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I. Introduction 

 Let G be a finite, simple, connected graph with vertex set V(G) and edge set E(G). The degree dG(u) of 

a vertex u is the number of vertices adjacent to u. The distance d(u, v) between any two vertices u and v is the 

length of the shortest u-v path in a graph G. The status (u) of a vertex u in G is the sum of the distances of all 

other vertices from u in G. For undefined term and notation, we refer [1]. Several status indices of a graph such 
as first and second status connectivity indices [2], first and second status coindices [3], harmonic status index 

[4], first and second hyper status indices [5], geometric-arithmetic status index [6], F-status index [7], (a, b)-

status index [8] were introduced and studied in the literature. 

 We introduce the atom bond connectivity status index, arithmetic-geometric status index, augmented 

status index of a graph as follows: 

 The atom bond connectivity status index of a graph G is defined as 
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 The arithmetic-geometric status index of a graph G is defined as 
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 The augmented status index of a graph G is defined as 
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 Recently many different topological indices were studied, for example, in [9, 10, 11, 12, 13, 14, 15, 16, 

17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37]. In this paper, we compute the atom bond 

connectivity status index, arithmetic-geometric status index, augmented status index of some standard graphs 

and friendship graphs. 

  

II. Results for complete graphs 
 

Theorem 1. Let Kn be a complete graph with n vertices. Then 

(1) ABCS (Kn) = 
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n n  
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(3) ASI (Kn) = 
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Proof: Let Kn be a complete graph with n vertices. Then it has 
 1

2

n n
 edges and for any vertex u in Kn, (u) 

= n – 1. Thus 

(1) ABCS (Kn) 
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III. Results for cycles 

 

Theorem 2. Let Cn be a cycle with n vertices and n edges. Then 

(1) ABCS(Cn)  
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n

n
   if n is even, 
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n n

n
  if n is odd. 

(2) AGS (Cn)  = n,  if n is even, 

  = n,  if n is odd. 

(3) ASI (Cn)  
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Proof: Let Cn be a cycle with n vertices and n edges. 

Case 1. Suppose n is even. Then  
2

4

n
u   for any  vertex u in Cn. Thus 
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2

nuv E C

u v

u v

 

 

 
 

 

1/2
2 2

2

2 2

2
2 2 44 4 .

4 4

n n

n
n

nn n

 
   

  
 

 
 

 

(2) AGS(Cn)  
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(3) ASI(Cn)  
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Case 2: Suppose n is odd. Then  
2 1

4

n
u


  for any  vertex u in Cn. 
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(3) ASI(Cn)  
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IV. Results for complete bipartite graphs 

 

Theorem 3. Let Kp, q be a complete bipartite graph with p+q vertices and pq edges. Then 

(1) ABCS(Kp, q) 
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Proof: The vertex set of Kp,q can be partitioned into two independent sets V1 and V2 such that u  V1 and v  V2 

for every edge uv in Kp,q. Thus dG(u) = q, dG(v) = p. Then (u) = q + 2(p – 1) and (v) = p+2(q – 1). Therefore 
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V. Results for wheel graphs 

 

 A wheel graph Wn is the join of K1 and Cn. Clearly Wn has n+1 vertices and 2n edges. A graph Wn is 

shown in Figure 1. 

 
Figure 1. Wheel graph Wn 

 

 In Wn, there are two types of edges as follows: 

 E1 = {uv  (Wn) |     3 
n nW Wd u d v },  | E1 | = n. 

 E2 = {uv  (Wn) |    3, 
n nW Wd u d v n }, | E2 | = n. 

 Therefore there are two types of status edges in Wn as given in Table 1. 

 

(u), (v) \ uv  E(Wn) (2n – 3, 2n – 3) (n, 2n – 3) 

Number of edges n n 

Table 1. Status edge partition of Wn 

 

Theorem 4. Let Wn be a wheel graph with n+1 vertices and 2n edges. Then 
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Proof: By definitions and by using Table 1, we deduce 
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(3) ASI(Wn)  
   

   
 

3

2
nuv E W

u v

u v

 

 

 
  

  
  

  
     

3 3
2 3 2 3 2 3

2 3 2 3 2 2 3 2

n n n n
n n

n n n n

     
    

         
 

  
 

 

 
3 32

2 3 2 3
.

4 2 3 5

n n n
n n

n n

    
    

   
 

 

VI. Results for friendship graphs 

 

 A friendship graph Fn is the graph obtained by taking n 2 copies of C3 with vertex in common. This 

graph has 2n + 1 vertices and 3n edges. A graph F4 is presented in Figure 2. 

 

 
Figure 2. Friendship graph F4 

 

 In Fn, there are two types of edges as follows: 

 E1 = {uv  (Fn) |     2
n nF Fd u d v  },  | E1 | = n. 

 E2 = {uv  (Fn) |    2, 2
n nF Fd u d v n  }, | E1 | = 2n. 

 

 Therefore in Fn, we obtain two types of status edges as given in Table 2. 

(u), (v) \ uv  E (Fn) (4n – 2, 4n – 2) (2n, 4n – 2) 

Number of edges n 2n 

Table 2. Status edge partition of Fn 

 
Theorem 5. Let Fn be a friendship graph with 2n+1 vertices and 3n edges. Then  
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