Geo Chromatic Number for certain Cartesian product of Graphs

Dr.Sr.A. Stanis Arul Mary
Assistant Professor, Nirmala College for Women, Coimbatore

ABSTRACT
In this paper we found minimum cardinality among all geodetic sets which is known as geodetic number and is denoted by $g(G)$ and the minimum cardinality among all the chromatic sets which is known as chromatic number and is denoted by $\chi(G)$. The combination of these concepts we have the geo chromatic number $\chi_{g c}(G)$ for certain cartesian product of graphs.

KEYWORDS

Geodetic number; Chromatic number; Geo-Chromatic number.

INTRODUCTION

We found the geo chromatic number $\chi_{g c}(G)$ for cartesian product of Path, Cycle, Star graph, ladder graph, Comb graph.

PRELIMINARIES

- The Cartesian product of graphs and is the graph $G \square H$ with vertices $V(G \square H)=V(G) \times V(H)$, and for which $(x, u)(y, v)$ is an edge if and $u v \in E(H)$, or $x y \in E(G)$ and $u=v$.[citation]
- The distance $d(u, v)$ between two vertices u and v in a connected cartesian product of graph G is the length of a shortest $u-v$ path in G. An $u-v$ path of length $d(u, v)$ is called an geodesic. A vertex is
 and all vertices lying on some $u-v$ geodesic of G, and for a non-empty set, $I(S)=\bigcup_{u, v \in S} I(u, v)$. If G is connected graph, then a set $S_{\text {of vertices is a geodetic set if }} I(S)=V(G)$.The geodetic number $g(G)$ is the minimum cardinality of a geodetic set of $G_{\text {[citation] }}$
- A p^{-}vertex coloring of $G_{\text {is an assignment of }} p_{\text {colors, }} 1,2, \ldots \ldots p_{\text {to the vertices of }} G$ the coloring is proper if no two distinct adjacent vertices have the same color. [citation]If $\chi(G)=p$ is said to be - p chromatic, where $p \leq k$. A set $c \subseteq V(G)$ is called chromatic set if $C_{\text {contains all }} p_{\text {vertices of distinct }}$ colors in G. Chromatic number of G is the minimum cardinality among all the chromatic sets of G.
- Let P_{n} be a path graph with n vertices. The comb graph is defined as Pn \odot K1. It has 2 n vertices and $2 \mathrm{n}-1$ edges
- Ladder graph L_{n} is a planar undirected graph with $2 n$ vertices and $3 n-2$ edges. The ladder graph can be obtained as the Cartesian product of two path graphs, one of which has only one edge: $L_{n}, 1=P_{n} \times P_{2}$

THEOREM 1

For any cartesian product between P_{n} and P_{m} then
$\chi_{g c}\left(P_{n_{\square}} P_{m}\right)=\left\{\begin{array}{ll}2 & \text { when } m=2 \\ 3 & \text { when } m=3 \\ 4 & \text { when } m>3\end{array}\right.$ for all $\mathrm{n}=$ even \&
$\chi_{g c}\left(P_{n_{\square}} P_{m}\right)=\left\{\begin{array}{ll}3 & \text { when } m=2 \\ 4 & \text { when } m>3\end{array}\right.$ for all $\mathrm{n}=$ odd

PROOF:

Case 1:

When $\mathrm{n}=2 \mathrm{k} \forall_{\mathrm{k}=1,2, . . \text { which }}$ is even then we assume that,
Let P_{n} be the path with vertex set $\left\{v_{1}, v_{2}, \ldots . . v_{n}\right\}$ and P_{m} be the path with vertex set $\left\{u_{1}, u_{2}, \ldots . . u_{m}\right\}$.
Subcase 1.1:
For $m=2$, then ($P_{n_{\square}} P_{2}$), we get the geodetic set $\left\{v_{1}, v_{m}\right\}$ which is minimum. Also the set S is a minimum chromatic set $\chi=2 \underset{\text { of }\left(P_{n_{\square}} P_{2}\right) \text { (i.e.) }}{ } g(G)=\chi(G)_{\text {then }} \chi_{g c}\left(P_{n_{\square}} P_{2}\right)=|S|=2$.

Subcase 1.2:
For $m=3$, then $\left(P_{n_{\square}} P_{3}\right)$, we get the geodetic set $\left\{v_{1}, \ldots . ., v_{m}\right\}$ which is minimum. Also the set S is a minimum chromatic set $\chi=3$ of ($P_{n_{\square}} P_{3}$) (i.e.) $g(G)=\chi(G)_{\text {then }} \chi_{g c}\left(P_{n_{\square}} P_{3}\right)=\left|S_{c}\right|$. If the set is not chromatic set, S has vertices with distinct colour and also satisfies the condition of the geodetic set then we have, $\chi_{g c}\left(P_{n_{\square}} P_{3}\right)=$ 3.

Subcase 1.3:

For $m>3$, then ($P_{n_{\square}} P_{m}$), we get the geodetic set $\left\{v_{1}, \ldots . ., v_{m}\right\}$ which is minimum and also satisfies the minimum chromatic set $g(G)=\chi(G)$ then we have, $\chi^{g c}\left(P_{n_{\square}} P_{m}\right)=4$, where $m>3$.

Case 2:

When $\mathrm{n}=2 \mathrm{k}-1 \quad \forall \mathrm{k}=1,2, .$. which is odd then we assume that,
Let P_{n} be the path with vertex set $\left\{v_{1}, v_{2}, \ldots . . v_{n}\right\}$ and P_{m} be the path with vertex set $\left\{u_{1}, u_{2}, \ldots . . u_{m}\right\}$.
Subcase 2.1:
For $m=2$, then ($P_{n_{\square}} P_{2}$), we get the geodetic set $\left\{v_{1}, \ldots v_{m}\right\}_{\text {in which is minimum. Also the set } \mathrm{S} \text { is a minimum }}$ chromatic set $\chi=3$ of ($P_{n_{\square}} P_{2}$) (i.e.) $g(G)=\chi(G)_{\text {then }} \chi_{g c}\left(P_{n_{\square}} P_{2}\right)=|S|=3$.

Subcase 2.2:

For $m>3$, then $\left(P_{n_{\square}} P_{m}\right.$), we get the geodetic set $\left\{v_{1}, \ldots \ldots, v_{m}\right\}$ which is minimum and also satisfies the minimum chromatic set $g(G)=\chi(G)$ then we have, $\chi_{g c}\left(P_{n_{\square}} P_{m}\right)=4$.

THEOREM 2:

For any cartesian product between C_{n} and C_{m} then $\chi_{g_{c}}\left(C_{n} C_{m} C_{m}\right)=m$ for n=3,4,..n.

PROOF:

Let C_{n} be the cycle with vertex set $\left\{v_{1}, v_{2}, \ldots . v_{n}\right\}$ and C_{m} be the cycle with vertex set $\left\{u_{1}, u_{2}, \ldots . u_{m}\right\}$.
For $\mathrm{m}=3,4$, then $\left(C_{n_{\square}} C_{m}\right)$, we get the geodetic set $\left.\left\{v_{1}, v_{2}, \ldots . . v_{n}\right\},\left\{u_{1}, u_{2}, \ldots . . u_{m}\right\}\right\}$ which is minimum set .
The set S has the chromatic set $\chi=m$ of $\left(C_{n_{\square}} C_{m}\right)$ (i.e.) $g(G)=\chi(G)$ then we have, ${ }^{\chi_{g c}\left(C_{n}{ }_{\square} C_{m}\right)=\mathrm{m} .}$

Remarks 2.1

The above results are true for both odd number of cycle and as well as even number of cycles.

THEOREM 3:

For any cartesian product between $\left(P_{n} \odot k_{1}\right)$ and $\left(P_{m} \odot k_{1}\right)$ then $\chi_{g_{c}}\left(P_{n} \odot k_{1_{\square}} P_{m} \odot k_{1}\right)=m+n$ for n,m $=$ 1,2,3,4,..n.

PROOF:

Let $P_{n} \odot k_{1}$ be the comb graph with vertex set $\left\{v_{1}, v_{2}, \ldots . . v_{n}\right\}$ and $P_{m} \bigodot^{k_{1}}$ be the comb graph with vertex set $\left\{u_{1}, u_{2}, \ldots . u_{m}\right\}$.

For $\mathrm{m}=1,2,3,4, \ldots$ then $\left(P_{n} \bigodot^{k_{1}}{ }^{\prime} P_{m} \odot k_{1}\right)$, we get the geodetic set $\left.\left\{v_{1}, v_{2}, \ldots . . v_{n}\right\},\left\{u_{1}, u_{2}, \ldots . u_{m}\right\}\right\}$ which is minimum set. The set S has the chromatic set $\chi=m+n$ of $\left(P_{n} \odot{ }^{k_{1}}{ }_{\square} P_{m} \odot{ }^{k_{1}}\right.$) (i.e.) $g(G)=\chi(G)$ then we have, $\chi^{g c}\left(P_{n} \odot{ }^{k_{1}}{ } P_{m} \odot k_{1}\right)=m+n$

THEOREM 4:

For cartesian product between L_{n} and L_{m} then,
$\chi_{g_{c}}\left(L_{n_{\square}} L_{m}\right)= \begin{cases}2 & \text { when } n, m=1 \\ 4 & \text { when } n=1, m>2 \\ 4 & \text { when } n, m>2\end{cases}$

PROOF:

Let L_{n} be the ladder graph with vertex set $\left\{v_{1}, v_{2}, \ldots . . v_{n}\right\}$ and L_{m} be the ladder graph with vertex set
$\left\{u_{1}, u_{2}, \ldots . u_{m}\right\}$.

Case 1:

For $\mathrm{n}=1$ and $\mathrm{m}=1$ we have the minimum geodetic set $\left\{v_{1}, v_{2}\right\}_{\text {or }}\left\{u_{1}, u_{2}\right\}_{\text {in which is minimum and we also have }}$ the minimum chromatic set which satisfies the condition that $g(G)=\chi(G)$ such that we have, $\chi_{g c}\left(L_{n} L_{m}\right)=2$

SUBCASE 1.1

Ifn $=1$ and $m=2,3,4 \ldots$ then we have the minimum geodetic set among the vertices of L_{n} and L_{m} which is minimum and also the minimum chromatic set which satisfies the condition that $g(G)=\chi(G)$ in such cases we have the results as, $\chi_{g c}\left(L_{n_{\square}} L_{m}\right)=4$.

CASE 2:

For $\mathrm{n}=2,3 \ldots$ and $\mathrm{m}=2,3 \ldots \ldots$ we have to satisfy the above condition exists and we have the following results to be $\chi_{g c}\left(L_{n} L_{m}\right)=4$.

CONCLUSION:

In this paper, we extend the concept of geo chromatic number based on vertex colouring for some cartesian product of graphs such as Path, Cycle, Comb graph, Ladder Graph, Star graph. This concept can be extended to several other operations on graphs such a, total colouring graphs, Johan colouring, Hardy colouring etc.,

BIBLIOGRAPHY:

[1] J.A. Bondy and U.S.R. Murthy, -Graph Theory with Applicationsll, Macmillon London and Elsevier New York, 1976.
[2] F. Buckley and F. Harary, -Distance in Graphsll, Addison - Wesly Publishing company, Redwood city, CA, 1990.
[3] Beulah Samli. S, Robinson Chellathurai__Geo Chromatic Number of a Graph - Published on ISROSET Volume-5, Issue-6, pp.259-264, December (2018)
[4] H. Escuardo, R. Gera, A. Hansberg, N. Jafari Rad and L. Volkmann,-Geodetic Domination in graphsll, J. Combin. Math Combin. Comput. 77 (2011), 89-101.
[5] Gary Chatrand and P.Zhang, -Introduction to Graph Theoryll, MacGraw Hill, 2005.
[6] Gary Chatrand, F. Harary and P. Zhang, -On the geodetic number of a graphll, Networks, 39 (2002), 1-6.
[7] Gary Chatrand, F. Harary and P. Zhang, -Geodetic sets in graphsll, DiscussionesMathematicae Graph Theory
[8] A. Haneberg and L. Volkmann, —On the geodetic and geodetic domination numbers of a graphll, Discrete Mathematics 310 (2010), 2140 - 2146.
[9] M. Mohammed Abdul Khayoom and P. Arul Paul Sudhahar,-Monophonic Chromatic Parameter in a Connected Graphll, International Journal of Mathematical Analysis 11 (2017), no.19,

