On Πgβ-Normal And Πgβ- Regular Spaces

Sanjay Tahiliani

Department of Mathematics, N.K.Bagrodias, Sec-9, Rohini, Delhi.

Abstract - We use the notion of $\pi g\beta$ -closed sets and use it to obtain some new characterizations of $\pi g\beta$ -normal spaces introduced by kumar, chand and rajhbar. We also introduced $\pi g\beta$ -regular spaces and obtained its basic properties.

1. Inroduction

Kumar, Chand and Rajbhar[7] used the notion of $\pi g\beta$ -closed sets to obtain a new characterization of $\pi g\beta$ -normal spaces and obtained some preservation theorems for $\pi g\beta$ -normal spaces. In this paper, we study $\pi g\beta$ -normal spaces further and obtained some new results. Also,

we introduce $\pi g\beta$ -regular spaces and obtain some of its basic properties.

2. Preliminaries

Throughout the present paper, X and Y denote topological spaces. Let A be a subset of X. We denote the interior and closure of A by Int(A) and Cl(A) respectively.

A subset A of a topological space X is said to be β -open [1] or semi-preopen [3] (if A \subseteq Cl(Int(Cl(A))). The complement of β -open set is β -closed. The intersection of all β -closed sets containing A is called β -closure [2]) of A and is denoted by β Cl(A). Further A is said to be regular open if A=Int(Cl(A)) and it is said to be regular closed if A=Cl(Int(A)). It is said to be π -open[12] if it is finite union of regular open sets.

Key Words: π -closed, β -closed, $\pi g\beta$ -closed, $g\beta$ -normal, $\pi g\beta$ -normal. AMS Subject Classification: 54C08,54C10

Also, A is said to be generalized semi-preclosed[4](briefly.gsp-closed) or g\beta-closed (resp. π g\beta-closed[11]) if β Cl(A) \subseteq U, whenever A \subseteq U and U is open(resp π -open) in X. The complement of π g\beta-closed set is π g\beta-open

Definition 2.1 [10]. A space X is said to be β -normal if for any two disjoint β -closed sets A and B of X, there exists two disjoint β -open sets U and V such that $A \subseteq U$ and $B \subseteq V$.

Definition 2.2 [5]. A space X is said to be strongly β -normal if for any two disjoint β -closed sets A and B of X, there exists two disjoint β -open sets U and V such that $A \subseteq U$ and $B \subseteq V$.

Definition 2.3 [8]. A space X is said to be β -normal if for any two disjoint closed sets A and B of X, there exists two disjoint β -open sets U and V such that A \subseteq U and B \subseteq V.

Definition 2.4 [9]. A subset A of space X is said to be β -clopen or semi-pre regular if its β -open as well as β -closed.

Definition 2.5. A subset A of space X is said to be locally discrete if every open set is closed.

Definition 2.6. A space X is said to be weakly $\pi g\beta$ -normal if disjoint $\pi g\beta$ -closed set can be separated by disjoint closed sets.

Definition 2.7. A function $f:X \rightarrow Y$ is said to be (1). contra- β -continuous[6] if $f^{-1}(F)$ is β -open in X for each closed set F of Y. (2). always $\pi g\beta$ -closed if the image of each $\pi g\beta$ -closed set in X is $\pi g\beta$ -closed set in Y.

3. $\pi g\beta$ -Normal Topological Spaces

In this section, we study more of $\pi g\beta$ -normal spaces and study some of its properties.

Definition 3.1. A space X is said to be $\pi g\beta$ -normal[7] if for any two disjoint $\pi g\beta$ -closed sets A and B of X, there exists two disjoint β -open sets U and V such that A \subseteq U and B \subseteq V.

From above definition, its clear that ;

$\pi g\beta$ -normal $\rightarrow g\beta$ -normal $\rightarrow strongly \beta$ -normal $\rightarrow \beta$ -normal

None of the implications is reversible as can be seen from the following examples:

Example 3.1. Let $X = \{a,b,c,d\}$ and let the topology on X be $T = \{\phi, X, \{b\}, \{d\}, \{b,d\}, \{a,b,c\}\}$. Then (X,T) is normal, hence β -normal but not strongly β -normal since $\{c,d\}$ and $\{a\}$ are the pair of disjoint β -closed sets and there is no pair of disjoint β -open sets containing $\{c,d\}$ and $\{a\}$.

Example 3.2. Let $X = \{a,b,c,d\}$ and let the topology on X be $T = \{\phi, X, d\}$

, {b,d}, {a,b,d}, {b,c,d}}. Then (X,T) is β -normal, hence $g\beta$ -normal but not $\pi g\beta$ -normal since {b,d} and {a,c} are the pair of disjoint $\pi g\beta$ -closed sets and there is no pair of disjoint β -open sets containing them.

Example 3.3. Let Y and Z be disjoint finite sets and let $X=Y\cup Z$. Then $T=\{\phi, X, Y, Z\}$ is a topology on X. Clearly (X,T) is locally discrete and hence every β -closed set is clopen. Hence (X,T) is strongly β -normal. If A is non empty subset of Y and B \subseteq Y-A, then A is $\beta\beta$ -closed, but A and B cannot be separated by disjoint β -open sets.

Hence (X,T) is not $g\beta$ -normal.

Definition 3.2. A space X is said to be $\pi g\beta$ -regular if for every $\pi g\beta$ -closed subset F of X and a point x not in F, there exist disjoint β -open subsets U and V such that $x \in U$ and $F \subseteq V$.

A $\pi g\beta$ -normal space need not be $\pi g\beta$ -regular, as the following example shows:

Example 3.4. Let $X = \{a,b,c,d\}$ and let the topology on X be $T = \{\phi, X, \{a,b\}\}$. Then (X,T) is $\pi g\beta$ -normal but not $\pi g\beta$ -regular since $\{a,b,c\}$ is $\pi g\beta$ -closed but for d not in $\{a,b,c\}$, there does not exist any pair of disjoint β -open sets containing them.

Definition 3.3. A topological space (X,T) is said to be $(\beta, \pi g\beta)$ -R₀ if β Cl({x}) \subseteq U whenever U is $\pi g\beta$ -open and x \in U.

Theorem 3.1. Every $\pi g\beta$ -normal (β , $\pi g\beta$)-R₀ space is $\pi g\beta$ -regular

Proof. Let F be a $\pi g\beta$ -closed subset of X and $x \in X$ such that x is not in F.Then $x \in X$ -F, where X-F is a $\pi g\beta$ -open set in X.Since X is a $(\beta, \pi g\beta)$ -R₀ space, we have $\beta Cl(\{x\}) \subseteq X$ -F.Thus F and $\beta Cl(\{x\})$ are disjoint $\pi g\beta$ -closed sets in X.By $\pi g\beta$ -normality of X, there exist disjoint β -open subsets U and V such that $F \subseteq U$ and $\beta Cl(\{x\}) \subseteq V$.Therefore, , there exist disjoint β -open subsets U and V such that $x \in U$ and $F \subseteq V$. Hence X is a $\pi g\beta$ -regular.

Following is some new characterization of $\pi g\beta$ -normality:

Theorem. **3.2.** The following properties are equivalent for a space X:

(i). X is $\pi g\beta$ -normal.

(ii). For every $\pi g\beta$ -closed set A and every $\pi g\beta$ -open set B containing A, there is a β -clopen set V such that $A \subseteq V \subseteq B$.

Proof.(i) \rightarrow (ii). Let A be π g β -closed set and U be π g β -open set with A \subseteq U. Now we have A \cap (X-U)= \emptyset , hence there exists disjoint β -open sets W₁ and W₂ such that A \subseteq W₁ and X-U \subseteq W₂. If V= β Cl(W₁), then V is a β -clopen set satisfying A \subseteq V \subseteq U.

(ii) \rightarrow (i). Obviuos.

Theorem 3.3. If $f:(X,\tau) \rightarrow (Y,\sigma)$ is an injective always $\pi g\beta$ -closed function and (Y,σ) is weakly $\pi g\beta$ -normal, then (X,τ) is $\pi g\beta$ -normal.

Proof. Suppose that A_1 , $A_2 \subseteq X$ are $\pi g\beta$ -closed and disjoint. Since f is always $\pi g\beta$ -closed and injective, $f(A_1)$, $f(A_2)\subseteq Y$ are $\pi g\beta$ -closed and disjoint. Since (Y,σ) is weakly $\pi g\beta$ -normal, $f(A_1)$ and $f(A_2)$ can be separated by disjoint closed sets B_1 , $B_2\subseteq Y$. Moreover as f is contra β -continuous, A_1 and A_2 can be separated by disjoint β -open sets $f^{-1}(B_1)$ and $f^{-1}(B_2)$. Thus (X,τ) is $\pi g\beta$ -normal.

$4.\pi g\beta$ -regular spaces

Definition 4.1. A topological space (X, τ) is said to be $g\beta$ -regular[10] if for each $g\beta$ -closed set A and each point $x \in X$ such that $x \notin A$, there exist disjoint β -open sets U, $V \subseteq X$ such that $A \subseteq V$ and $x \in U$.

Definition 4.2. A topological space (X, τ) is said to be $\pi g\beta$ -regular if for each $\pi g\beta$ -closed set A and each point $x \in X$ such that $x \notin A$, there exist disjoint β -open sets U, V $\subseteq X$ such that $A \subseteq V$ and $x \in U$.

Definition 4.3. A topological space (X, τ) is said to be $\pi g\beta$ -T_{1/2}[11] if every $\pi g\beta$ -closed set is $g\beta$ -closed.

Theorem 4.1. A space (X,τ) is $\pi g\beta$ -regular if and only if (X,τ) is $g\beta$ -regular and $\pi g\beta$ -T_{1/2}.

Proof. Suppose that (X,τ) is $\pi g\beta$ -regular. Then clearly (X,τ) is $g\beta$ -regular. Now, let $A \subseteq X$ be $\pi g\beta$ -closed. For each $x \notin A$, there exists a $g\beta$ -open set Vx containing x such that $Vx \cap A = \emptyset$. If $V = \bigcup \{Vx: x \notin A\}$, then V is a $g\beta$ -open set and $V = X \sim A$. Hence A is $g\beta$ -closed. Converse is obvious.

Remark 4.1. There exist a topological space which is $g\beta$ -regular but not $\pi g\beta$ -regular as can be seen in Example 3.1.

Our next result characterizes $\pi g\beta$ -regular spaces.

Theorem 4.2. For a topological space (X, τ) , the following are equivalent:

(i). (X,τ) is $\pi g\beta$ -regular.

(ii). Every $\pi g\beta$ -open set U is a union of β -clopen sets.

(iii). Every $\pi g\beta$ -closed set A is intersection of β -clopen sets.

Proof.(i) \rightarrow (ii).Let U be $\pi g\beta$ -open and $x \in U$. If A=X~U, then A is $\pi g\beta$ -closed. By assumption, there exist disjoint β -open subsets W₁ and W₂ of X such that $x \in W_1$ and A $\subseteq W_2$. If V= β Cl(W₁), then V is β -clopen ([9], Theorem 3.1) and V \cap A \subseteq V \cap W₂=Ø. It follows that $x \in V \subseteq U$. Thus U is a union of β -clopen sets.

 $(ii) \rightarrow (iii).obvious.$

(iii) \rightarrow (i). Let A be $\pi g\beta$ -closed and let $x \notin A$. By assumption, there exists a β -clopen set V such that $A \subseteq V$ and $x \notin V$. If U=X~V, then U is a β -open set containing x and U \cap V=Ø.Thus (X, T) is $\pi g\beta$ -regular.

References

- Abd El-Monsef M.E., El-Deeb S.N. and Mahmoud R.A., "β- open sets and β-continuous mappings", Bull.Fac. Sci. Assint Univ., 12 (1983), 77-90.
- [2] Abd El-Monsef M.E, Mahmoud R.A and Lashin E.R., "β- closure and β-interior", J.Fac. Ed. Ain Shams.Univ, 10 (1986), 235-245
- [3] D.Andrijević, "Semi-preopen sets", Mat. Vesnik., (1986), 24-32.
- [4] J.Dontchev, "On generalizing semi-preopen sets", Mem.Fac.Sci. Kochi.Univ.Ser.A. Math., 16 (1995), 35-48.
- [5] S.Jafari and T.Noiri, "On β-quasi irresolute functions", Mem. Fac.Sci Kochi.Univ.Ser.A. Math.,21 (2000), 53-62.
- [6] S.Jafari and M.Caldas, "Properties of contra β -continuous functions", Mem. Fac. Sci. Kochi. Univ.(Math) ., 22 (2001) 19-28.
- [7] H.Kumar, U.Chand and R.Rajbhar, "πgβ-Normal spaces in Topological Spaces", International Journal Of Science and Research, 4 (2) (2015),1531-1534.
- [8] R.A.Mahmoud and M.E.Abd El-Monsef, "β-irresolute and β- topological invariant", Proc. Pakistan. Acad. Sci., 27 (1990) 285-96.
- [9] T.Noiri, Weak and strong forms of β -irresolute functions. Acta. Math.Hungar., **14** (2003) 315-328.
- [10] Sanjay Tahiliani, "On g β -regular and g β -normal spaces", Demonstratio Mathematica 40 (3) (2007),739-743.
- [11] Sanjay Tahiliani, "On π g β -closed sets in topological spaces", Note.di.Mathematica 30 (1), (2010), 49-55.
- [12] V.Zaitsav, "On Certain Classes of Topological Spaces and their Bicompactifications", Dokl. Acad. Nauk SSSR, 178, (1979), 778-779.