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Abstract: The status of a vertex u is the sum of distances between u and all other vertices in a graph. In this
paper, we introduce the atom bond connectivity (ABC) status index, arithmetic-geometric (AG) status index and
augmented status index of a graph. Also these indices of some standard graphs and friendship graphs are
computed.

Keywords: Status, ABC status index, AG status index, augmented status index, graphs.

Mathematics Subject Classification: 05C05, 05C12, 05C35, 05C90.

I. Introduction

Let G be a finite, simple, connected graph with vertex set V(G) and edge set E(G). The degree dg(u) of
a vertex u is the number of vertices adjacent to u. The distance d(u, v) between any two vertices u and v is the
length of the shortest u-v path in a graph G. The status [1(u) of a vertex u in G is the sum of the distances of all
other vertices from u in G. For undefined term and notation, we refer [1]. Several status indices of a graph such
as first and second status connectivity indices [2], first and second status coindices [3], harmonic status index
[4], first and second hyper status indices [5], geometric-arithmetic status index [6], F-status index [7], (a, b)-
status index [8] were introduced and studied in the literature.

We introduce the atom bond connectivity status index, arithmetic-geometric status index, augmented
status index of a graph as follows:

The atom bond connectivity status index of a graph G is defined as

o s@W+sw)- 2
ABCS (G)= W}“E@\/ OO

The arithmetic-geometric status index of a graph G is defined as
o +
AGS@)= § sW+s (v).
wi EG) 24/S (U)S (V)

The augmented status index of a graph G is defined as

® sWsW &

ASI@G)= & & o
A B+ s W 25

Recently many different topological indices were studied, for example, in [9, 10, 11, 12, 13, 14, 15, 16,
17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37]. In this paper, we compute the atom bond
connectivity status index, arithmetic-geometric status index, augmented status index of some standard graphs
and friendship graphs.

I1. Results for complete graphs
Theorem 1. Let K, be a complete graph with n vertices. Then

in n-2
\/5 .

(2 AGS (K, = n(n2— 1).

(1)  ABCS (K, =
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(3) ASI(K,) = n(n_—l)g
16(n-2)
Proof: Let K, be a complete graph with n vertices. Then it has n(n2—1) edges and for any vertex u in Ky, [1(u)
=n-1. Thus
oc(W+o(v)-2 (n-1))+(h-1)-2 |In(h-1) 1
(1) ABCS (K, = \/ :[\/ = —nJn-2.
uveEZ(:Kn) o(wao(v) (n-D(n-1) 2 J2
@ AssK)= Y c(uw+o(v) __n-l+n-1 n(n-1) _ n(n—l)'
wee(k,) 2o (W a(v) 2(n-1(n-1) 2 2
3 3 7
o(ao(v) (n-1(n-1) \'n(n-1) n(n-1)
@) ASI(K)= > ( ] =( - 5.
week, )\ o) +o(v) -2 n-1+n-1-2 2 16(n-2)
I11. Results for cycles
Theorem 2. Let C, be a cycle with n vertices and n edges. Then
2 —
(1)  ABCS(C,) :2—“2(n4), if n is even,
n
2 f—
_ 22 =5) *'Zz(r‘15) if n is odd.
n —_
(2) AGS(C, =n, if niseven,
=n, if nis odd.
K
(3) ASI(C) =, if niseven,
512(n% - 4)
6
2 —
:n(n—l)y if nis odd.
512(n? -5)
Proof: Let C, be a cycle with n vertices and n edges.
2
Case 1. Suppose n is even. Then o (u) :nT for any vertex uin C,. Thus
22 12
cWroW) -2 | 4t 4?2 22(n? —4)
(1) ABCS(C) = Y, =| n=N — 7
uveE(C,) o(wo(v) n.n n
4 4
nt . n
@ AGSC) = ocW+olv) | 4 4 |,_,
wege,) 2o (U)o (v) ) ,nz n?
7X7
4 4
3
cWeow) Y e 1 B
(3)  ASI(Cy) = > ( J =l P2A = x——
weE(C, ) o) +o(v)-2 L+l_2 512 (nz _4)
4 4

2
Case 2: Suppose n is odd. Then o (u) = n"-1

for any vertex uin C,..
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2 2
n“-1 n°-1
pwoscy - 3 [PWremz | [ 4 4 % 2 -s)
" weege) V. oWa(v) n? -1 n? -1 n? -1
4 4
n>-1 n®-1

_y oWro | a4 T

AGS(C,) n=n.
uveE(C 2\/0'(U)O'(V) 5 n2 —]_ n? -1
4 4
, n? -1 n? -1
(wWo(v) 4 4 1 ( -1°
ASI(C,) = > ( o j _ e '
weee) Lo +o(v) -2 n24—1+ n24—1_2 512 (n2 _5)°

IV. Results for complete bipartite graphs

Theorem 3. Let K, 4 be a complete bipartite graph with p+q vertices and pq edges. Then

)

)

©)

1
3(p+q)- }2
p?+q%)-6(p+q)+5pq+4|
pq[3(p+q)-4]
22(p?+q?)-6(p+q)+5pg-+4

pal 2(p? +¢?)- 6(p+q)+5pq+4]
[3(p+q)-6]

ABCS(Kp, q) = Pq { 2(

AGS (Kp,q) =

ASI (Kp,q) =

Proof: The vertex set of K, 4 can be partitioned into two independent sets V; and V, such that u (1 V; and v [7 V,
for every edge uv in K, 4. Thus dg(u) = g, dg(v) = p. Then [J(u) = q + 2(p — 1) and [J(v) = p+2(q — 1). Therefore

)

)

3)

oW +o(v)-2

ABCS (Kp,q) ZUVEEZ|1< ) G(U)U(V)
1
zpq[q+2p—2+p+2q—2—2j;=pq 3(p+q)-6 g
(a+2p-2)(p+29-2) 2(p*+q?)-6(p+0a)+5pq+4)
AGS(K _ c(uw)+o(v)
( pvq) UVEIEZ(I:< )2 O'(U)O'(V)
_pa(a+2p-2+p+29-2) PQ[3(F’+Q)—4J .
2\/Q+2p 2)(p+29-2) 2\/2(p2+q2)—6(p+q)+5pq+4
) sWow) Y
AS'(KDVC{) _UV€I§ (G(U)-FO'(V) 2}
:DQ[(q+2p—2)(q+2p—2)]3:pq[z(pz+q2)—6(p+q)+5pq+4}3
(q+2p—2+p+2q—2—2)3 [3(p+q)—6]3
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V. Results for wheel graphs

A wheel graph W, is the join of K; and C,. Clearly W, has n+1 vertices and 2n edges. A graph W, is
shown in Figure 1.

‘!‘. s ES -
Ve

Figure 1. Wheel graph W,

In W, there are two types of edges as follows:

Ev={uv 0 (Wy) | dy, (u)=dy, (v)=3}, |Ei[=n.

Eo={uv ) (Wy) | dy, (u)=3,de (v)=n}, |Es|=n.

Therefore there are two types of status edges in W, as given in Table 1.

O(), OM) \uv O E(W,) (2n-3,2n-3) (n,2n-13)
Number of edges n n

Table 1. Status edge partition of W,

Theorem 4. Let W, be a wheel graph with n+1 vertices and 2n edges. Then

_2nyn-2 +\/n(3n—5)

(1)  ABCS(W,)

2n-3 2n-3
n(3n-3)
2)  AGS(W, N
@ (W) n+2 n(2n-3)
3
B (2n—3)2} [n(Zn—3)T
(3)  ASI(W,) _nL(n—z) = |

Proof: By definitions and by using Table 1, we deduce
_ ocW+o(v)-2

uveE(W, ) O-(U)O-(V)

(1)  ABCS(W,)

:(Zn—3+2n—3—2j;n+(n+2n—3—2);n
(2n-3)(2n-3) n(2n-3)
_2an—2+\/n(3n—5)

2n-3 2n-3

z o) +o(v)

(2)  AGS(W,)
uveE(W,) 2Jo(Wao(v)

2n-3+2n-3 n+2n-3
= n+ n
[2\/(2n—3)(2n—3)J [2 n(2n—3)j
n(3n-3)

’ 2\/n(2n-3) '
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3
3)  ASI(W,) - [ o) o(v) j

UVeE(Wn) O'(U) + O'(V) -2

_( (2n-3)(2n-3) TM( n(2n-3) Tn
2n-3+2n-3-2 n+2n—-3-2

_n[(Zn—:%)z T H{n(zn_a)T
1 4(n-2) 3n-5 |°

VI. Results for friendship graphs

A friendship graph F, is the graph obtained by taking n 1772 copies of C; with vertex in common. This
graph has 2n + 1 vertices and 3n edges. A graph F, is presented in Figure 2.

Figure 2. Friendship graph F,4

In F,, there are two types of edges as follows:
E1={UVD (Fn)l d|:r| (U):an (V):2}, |E1|:n'

E,={w D (Fy) | de, (u)=2,dg (v)=2n}, |Ee|=2n.

Therefore in F,, we obtain two types of status edges as given in Table 2.

O), OV \uv O E (Fy) (4n-2,4n-2) (2n, 4n-2)

Number of edges n 2n

Table 2. Status edge partition of F,

Theorem 5. Let F, be a friendship graph with 2n+1 vertices and 3n edges. Then
_mfBn-6 \/2n(3n -2)

(1)  ABCS (F.)

4n-2 2n-1
1
n \2
(2 AGS(F) —n+(3n—1)(2n_1j.
23 3
@  ASIE {u} o[ Pn-D
4n -6 3n-2

Proof: By using definitions and Table 2, we deduce
S o +o(v)-2

uveE(F,) o(ua(v)

(1)  ABCS(F.)
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