Expressions of Combinations

Kirtivasan Ganesan AGM (A,C&IT), RDCIS, SAIL, Doranda, Ranchi, India – 834002.

Abstract

The operation Combination is a powerful operation in mathematics. Combination operation as an infinite series with 2n and n result in many mathematical constants. Some of them have been demonstrated in this paper.

Keywords

Combinations, Wolfram, Expressions, Infinite series, constants, π , e, golden ratio, $\sqrt{2}$, $\sqrt{3}$, $\sqrt{5}\sqrt{17}$;

Introduction

Humans have wondered about presence and absence. I have written papers on "Expressions for 1" for presence and "Expressions for 0" for absence. These are very important expressions. In fact, Wikipedia treats 0 and 1 as general mathematical constants.

Advancement from 1 is essentially a combination exercise that a human undergoes. He sees similarity between two things to count as 2 from 1. This is an important thought process of an individual. Another important thing a man realizes is that some things are desirable and some things are not desirable. And the human begins to wonder the world of his as a mixture of these two aspects.

The above thought process of a human is the combination. The combination comb(2n,n) which is also written as $\binom{2n}{n}$.

In this paper I have considered the combination of n and 2n over an infinite series to express the mathematical constants that they give. Indeed, the expression $\operatorname{comb}(2n,n)$ or $\binom{2n}{n}$ is very beautiful which gives many mathematical constants.

The expressions for mathematical constants π , *e*, golden ratio, $\sqrt{2}$, $\sqrt{3}$, $\sqrt{5}$, $\sqrt{17}$ are obtained.

My special thanks to Wolfram for their brilliant mathematical widget without which these expressions could not have been tested and confirmed for correctness.^[1]

The expressions on π

$$\sum_{2}^{\inf} \left(\frac{(2^n)}{\binom{2n}{n}} \right) = \pi/2$$

The above expression has been checked in Wolfram alpha.^[1]

If we take $1/\binom{2n}{n}$, $(n^*n)/\binom{2n}{n}$, $(n^*n^*n)/\binom{2n}{n}$, $(n^*n^*n^*n)/\binom{2n}{n}$, \dots $(n^*n^*n^*n^*n^*n^*n)/\binom{2n}{n}$ and so on the result of summation from 0 to infinity is some rational number+some number* π in all the cases. Some snapshots from Wolfram alpha is attached below.[1]

$\sum_{n=0}^{\infty} \frac{1}{\binom{2 n}{n}} = \frac{2}{27} \left(18 + \sqrt{3} \ s \right)$	E Conceptos - SC Ramin () 10 Ter Inconst contractor (Marc Harts
$\sum_{n=0}^{\infty} \frac{1}{\binom{2 n}{n}} = \frac{2}{27} \left(18 + \sqrt{2} n \right)$ Q training e Continuity A From Test Descripted approximation	
Contract exclusion A Plan Teer	
Contempo expressionation	
Destroit approximation	Nore July
	Morestate
1.736399858718715077909795166369923496063125832909497905682	
m of ((m*n)/comb(2n.n)), for n = 0 to infinity • Scended Keylmini I Upland III En	amplies 😕 Random
	amples 🛪 Random
fully sure	
$\frac{2}{d} \left(\frac{2\pi}{n}\right) = \frac{2}{81} \left(54 + 5\sqrt{3}\pi\right)$	
(*) *)	e the lowerspit coefficient
cinal ageneration	More digita
005110875642302907627436391719316937882987499293607620581	
	not
and the second	angles 24 Random
Extended Nextsoant 🔹 Upload 🕮 🎫	
Extended Repboont Uplow Uplow	

$\frac{10}{2} \operatorname{Constraint} \operatorname{Second} \frac{1}{2} \operatorname{Upload} \qquad \qquad$	M Randor
$\sum_{n=0}^{\infty} \frac{n \pi n \pi}{\binom{2}{n}} = \frac{32}{3} + \frac{238 \pi}{g_1 \sqrt{2}}$	
25.2	
$\left(\begin{array}{c} m\\m\end{array}\right)$ is the derivative of the	
	t in efficient
Decinal approximation: Max	Mure digits
15.996101#35651158622773321759652880326276058971661#17601216	
WolframAlpha	8
um of ((ກຳກຳກຳກຳປຸ/ເວລາຢ່າ[2n,e)), far n = 0 to infinity	diarra (
um of ((היהיהיהיהיוויחיה//בסתם(2n,o)), far n = 0 נט infinity	
sam of ((n*n*n*n*n(v)zomb(2h,o)), for n = 0 to infinity B. Edended Regiment 1: Uplied III: Examples 34 Rando	
ພາກ of ((ກຳລາວ"ກຳກຳກຸ//zomb(2h,o)), for n = 0 to infinity	

1584.997311107927604529835585318629906524838013055557051111

The expression on e $\sum_{0}^{inf} \left(\frac{\binom{2n}{n}}{permutation (2n,n)} \right) = e$

The above expression has been checked in Wolfram alpha.^[1]

um of (comb(2h,n)/P(2h,n)), for n = 0 to infinity	
🖗 Extended Reyboard 🗶 Lipland	Il Caroles 🖂 Spolar
hetholika julies (
$\sum_{n=0}^{\infty} \frac{\binom{2n}{n}}{\frac{4n}{n}} = 0$	
	(a) is the brancher preficult
	al to the External Southers
Twitted appointation:	Manufights
	574465

The expression on 1.61803...., the Golden Ratio

$$\frac{1}{2} + 1/2 \sum_{0}^{inf} \left(\left((5^n) \binom{2n}{n} \right) \right) = 1.61803 \dots$$

The above expression has been checked in Wolfram alpha.^[1]

WolframAlpha

0.5 plus sum of $((5^{n}(-n))(\operatorname{comb}(2n,n)))/2$, for $n = 0$ to infinity	0 🖬
9 8 B ÷	III Browse Examples - 30 Burginse Me
igut integretation	
$0.5 + \sum_{n=0}^{m} \frac{1}{2} \left(5^{-n} \left(\frac{2 n}{n} \right) \right)$	
and 2 C C A D	
	$\left(\begin{array}{c} m \\ m \end{array} \right)$ is the longest of coefficient
linear.	
1.61803	

The expressions on irrational numbers of the type \sqrt{n}

$$\begin{split} &\Sigma_{0}^{inf} \left(\left(2^{-3n} \right) \binom{2n}{n} \right) = \sqrt{2} \\ &3/2 \sum_{0}^{inf} \left(\left(4^{-2n} \right) \binom{2n}{n} \right) = \sqrt{3} \\ &\Sigma_{0}^{inf} \left(\left(5^{-2n} \right) \binom{2n}{n} \right) = \sqrt{5} \\ &\Sigma_{0}^{inf} \left(\left(\left(17^{-3n} \right) / (34^{-2n}) \right) \binom{2n}{n} \right) = \sqrt{17} \end{split}$$

The above expression has been checked in Wolfram alpha.^[1]

sum of {[2*(-3ni)](comb(2n,n)]); for n = 0 to infinity	0.0
	⊞ Brivers Examples - 92 Suprise Ma
$\sum_{n=0}^{\infty} 2^{-2n} \binom{2n}{n} = \sqrt{2}$	
	Tall and the second
	$\begin{bmatrix} 0\\0\\0 \end{bmatrix}$ is the kinetical configuration

mats of $3/25((87(-2x)))$ is orb($3\pi m())), for n < 0 to infinity$	
	🗏 fransk franzlek 🖂 kolptisch
Mana and	
$\sum_{i=0}^{m-2} \frac{3}{2} \left(4^{-2,q} \left(\frac{2,q}{q} \right) \right) = \sqrt{3}$	
	Sper cold.
	The last set of community
biomet automation.	Marry starts
1.7320588175689772935274463413038723689428052538	
🗱 Wolfram Al	
WolframAl	pha
WolframAl an at ((2% n))(cords(2%pi)), for n = 2 to infinity	pha
WolframAl	pha
WolframAl	pha ::::::::::::::::::::::::::::::::::::
WolframAl	pha
	pha ::::::::::::::::::::::::::::::::::::

WolframAlpha amatulation

Extended Reyboard 2 Opiner		TE Examples	36 Bandun
and and a series			
$\sum_{n=0}^{m} \frac{17^{-2n} \binom{2n}{n}}{34^{-2n}} = \sqrt{17}$			
		[A] a We have	1110 (1477 (1477
🕰 Enlarge 🏶 Contornios 🔥 Press Te			
Decimal Approximation			More digital.
4.1231056256176605498214098559	77025147102225379620434308		

References

[1] https://www.wolframalpha.com/