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Abstract - This paper deals with the convection of micropolar fluids heated and soluted from below in the presence of 

suspended particles (fine dust) and uniform vertical rotation  ,Ω,Ω 00


 in a porous medium and using the Boussinesq 

approximation, the linearized stability theory and normal mode analysis, the exact solutions are obtained for the case 

of two free boundaries.  It is found that the presence of the suspended particles number density, the rotation 

parameter, stable solute parameter and medium permeability bring oscillatory modes which were non–existent in 

their absence. It is found that the presence of coupling between thermal and micropolar effects, rotation parameter, 

solute parameter and suspended particles may introduce overstability in the system. Graphs have been plotted by 

giving numerical values to the parameters accounting for rotation  ,Ω,Ω 00


, solute parameter, the dynamic 

microrotation viscosity   and coefficient of angular viscosity    to depict the stability characteristics, for both the 

cases of stationary convection and overstability. It is found that Rayleigh number for the case of overstability and 

stationary convection increases with increase in rotation parameter, solute parameter and decreases with increase in 

micropolar coefficients and medium permeability, for a fixed wave number, implying thereby the stabilizing effect of 

rotation parameter, solute parameter and destabilizing effect of micropolar coefficients and medium permeability on 

the thermosolutal convection of micropolar fluids.  

Keywords - Micropolar fluid, rotation, suspended particles (fine dust), solute parameter, medium permeability, micro 

rotation,  coefficient of angular viscosity. 

I. INTRODUCTION 

Micropolar theory was introduced by Eringen 1 in order to describe some physical systems which do not sastisfy the 

Navier Stokes equations. These fluids are able to describe the behaviour of colloidal solutions, liquid crystals, animal 

blood etc. The equations governing the flow of micropolar fluid theory involve a spin vector and a microinertia 

tensor in addition to velocity vector. A generalization of the theory including  thermal  effects  has  been  developed  

by  Kazakia  and  Ariman 2  and Eringen 3. Micropolar fluid stabilities have become an important field of research 

these days. A particular stability problem is the Rayleigh-Bénard instability in a horizontal thin layer of fluid heated 

from below.  

A detailed account of thermal convection in a horizontal thin layer of Newtonian fluid heated from below has been 

given by Chandrasekhar 4. Ahmadi 5 and Pérez-Garcia et al6 have studied the effects of the microstructures on the 
thermal convection and have found that in the absence of coupling between thermal and micropolar effects, the 

principle of exchange of stabilities may not be fulfilled and consequently micropolar fluids introduce oscillatory 

motions. The existence of oscillatory motions in micropolar fluids has been depicted by Lekkerkerker in liquid 

crystals7, 8, Bradley in dielectric fluids9and Laidlaw in binary mixture10. In the study of problems of thermal 

convection, it is frequent practice to simplify the basic equations by introducing an approximation which is attributed 

to Boussinesq 11. In geophysical situations, the fluid is often not pure but contains suspended particles. Saffman 12 

has considered the stability of laminar flow of a dusty gas. Scanlon and Segel 13 have considered the effects of 

suspended particles on the onset of Bénard convection. The separate effects of suspended particles, rotation and 

solute gradient on thermal instability of fluids saturating a porous medium have been discussed by Sharma and 

Sharma 14. The suspended particles were thus found to destabilize the layer. Palaniswami and Purushotham 15 have 

studied the stability of shear flow of stratified fluids with the fine dust and found that the presence of dust particles 
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increases the region of instability. On the other hand, multiphase fluid systems are concerned with the motion of 

liquid or gas containing immiscible inert identical particles. The theoretical and experimental results of the onset of 

thermal instability (Bénard convection) in a fluid layer under varying assumptions of hydromagnetics, has been 

depicted in a treatise by Chandrasekhar 4. Lapwood 16 has studied the convective flow in porous medium using 

linearized stability theory. The Rayleigh instability in flow through a porous medium has been considered by 

Wooding 17. The problem of thermal convection in a fluid in porous medium is of importance in geophysics, soil–

science, ground–water, hydrology and astrophysics. The physical property of comets, meteororites and inter–

planetary dust strongly suggests the importance of porosity in the astrophysical context McDonnel 18.  

Moreover, Saffman and Taylor 19 have shown that the motion in a Hele–Shaw cell is mathematically analogous to 
two dimensional flow in porous medium. In recent years, there has been a considerable interest in the study of 

breakdown of the stability of a layer of a fluid subjected to a vertical temperature gradient in a porous medium and 

also in the possibility of convective flow. When a fluid permeates a porous material, the gross effect is represented 

by Darcy’s law. As a result of this macroscopic law, the usual viscous term in the equations of motion of 

microscopic fluid is replaced by the resistance term   







 1

1

  
1

 q
k


, where   and   are viscosity and dynamic 

microrotation viscosity respectively, 1k  is the medium permeability and 1 q  is the Darcian (filter) velocity of the 

fluid. The heat and solute being two diffusing components, thermosolutal convection is the general term dealing with 

such phenomena. The buoyancy forces can arise not only from density differences due to variations in temperature, 

but also from those due to variations in solute concentration. Brakke 20 explained a double–diffusive instability that 

occurs when solution of a slowly diffusing protein is layered over a dense solution of more diffusing sucrose. 
Convection that is dominated by the presence of two components is very common in geophysical systems.  

The problem of thermosolutal convection (double–diffusive convection) in a layer of fluid heated from below and 

subjected to a stable solute gradient has been studied by Veronis 21. Thermosolutal convection problems arise in 

oceanography, limnology and engineering. The case of fluids with uniform salinity gradients when the fluxes are 

driven by other mechanisms has been looked at by McDougall 22 who assumed that the fluxes were proportional to 

the salinity difference between the convective layers and independent of the layer thickness and by Holyer 23, who 

assumed that the fluxes were driven by molecular diffusivities. In all these cases where an unbounded fluid has 

uniform horizontal and vertical compositional gradients, the fluid is always unstable and so considerations of 

marginal stability are inappropriate. From the physical point of view the effect of rotation on the micropolar fluids in 

the presence of suspended particles is interesting because there is a competition between the large enough stabilizing 

effect of rotation and destabilizing effect  (to a smaller extent) of suspended particles. Moreover, rotation introduces 
Coriolis acceleration which plays an important role on the stability on the system and a centrifugal force which is 

neglected due to its small magnitude. The rotating fluid also finds its application in meteorphysics and 

oceanography.  

A broad view of the subject of double–diffusive convection is given by Brandt and Fernando 24. Sharma and Gupta 25 

have studied the thermal convection in micropolar fluids in porous medium and have found that medium 

permeability has stabilizing effect on stationary convection and destabilizing effect on the overstable case. Sharma 

and Gupta 26 have studied the effect of rotation on thermal convection in micropolar fluids in the presence of 

suspended particles. 

Sharma and Gupta 27 have studied the thermosolutal convection of micropolar fluids in the presence of suspended 

particles. Keeping in mind the importance and relevance of porosity, solute parameter and rotation in chemical 

engineering, geophysics and biomechanics, thermal instability of micropolar fluids in the presence of rotation to 

include the effect of solute parameter, suspended particles (dust particles)  in porous medium has been considered in 
the present paper. 

II. MATHEMATICAL FORMULATION AND ANALYSIS 

 Consider an infinite, horizontal layer of an micropolar fluid of thickness d permeated with suspended particles (or 

fine dust) in an isotropic and homogeneous medium of porosity   and medium permeability 1k . This fluid-particles 

layer is heated and soluted from below but convection sets in when the temperature gradient     
dz

dT
  between 

the lower and upper boundaries exceeds a certain critical value. A uniform vertical rotation  ,Ω,Ω 00


 pervades the 

system .This is the Rayleigh-Bénard instability problem in presence of salinity gradient and fine dust in micropolar 
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fluids. Both the boundaries are taken to be free and perfect conductor of heat. The mass, momentum, internal angular 

momentum, internal energy balance equations and analogous solute equation using the Boussinesq approximation 

are 

01  q                                                                                                                                                   (1) 
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Where  , and ,  , ,  ,  , , e01 upq  g denote the filter (seepage) velocity, the spin, the pressure, the fluid 

density, the acceleration due to gravity, the reference density, magnetic permeability and velocity of the suspended 

particles, respectively.  txN ,  denotes the number density of dust particles and   is the dynamic microrotation 

viscosity,  zyxx ,, . rK    6  , r  being the particle radius, is the Stokes drag coefficient and Tk , Tk  ,

,  , s ptv ccc , ,  1j  denote, respectively, the thermal conductivity, the solute conductivity, the specific heat at 

constant volume, the heat capacity of solid matrix , the heat capacity of particles, the coefficient giving account of 

coupling between spin flux with heat flux , spin flux with  solute flux and microinertial constant.   ,,  are the 

coefficients of angular viscosity. 

Assuming dust particles of uniform size, spherical shape and small relative velocities between the two phases (fluid 

and particles), the net effect of the particles on the fluid is equivalent to an extra body force term per unit volume

 1quKN  , as has been taken in equation [2]. We also use the Boussinesq approximation by allowing the 

density to change only in the gravitational body force term. The density equation of the state is 

    000   1 CCTT   ,   

Where 00 ,T  are reference density, reference temperature at the lower boundary and ,    is the coefficient of 

thermal expansion and analogous solvent coefficient, respectively. Since the force exerted by the fluid on the 

particles is equal and opposite to that exerted by the particles on the fluid.  The distance between the particles is 

assumed to be so large compared with their diameter that interparticle reactions are ignored. The buoyancy force on 

the particles is also neglected. If mN  is the mass of suspended particles per unit volume, then the equations of 

motion and continuity for the particles, under the above assumptions, are 
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In the quiescent state, the solution of equations [1] – [7] is  

,0 ,0,01   uq 0NN  (constant), , 0 zTT 
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Where 
00000 ,,,, NTCp   are their respective reference values at z=0 and 

d

TT 10   10 TT   is the magnitude 

of uniform temperature gradient. Assume small perturbations around the basic state, and let 

      , ,  , , ,,,,,1
 pωsr uwvuq    denote, respectively, the perturbations on fluid velocity 1q

, particles velocity , u  spin  , pressure ,p  density  , temperature T  so that the change in density   caused 

mainly by the perturbations  and  in temperature and solute concentration, is given by 

    0                                                                                                                                          
(9)

                                                                                                             
Then the linearized perturbation equations of the microplar fluid become  

01  q                                                                                                                                                                     (10) 
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Equations [11] - [16] in the non-dimensional form are  

01  q                                                                                                                                                                     (18) 
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where the following non-dimensional parameters are introduced    
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where R  is known as dimensionless Rayleigh number, S  is analogous solute number, 1p  is thermal Prandtl 

number and q  is analogous Schmidt number. Eliminating s  between equations [21] and [22] with the help of [23] 

and applying the curl operator twice to resulting equation, we obtain 
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Eliminating u  between equations [19] and [23] and on linearizing, we obtain  
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 Applying the curl operator to equations [19], [20] and taking z –component, we get  
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where,  
zz q1   are the z components of vorticity, respectively. 1K  and 0C   account for coupling between 

vorticity and spin effects and spin diffusion, respectively. 

Applying the curl operator twice to equations [19] and taking z –component, we get 
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The boundaries are considered to be free. The case of two free boundaries is little artificial except in astrophysical 

situations but it enables us to find analytical solutions. Thus the boundary conditions appropriate to problem are 
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
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w
w 0 at 0z and dz  .                                                             (32) 

Now we analyze the perturbations into a complete set of normal modes and then examine the stability of each of 

these modes individually. We ascribe to all quantities describing the perturbation dependence on yx,  and t of the 

form   ntykxki yx   exp ,  where xk ,
yk   are the wave numbers  along the x- and y- directions, respectively, 

 2
1

22 xx kkk   is the resultant wave number, n  is the stability parameter which can be, complex, in general. The 

solution of the stability problem requires the specifications of the state for each k . The above considerations allow 

us to suppose that the perturbation quantities have the form      

     ntyikxikzΓzΘzGzZzΩzWhΩw yxzzz    exp)(),(),(),(),(),(,,,,,, 2                                                (33)              

Then the equations [28] - [30], using equation [33] become  
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The boundary conditions [33] transform to 

                   1.and 0zat     0  ,  0  ,0  ,0  ,0  ,0  ,0 2

2  ΓΘΩGDZWDW                                            (40) 

Using boundary conditions [40], equations [34]–[39] transform to 

.ΓDGDZDΩDD 0  ,0  ,0  ,0  ,0 333

2

22                                                                                             (41) 

Differentiating [36] twice with respect to z  and using boundary conditions [41], it can be shown that .04 WD  It 

can be shown from equations [34]–[39 ]and boundary conditions [40], [41] that all even order derivatives of W  

vanish on the boundaries. The proper solution of  W  belonging to the lowest mode is 

zWW  sin0                                                                                                                                                       (42) 

Where  0W   is a constant.                                                 
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Eliminating  
2  ,  , ΩΓΘ  from equations [34]–[39] and substituting the solution given by equation [42], we obtain the 
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Where 
22 kb  .  

The case of oscillatory modes- Here we examine the possibility of oscillatory modes, if any, in the stability problem 

due to the presence of salinity gradient, rotation and suspended particles number density. Equating the imaginary 

parts of equation [43], we have 
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 = 0           (44)                                                                                                                                                                                                                                           

It is evident from equation [44] that in  may be either zero or non-zero, meaning thereby that the modes may be non-

oscillatory or oscillatory. In the absence of suspended particles number density, rotation parameter, magnetic 

permeability and solute parameter, equation [44] reduces to in   bAkRKbA    2 2

1

2  0                                                                                           

(45)                                                                             and term within the brackets is definitely positive, which implies 

that in 0. Therefore, the oscillatory modes are not allowed and principal of exchange of stabilities is satisfied for 

porous medium in the absence of suspended particles, solute parameter and rotation. The presence of the suspended 

particles number density, rotation parameter, medium permeability and solute parameter bring oscillatory modes (as 

in  may not be zero) which were non–existent in their absence. 

The case of over-stability-The present section is devoted to the possibility that instability may occur as over-

stability. Since we wish to determine the Rayleigh number for onset of instability via a state of pure oscillations, it 

suffices to find the conditions for which equation [43] will admit of solutions with in  real. Substituting iinn   in 

equation [43], and then equating the real and imaginary parts of equation [43] we obtain 
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and  
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            (47) 

Eliminating R  between equations [46] and [47], we get 
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                     (48)  

The case of stationary convection- When the instability sets in as stationary convection, the marginal state is 

characterized by 0in . Putting 0in  in equation [46], we obtain 
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In the absence of stable solute parameters  0,0  S   and rotation )Ω( 0


 equation [49] reduces to 
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 a result  in good agreement with  Sharma and  Gupta [25].   

III. RESULTS AND DISCUSSION 

Equation [48] has been examined numerically using the Newton–Raphson method through the software Fortran 90. 

We have plotted the variation of Rayleigh number with respect to wave-number using equation [46] satisfying [48] 

for overstable case and equation [49] for stationary case, for the fixed permissible values of the dimensionless 

parameters  0.035 1.5 ,005.1 ,10,1 2  q,Fap  ,5.0,01.11  H ,9.0E 1k 2. 

Figs. 1–3 correspond to three values of rotation parameter i.e. Ω


20, 16, 10 rev/minute, respectively, which 

shows that Rayleigh number increases with increase in rotation parameter depicting thereby the stabilizing effect of 

rotation parameter. Figs. 4–6 correspond to three values of medium permeability 1k 5, 10 and 30. The graphs 

show that the Rayleigh number for the stationary convection and for the case of over-stability decreases with the 

increase in medium permeability depicting thereby destabilizing effect of medium permeability. Figs. 7–9 

correspond to three values of micropolar coefficient  0.5, 0.7 and 1.0, respectively, accounting for dynamic 

microrotation viscosity. The graphs  show that the Rayleigh number for the stationary convection and for the case of 
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overstability decreases with the increase in micropolar coefficient    implying thereby the destabilizing effect  of  

dynamic  microrotation  viscosity.  
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                   Fig- 3.                                                                                                           Fig- 4. 
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                   Fig- 5.                                                                                                   Fig- 6.     
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                   Fig- 7.                                                                                                Fig- 8.             

                                                    

0 1 2 3 4 5 6

-10000

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

R

k

 overstability

 stationary

 

                                                                                    Fig- 9. 
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Figures 10–12 correspond to three values of micropolar coefficient     =1.0, 1.2 and 1.4, respectively. The graphs  

show that the Rayleigh number for the stationary convection and for the case of overstability decreases with the 

increase in micropolar coefficient    implying thereby the destabilizing effect of coefficient of angular viscosity, 

therefore micropolar coefficients have destabilizing effects on the system.  

Figures 13–14 correspond to two different values of the solute parameter i.e. S 30 and 10, respectively. It is 

evident from the graphs that Rayleigh number increases with the increase in stable solute parameter even in the 

presence of suspended particles (fine dust) number density depicting the stabilizing effect of solute parameter. 
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                   Fig- 10.                                                                                                      Fig- 11. 

                                                                                          

   
0 1 2 3 4 5 6

-20000

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

R

k

 overstability

 stationary

                                                             

1.4 1.6 1.8 2.0 2.2 2.4

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

22000

24000

R

k

 overstability

 stationary

 

                 Fig-12.                                                                                                        Fig- 13     
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                                                                    Fig- 14. 

IV CONCLUSION 

There is a  competition between  the  large enough stabilizing effect of rotation parameter, stable solute parameter 

and the destabilizing effect of the micropolar coefficients and medium porosity. The presence of coupling between 

thermal and micropolar effects, rotation parameter, solute parameter, medium permeability and suspended particles 

number density may bring over stability in the system. It is also noted from the Figures 3, 4, 7 and 10 that the 

Rayleigh number for overstability is always less than the Rayleigh number for stationary convection, for a fixed 

wave-number. However, the reverse may also occur for large wave-numbers, as has been depicted in Figures1, 2, 5, 

6, 8, 9, 11 and 12 . 
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