Computation of $A B C, A G$ and Augmented Status Indices of Graphs

V.R. Kulli
Department of Mathematics. Gulbarga University, Gulbarga 585106, India

Abstract

The status of a vertex u is the sum of distances between u and all other vertices in a graph. In this paper, we introduce the atom bond connectivity $(A B C)$ status index, arithmetic-geometric $(A G)$ status index and augmented status index of a graph. Also these indices of some standard graphs and friendship graphs are computed.

Keywords: Status, ABC status index, AG status index, augmented status index, graphs.
Mathematics Subject Classification: 05C05, 05C12, 05C35, 05C90.

I. Introduction

Let G be a finite, simple, connected graph with vertex set $V(G)$ and edge set $E(G)$. The degree $d_{G}(u)$ of a vertex u is the number of vertices adjacent to u. The distance $d(u, v)$ between any two vertices u and v is the length of the shortest $u-v$ path in a graph G. The status $\square(u)$ of a vertex u in G is the sum of the distances of all other vertices from u in G. For undefined term and notation, we refer [1]. Several status indices of a graph such as first and second status connectivity indices [2], first and second status coindices [3], harmonic status index [4], first and second hyper status indices [5], geometric-arithmetic status index [6], F-status index [7], (a, b) status index [8] were introduced and studied in the literature.

We introduce the atom bond connectivity status index, arithmetic-geometric status index, augmented status index of a graph as follows:

The atom bond connectivity status index of a graph G is defined as

$$
A B C S(G)={\underset{u v \hat{1} E(G)}{ }}_{\sqrt{\frac{s(u)+s(v)-2}{s(u) s(v)}} .} .
$$

The arithmetic-geometric status index of a graph G is defined as

$$
A G S(G)=\underset{u v \hat{1} E(G)}{\circ} \frac{s(u)+s(v)}{2 \sqrt{s(u) s(v)}}
$$

The augmented status index of a graph G is defined as

Recently many different topological indices were studied, for example, in $[9,10,11,12,13,14,15,16$, $17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37]$. In this paper, we compute the atom bond connectivity status index, arithmetic-geometric status index, augmented status index of some standard graphs and friendship graphs.

II. Results for complete graphs

Theorem 1. Let K_{n} be a complete graph with n vertices. Then

$$
\begin{align*}
& \operatorname{ABCS}\left(K_{n}\right)=\frac{1}{\sqrt{2}} n \sqrt{n-2} . \tag{1}\\
& \operatorname{AGS}\left(K_{n}\right)=\frac{n(n-1)}{2} .
\end{align*}
$$

(3) $\quad \operatorname{ASI}\left(K_{n}\right)=\frac{n(n-1)^{7}}{16(n-2)^{3}}$.

Proof: Let K_{n} be a complete graph with n vertices. Then it has $\frac{n(n-1)}{2}$ edges and for any vertex u in $K_{n}, \square(u)$ $=n-1$. Thus
(1) $\quad A B C S\left(K_{n}\right)=\sum_{u v \in E\left(K_{n}\right)} \sqrt{\frac{\sigma(u)+\sigma(v)-2}{\sigma(u) \sigma(v)}}=\left(\sqrt{\frac{(n-1)+(n-1)-2}{(n-1)(n-1)}}\right) \frac{n(n-1)}{2}=\frac{1}{\sqrt{2}} n \sqrt{n-2}$.
(2) $\quad \operatorname{AGS}\left(K_{n}\right)=\sum_{u v \in E\left(K_{n}\right)} \frac{\sigma(u)+\sigma(v)}{2 \sqrt{\sigma(u) \sigma(v)}}=\frac{n-1+n-1}{2 \sqrt{(n-1)(n-1)}} \times \frac{n(n-1)}{2}=\frac{n(n-1)}{2}$.
(3) $\quad \operatorname{ASI}\left(K_{n}\right)=\sum_{u v \in E\left(K_{n}\right)}\left(\frac{\sigma(u) \sigma(v)}{\sigma(u)+\sigma(v)-2}\right)^{3}=\left(\frac{(n-1)(n-1)}{n-1+n-1-2}\right)^{3} \frac{n(n-1)}{2}=\frac{n(n-1)^{7}}{16(n-2)^{3}}$.

III. Results for cycles

Theorem 2. Let C_{n} be a cycle with n vertices and n edges. Then
(1) $\operatorname{ABCS}\left(C_{n}\right)=\frac{2 \sqrt{2\left(n^{2}-4\right)}}{n}, \quad$ if n is even,
$=\frac{2 n \sqrt{2\left(n^{2}-5\right)}}{n^{2}-1}, \quad \quad$ if n is odd.
(2) $\operatorname{AGS}\left(C_{n}\right)=n, \quad$ if n is even,
(3) $\operatorname{ASI}\left(C_{n}\right)=\frac{n^{13}}{512\left(n^{2}-4\right)^{3}}, \quad$ if n is even, $=\frac{n\left(n^{2}-1\right)^{6}}{512\left(n^{2}-5\right)^{3}}, \quad$ if n is odd.
Proof: Let C_{n} be a cycle with n vertices and n edges.
Case 1. Suppose n is even. Then $\sigma(u)=\frac{n^{2}}{4}$ for any vertex u in C_{n}. Thus
(1) $\quad A B C S\left(C_{n}\right)=\sum_{u v \in E\left(C_{n}\right)} \sqrt{\frac{\sigma(u)+\sigma(v)-2}{\sigma(u) \sigma(v)}}=\left(\frac{\frac{n^{2}}{4}+\frac{n^{2}}{4}-2}{\frac{n^{2}}{4} \times \frac{n^{2}}{4}}\right)^{1 / 2} n=\frac{2 \sqrt{2\left(n^{2}-4\right)}}{n}$.
(2) $\quad A G S\left(C_{n}\right) \quad=\sum_{u v \in E\left(C_{n}\right)} \frac{\sigma(u)+\sigma(v)}{2 \sqrt{\sigma(u) \sigma(v)}}=\left(\frac{\frac{n^{2}}{4}+\frac{n^{2}}{4}}{2 \sqrt{\frac{n^{2}}{4} \times \frac{n^{2}}{4}}}\right) n=n$.
(3) $\operatorname{ASI}\left(C_{n}\right)=\sum_{u v \in E\left(C_{n}\right)}\left(\frac{\sigma(u) \sigma(v)}{\sigma(u)+\sigma(v)-2}\right)^{3}=\left[\frac{\frac{n^{2}}{4} \times \frac{n^{2}}{4}}{\frac{n^{2}}{4}+\frac{n^{2}}{4}-2}\right]^{3} n=\frac{1}{512} \times \frac{n^{13}}{\left(n^{2}-4\right)^{3}}$.

Case 2: Suppose n is odd. Then $\sigma(u)=\frac{n^{2}-1}{4}$ for any vertex u in C_{n}.
(1) $\quad A B C S\left(C_{n}\right)$

$$
\left.\begin{array}{l}
=\sum_{u v \in E\left(C_{n}\right)} \sqrt{\frac{\sigma(u)+\sigma(v)-2}{\sigma(u) \sigma(v)}}=\left(\sqrt{\frac{n^{2}-1}{4}+\frac{n^{2}-1}{4}-2}\right) n=\frac{2 n \sqrt{2\left(n^{2}-5\right)}}{n^{2}-1} \times \frac{n^{2}-1}{4}
\end{array}\right) . n=n . ~\left(\frac{\frac{n^{2}-1}{4}+\frac{n^{2}-1}{4}}{\left.2 \sqrt{\frac{n^{2}-1}{4} \times \frac{n^{2}-1}{4}}\right)}=\sum_{u v \in E\left(C_{n}\right)} \frac{\sigma(u)+\sigma(v)}{2 \sqrt{\sigma(u) \sigma(v)}}=\left(\frac{n^{2}-1}{\frac{n^{2}}{4} \times \frac{n^{2}-1}{4}}\right)^{3} n=\frac{1}{512} \times \frac{n\left(n^{2}-1\right)^{6}}{\left(n^{2}-5\right)^{3}} .\right.
$$

(2) $A G S\left(C_{n}\right)$
(3) $\operatorname{ASI}\left(C_{n}\right)$

IV. Results for complete bipartite graphs

Theorem 3. Let $K_{p, q}$ be a complete bipartite graph with $p+q$ vertices and $p q$ edges. Then
(1) $\quad A B C S\left(K_{p, q}\right)=p q\left[\frac{3(p+q)-6}{2\left(p^{2}+q^{2}\right)-6(p+q)+5 p q+4}\right]^{\frac{1}{2}}$.
(2) $A G S\left(K_{p, q}\right)=\frac{p q[3(p+q)-4]}{2 \sqrt{2\left(p^{2}+q^{2}\right)-6(p+q)+5 p q+4}}$.
(3) $\operatorname{ASI}\left(K_{p, q}\right)=\frac{p q\left[2\left(p^{2}+q^{2}\right)-6(p+q)+5 p q+4\right]^{3}}{[3(p+q)-6]^{3}}$.

Proof: The vertex set of $K_{p, q}$ can be partitioned into two independent sets V_{1} and V_{2} such that $u \square V_{1}$ and $v \square V_{2}$ for every edge $u v$ in $K_{p, q}$. Thus $d_{G}(u)=q, d_{G}(v)=p$. Then $\square(u)=q+2(p-1)$ and $\square(v)=p+2(q-1)$. Therefore
(1) $\quad \operatorname{ABCS}\left(K_{p, q}\right) \quad=\sum_{u v \in E\left(K_{p, q}\right)} \sqrt{\frac{\sigma(u)+\sigma(v)-2}{\sigma(u) \sigma(v)}}$

$$
=p q\left(\frac{q+2 p-2+p+2 q-2-2}{(q+2 p-2)(p+2 q-2)}\right)^{\frac{1}{2}}=p q\left(\frac{3(p+q)-6}{2\left(p^{2}+q^{2}\right)-6(p+q)+5 p q+4}\right)^{\frac{1}{2}} .
$$

(2) $\quad A G S\left(K_{p, q}\right) \quad=\sum_{u v \in E\left(K_{p, q}\right)} \frac{\sigma(u)+\sigma(v)}{2 \sqrt{\sigma(u) \sigma(v)}}$

$$
=\frac{p q(q+2 p-2+p+2 q-2)}{2 \sqrt{(q+2 p-2)(p+2 q-2)}}=\frac{p q[3(p+q)-4]}{2 \sqrt{2\left(p^{2}+q^{2}\right)-6(p+q)+5 p q+4}} .
$$

(3) $\operatorname{ASI}\left(K_{p, q}\right) \quad=\sum_{u v \in E\left(K_{p, q}\right)}\left(\frac{\sigma(u) \sigma(v)}{\sigma(u)+\sigma(v)-2}\right)^{3}$

$$
=\frac{p q[(q+2 p-2)(q+2 p-2)]^{3}}{(q+2 p-2+p+2 q-2-2)^{3}}=\frac{p q\left[2\left(p^{2}+q^{2}\right)-6(p+q)+5 p q+4\right]^{3}}{[3(p+q)-6]^{3}}
$$

V. Results for wheel graphs

A wheel graph W_{n} is the join of K_{1} and C_{n}. Clearly W_{n} has $n+1$ vertices and $2 n$ edges. A graph W_{n} is shown in Figure 1.

Figure 1. Wheel graph W_{n}
In W_{n}, there are two types of edges as follows:

$$
\begin{array}{lll}
E_{1}=\left\{u v \square\left(W_{n}\right) \mid d_{W_{n}}(u)=d_{W_{n}}(v)=3\right\}, & \left|E_{1}\right|=n . \\
E_{2}=\left\{u v \square\left(W_{n}\right) \mid d_{W_{n}}(u)=3, d_{W_{n}}(v)=n\right\}, & & \left|E_{2}\right|=n .
\end{array}
$$

Therefore there are two types of status edges in W_{n} as given in Table 1.

$\square(u), \square(v) \backslash u v \square E\left(W_{n}\right)$	$(2 n-3,2 n-3)$	$(n, 2 n-3)$
Number of edges	n	n

$$
\text { Table 1. Status edge partition of } W_{n}
$$

Theorem 4. Let W_{n} be a wheel graph with $n+1$ vertices and $2 n$ edges. Then
(1) $\quad A B C S\left(W_{n}\right) \quad=\frac{2 n \sqrt{n-2}}{2 n-3}+\sqrt{\frac{n(3 n-5)}{2 n-3}}$.
(2) $\quad A G S\left(W_{n}\right) \quad=n+\frac{n(3 n-3)}{2 \sqrt{n(2 n-3)}}$.
(3) $\operatorname{ASI}\left(W_{n}\right) \quad=n\left[\frac{(2 n-3)^{2}}{4(n-2)}\right]^{3}+n\left[\frac{n(2 n-3)}{3 n-5}\right]^{3}$.

Proof: By definitions and by using Table 1, we deduce
(1) $\quad A B C S\left(W_{n}\right) \quad=\sum_{u v \in E\left(W_{n}\right)} \sqrt{\frac{\sigma(u)+\sigma(v)-2}{\sigma(u) \sigma(v)}}$

$$
\begin{aligned}
& =\left(\frac{2 n-3+2 n-3-2}{(2 n-3)(2 n-3)}\right)^{\frac{1}{2}} n+\left(\frac{n+2 n-3-2}{n(2 n-3)}\right)^{\frac{1}{2}} n \\
& =\frac{2 n \sqrt{n-2}}{2 n-3}+\sqrt{\frac{n(3 n-5)}{2 n-3}} .
\end{aligned}
$$

(2) $\quad \operatorname{AGS}\left(W_{n}\right) \quad=\sum_{u v \in E\left(W_{n}\right)} \frac{\sigma(u)+\sigma(v)}{2 \sqrt{\sigma(u) \sigma(v)}}$

$$
\begin{aligned}
& =\left(\frac{2 n-3+2 n-3}{2 \sqrt{(2 n-3)(2 n-3)}}\right) n+\left(\frac{n+2 n-3}{2 \sqrt{n(2 n-3)}}\right) n \\
& =n+\frac{n(3 n-3)}{2 \sqrt{n(2 n-3)}} .
\end{aligned}
$$

(3) $\begin{aligned} \operatorname{ASI}\left(W_{n}\right) \quad & =\sum_{u v \in E\left(W_{n}\right)}\left(\frac{\sigma(u) \sigma(v)}{\sigma(u)+\sigma(v)-2}\right)^{3} \\ & =\left(\frac{(2 n-3)(2 n-3)}{2 n-3+2 n-3-2}\right)^{3} n+\left(\frac{n(2 n-3)}{n+2 n-3-2}\right)^{3} n \\ & =n\left[\frac{(2 n-3)^{2}}{4(n-2)}\right]^{3}+n\left[\frac{n(2 n-3)}{3 n-5}\right]^{3} .\end{aligned}$

VI. Results for friendship graphs

A friendship graph F_{n} is the graph obtained by taking $n \square \square 2$ copies of C_{3} with vertex in common. This graph has $2 n+1$ vertices and $3 n$ edges. A graph F_{4} is presented in Figure 2.

Figure 2. Friendship graph F_{4}
In F_{n}, there are two types of edges as follows:

$$
\begin{array}{ll}
E_{1}=\left\{u v \square\left(F_{n}\right) \mid d_{F_{n}}(u)=d_{F_{n}}(v)=2\right\}, & \left|E_{1}\right|=n . \\
E_{2}=\left\{u v \square\left(F_{n}\right) \mid d_{F_{n}}(u)=2, d_{F_{n}}(v)=2 n\right\}, & \left|E_{1}\right|=2 n .
\end{array}
$$

Therefore in F_{n}, we obtain two types of status edges as given in Table 2.

Therefore in F_{n}, we obtain two types of status edges as given in Table 2.		
$\square(u), \square(v) \backslash u v \square E\left(F_{n}\right)$	$(4 n-2,4 n-2)$	$(2 n, 4 n-2)$
Number of edges	n	$2 n$

Table 2. Status edge partition of F_{n}
Theorem 5. Let F_{n} be a friendship graph with $2 n+1$ vertices and $3 n$ edges. Then
(1) $\quad A B C S\left(F_{n}\right) \quad=\frac{n \sqrt{8 n-6}}{4 n-2}+\sqrt{\frac{2 n(3 n-2)}{2 n-1}}$.
(2) $A G S\left(F_{n}\right) \quad=n+(3 n-1)\left(\frac{n}{2 n-1}\right)^{\frac{1}{2}}$.
(3) $\operatorname{ASI}\left(F_{n}\right) \quad=n\left[\frac{(4 n-2)^{2}}{4 n-6}\right]^{3}+2 n\left[\frac{n(4 n-2)}{3 n-2}\right]^{3}$.

Proof: By using definitions and Table 2, we deduce
(1) $\quad A B C S\left(F_{n}\right) \quad=\sum_{u v \in E\left(F_{n}\right)} \sqrt{\frac{\sigma(u)+\sigma(v)-2}{\sigma(u) \sigma(v)}}$
(2)
(3)
)
$A G S\left(F_{n}\right)$

$$
\begin{aligned}
& =\left(\frac{4 n-2+4 n-2-2}{(4 n-2)(4 n-2)}\right)^{\frac{1}{2}} n+\left(\frac{2 n+4 n-2-2}{2 n(4 n-2)}\right)^{\frac{1}{2}} 2 n \\
& =\frac{n \sqrt{8 n-6}}{4 n-2}+\sqrt{\frac{2 n(3 n-2)}{2 n-1}} .
\end{aligned}
$$

$$
=\sum_{u v \in E\left(F_{n}\right)} \frac{\sigma(u)+\sigma(v)}{2 \sqrt{\sigma(u) \sigma(v)}}
$$

$$
=\left(\frac{4 n-2+4 n-2}{2 \sqrt{(4 n-2)(4 n-2)}}\right) n+\left(\frac{2 n+4 n-2}{2 \sqrt{2 n(4 n-2)}}\right) 2 n
$$

$$
=n+(3 n-1)\left(\frac{n}{2 n-1}\right)^{\frac{1}{2}}
$$

$$
=\sum_{u v \in E\left(F_{n}\right)}\left(\frac{\sigma(u) \sigma(v)}{\sigma(u)+\sigma(v)-2}\right)^{3}
$$

$$
=\left(\frac{(4 n-2)(4 n-2)}{4 n-2+4 n-2-2}\right)^{3} n+\left(\frac{2 n(4 n-2)}{2 n+4 n-2-2}\right)^{3} 2 n
$$

$$
=n\left[\frac{(4 n-2)^{2}}{8 n-6}\right]^{3}+2 n\left[\frac{n(4 n-2)}{3 n-2}\right]^{3}
$$

References

[11] P. Kandan, E. Chandrasekaran and M. Priyadharshini, The Revan weighted Szeged index of graphs, Journal of Emerging Technologies and Innovative Research, 5(9) (2018) 358-366.
[12] V.R.Kulli, The Gourava indices and coindices of graphs, Annals of Pure and Applied Mathematics, 14(1) (2017) 33-38.
[13] V.R.Kulli, Revan indices of oxide and honeycomb networks, International Journal of Mathematics and its Applications, 5(4-E) (2017) 663-667.
[14] V.R.Kulli, Dakshayani indices, Annals of Pure and Applied Mathematics, 18(2) (2018) 139-146.
[15] V.R.Kulli, On KV indices and their polynomials of two families of dendrimers, International Journal of Current Research in Life Sciences, 7(9)(2018) 2739-2744.
[16] V.R.Kulli, Computing Banhatti indices of networks, International Journal of Advances in Mathematics, 2018(1) (2018) 31-40.
[17] V.R.Kulli, Two new arithmetic-geometric ve-degree indices, Annals of Pure and Applied Mathematics, 17(1) (2018) 107-112.
[18] V.R.Kulli, General multiplicative Revan indices of polycyclic aromatic hydrocarbons and benzenoid systems, International Journal of Recent Scientific Research, 9, 2(J) (2018) 24452-24455.
[19] V.R.Kulli, On fifth multiplicative Zagreb indices of tetrathiafulvalene and POPAM dendrimers, International Journal of Engineering Sciences and Research Technology, 7(3) (2018) 471-479.
[20] V.R.Kulli, Two new arithmetic-geometric ve-degree indices, Annals of Pure and Applied Mathematics, 17(1) (2018) 107-112.
[21] V.R.Kulli, Multiplicative atom bond connectivity and multiplicative geometric-arithmetic indices of chemical structures in drugs, International Journal of Mathematical Archive, 9(6) (2018) 155-163.
[22] V.R.Kulli, On reduced Zagreb indices of polycyclic aromatic hydrocarbons and benzenoid systems, Annals of Pure and Applied Mathematics, 18(1) (2018) 73-78.
[23] V.R.Kulli, ABC Banhatti and augmented Banhatti indices of chemical networks, Journal of chemistry and Chemical Sciences, 8(8) (2018) 1018-1025.
[24] V.R.Kulli, Computing two arithmetic-geometric reverse indices of certain networks, International Research Journal of Pure Algebra, 8(8) (2018) 43-49.
[25] V.R.Kulli, General reduced second Zagreb index of certain networks, International Journal of Current Research in Life Sciences, 7(11) (2018) 2827-2833.
[26] V.R.Kulli, The (a, b)-KA indices of polycyclic aromatic hydrocarbons and benzenoid systems, International Journal of Mathematics Trends and Technology, 65(11) (2019) 115-120.
[27] V.R.Kulli, Multiplicative (a, b)-KA indices of certain dendrimer nanostars, International Journal of Recent Scientific Research, 10, 11(E) (2019) 36010-36014.
[28] V.R.Kulli, Multiplicative neighborhood indices, Annals of Pure and Applied Mathematics, 19(2) (2019) 175-181.
[29] V.R.Kulli, Some new topological indices of graphs, International Journal of Mathematical Archive, 10(5) (2019) 62-70.
[30] V.R.Kulli, Multiplicative Kulli-Basava indices, International Journal of Fuzzy Mathematical Archive, 17(1) (2019) 61-67.
[31] V.R.Kulli, Neighborhood Dakshayani indices, International Journal of Mathematical Archive, 10(7) (2019) 23-31.
[32] V.R.Kulli, Some multiplicative neighborhood Dakshayani indices of certain nanostructures, International Journal of Mathematics and its Applications, 7(4) (2019) 209-217.
[33] V.R.Kulli, The (a, b)-Kulli-Basava index of graphs, International Journal of Mathematics Trends and Technology, 65(12) (2019) 54-61.
[34] A. M. Naji, N. D. Soner and I. Gutman, On leap Zagreb indices of graphs, Commun. Comb. Optim. 2(2) (2017) 99-107.
[35] V.R.Kulli, Multiplicative ABC, GA and AG augmented and harmonic status indices of graphs, International Journal of Mathematical Archive, 11(1) (2020).
[36] V.R.Kulli, Some new multiplicative status indices of graphs, International Journal of Recent Scientific Research, 10(10) (2019) 35568-35573.
[37] V.R.Kulli, B.Chaluvaraju and H.S.Boregowda, Some bounds on sum connectivity Banhatti index of graphs, Palestine Journal of Mathematics, 8(2) (2019) 355-364.

