
& \phi\left(\alpha, 1 ; \frac{z f^{\prime}(z)}{f(z)}\right)=\frac{z f^{\prime}(z)}{f(z)}+\alpha\left(\frac{z^{2} f^{\prime \prime}(z)}{f(z)}\right) . \tag{3.3.1}
\end{align*}
$$

Let,

$$
L(z, t)=(1-\alpha) q(z)+\alpha(q(z))^{2}+\alpha \lambda t z q^{\prime}(z)
$$

Setting $\lambda=1$ in above function, we get

$$
\begin{align*}
& L(z, t)=(1-\alpha) q(z)+\alpha(q(z))^{2}+\alpha(1) t z q^{\prime}(z) \\
& L(z, t)=(1-\alpha) q(z)+\alpha(q(z))^{2}+\alpha t z q^{\prime}(z) \tag{3.3.2}
\end{align*}
$$

From (3.3.1) and (3.3.2) we get,

$$
\frac{z f^{\prime}(z)}{f(z)}+\alpha \frac{z^{2} f^{\prime \prime}(z)}{f(z)} \prec(1-\alpha) q(z)+\alpha(q(z))^{2}+\alpha z q^{\prime}(z), z \in U
$$

then

$$
\frac{z f^{\prime}(z)}{f(z)} \prec q(z), \forall z \in U
$$

Definition 3.4

Let the function $f \in A$ is known to be α-convex, (Bazilevic Functions and Generalized Convexity) if

$$
\operatorname{Re}\left((1-\alpha) \frac{z f^{\prime}(z)}{f(z)}+\alpha\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right)>0, z \in U
$$

Theorem3.5

Subordination theorem:

Let λ be a positive real number. Assume that $q \in A^{\prime}$ is convex univalent in U and
$\operatorname{Re}(q(z))>0, z \in U$. If a function $f \in A, \frac{f(z)}{z} \neq 0$ in U, satisfies the differential subordination

$$
\frac{z f^{\prime}(z)}{f(z)}\left((1-\lambda) \frac{z f^{\prime}(z)}{f(z)}+\lambda\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right) \prec q(z)\left(q(z)+\frac{\lambda z q^{\prime}(z)}{q(z)}\right), z \in U
$$

then

$$
\frac{z f^{\prime}(z)}{f(z)} \prec q(z), \forall z \in U
$$

PROOF

We get the proof by let $\alpha=1$ in Theorem 3.2.
By having suitable changes to the functions p and q in $\phi(\alpha, \lambda ; \mathrm{p}(z)) \prec \phi(\alpha, \lambda ; q(z)), z \in U$.
Hereby

$$
\frac{z f^{\prime}(z)}{f(z)}\left(1-\alpha+\alpha(1-\lambda) \frac{z f^{\prime}(z)}{f(z)}+\alpha \lambda\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right) \prec \frac{z g^{\prime}(z)}{g(z)}\left(1-\alpha+\alpha(1-\lambda) \frac{z g^{\prime}(z)}{g(z)}+\alpha \lambda\left(1+\frac{z g^{\prime \prime}(z)}{g^{\prime}(z)}\right)\right)
$$

From equation (3.1.2), we have

$$
\phi\left(\alpha, \lambda ; \frac{z f^{\prime}(z)}{f(z)}\right)=\frac{z f^{\prime}(z)}{f(z)}\left(1-\alpha+\alpha(1-\lambda) \frac{z f^{\prime}(z)}{f(z)}+\alpha \lambda\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right)
$$

setting $\alpha=1$ in above equation, we get

$$
\begin{align*}
& \phi\left(1, \lambda ; \frac{z f^{\prime}(z)}{f(z)}\right)=\frac{z f^{\prime}(z)}{f(z)}\left(1-1+1(1-\lambda) \frac{z f^{\prime}(z)}{f(z)}+(1) \lambda\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right), \\
& \phi\left(1, \lambda ; \frac{z f^{\prime}(z)}{f(z)}\right)=\frac{z f^{\prime}(z)}{f(z)}\left(1-1+(1-\lambda) \frac{z f^{\prime}(z)}{f(z)}+\lambda\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right), \\
& \phi\left(1, \lambda ; \frac{z f^{\prime}(z)}{f(z)}\right)=\frac{z f^{\prime}(z)}{f(z)}\left((1-\lambda) \frac{z f^{\prime}(z)}{f(z)}+\lambda\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right) \tag{3.5.1}
\end{align*}
$$

by

$$
\phi(\alpha, \lambda ; \mathrm{p}(z)) \prec \phi(\alpha, \lambda ; q(z)), z \in U
$$

setting $\alpha=1$,

$$
\phi(1, \lambda ; \mathrm{p}(z)) \prec \phi(1, \lambda ; q(z)), z \in U .
$$

Already we have an function,

$$
L(z, t)=(1-\alpha) q(z)+\alpha(q(z))^{2}+\alpha \lambda t z q^{\prime}(z)
$$

setting $\alpha=1$ in above equation, we get

$$
\begin{align*}
& L(z, t)=(1-1) q(z)+(1)(q(z))^{2}+(1) \lambda t z q^{\prime}(z), \\
& L(z, t)=(0) q(z)+(1)(q(z))^{2}+(1) \lambda t z q^{\prime}(z), \\
& L(z, t)=(q(z))^{2}+\lambda z q^{\prime}(z), \\
& L(z, t)=q(z) q(z)+\lambda z q^{\prime}(z), \\
& L(z, t)=q(z)\left(q(z)+\frac{\lambda z q^{\prime}(z)}{q(z)}\right), z \in U . \tag{3.5.2}
\end{align*}
$$

From (3.5.1) and (3.5.2), we have

$$
\frac{z f^{\prime}(z)}{f(z)}\left((1-\lambda) \frac{z f^{\prime}(z)}{f(z)}+\lambda\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right) \prec q(z)\left(q(z)+\frac{\lambda z q^{\prime}(z)}{q(z)}\right), z \in U
$$

then

$$
\frac{z f^{\prime}(z)}{f(z)} \prec q(z), \forall z \in U
$$

ACKNOWLEDGEMENT

The authors wish to thank my guide DR.M.SHANMUGHA SUNDARI, DR.N. SEENIVASAGAN and then authors of the journals which we used to refer.

REFERENCES

[1] Lewandowski .Z, Miller .S.S and Zlotkiewicz .E, Generating function for some classes of univalent functions, Proc. Amer. Math. Soc., 56(1976), 111-117.
[2] Li .J.L and Owa .S, sufficient conditions for starlikeness, Indian J. Pure Appl. Math., 33 (3) (2002), 313-318.
[3] Miller .S.S andMocanu .P.T, Differential subordination and inequalities in the complex plane, J. Diff. Eqns, 67 (2) (1987), 199-211.
[4] Miller .S.S andMocanu .P.T, Differential subordination and univalent functions, Michigan Math. J. 28 (1981), 157-171.
[5] Miller .S.S, Mocanu .P.T, Reade .M.O, Bazilevic functions and generalized convexity, Rev. Roumaine Math. Pures Appl. 19 (1974), 213-224.
[6] Obradovic .M and Joshi .S.B, On certain classes of strongly starlike functions, Taiwanese J. math., 2 (3) (1998), 297-302.
[7] Padmanabhan .K.S, On sufficient conditions for starlikeness, Indian J. Pure Appl. Math., 32 (4) (2001), 543-550.
[8] Pommerenke .Ch, Univalent functions, Vandenhoeck and Ruprecht, Gottingen, 1975.
[9] Ramesha .C, Kumar .S, Padmanabhan .K.S, A sufficient conditions for starlikeness, chinese J. Math., 23 (1995), 167-171.
[10] Ravichandran .V, Certain applications of first order differential subordination, Far East J. Math. Sci., 12 (1) (2004), 41-51.
[11] Ravichandran .V, Selvaraj .C, Rajalakshmi .R, sufficient conditions for starlike functions of order α, J. Inequal. Pure Appl. Math., 3 (5) (2002), 1-6. (Art. 81).
[12] Singh .S, Gupta .S, First order differential subordination and starlikeness of analytic maps in unit disc, Kyungpook Math. J. 45 (3) (2005).

