Expressions of Combinations

Kirtivasan Ganesan
AGM (A,C\&IT), RDCIS, SAIL, Doranda, Ranchi, India - 834002.

Abstract

The operation Combination is a powerful operation in mathematics. Combination operation as an infinite series with $2 n$ and n result in many mathematical constants. Some of them have been demonstrated in this paper.

Keywords

Combinations, Wolfram, Expressions, Infinite series, constants, π, e, golden ratio, $\sqrt{ } 2, \sqrt{ } 3, \sqrt{ } 5 \sqrt{ } 17$;

Introduction

Humans have wondered about presence and absence. I have written papers on "Expressions for 1 " for presence and "Expressions for 0 " for absence. These are very important expressions. In fact, Wikipedia treats 0 and 1 as general mathematical constants.

Advancement from 1 is essentially a combination exercise that a human undergoes. He sees similarity between two things to count as 2 from 1. This is an important thought process of an individual. Another important thing a man realizes is that some things are desirable and some things are not desirable. And the human begins to wonder the world of his as a mixture of these two aspects.

The above thought process of a human is the combination. The combination comb $(2 n, n)$ which is also written as $\binom{2 n}{n}$.

In this paper I have considered the combination of n and 2 n over an infinite series to express the mathematical constants that they give. Indeed, the expression $\operatorname{comb}(2 n, n)$ or $\binom{2 n}{n}$ is very beautiful which gives many mathematical constants.

The expressions for mathematical constants π, e, golden ratio, $\sqrt{ } 2, \sqrt{ } 3, \sqrt{ } 5, \sqrt{ } 17$ are obtained.
My special thanks to Wolfram for their brilliant mathematical widget without which these expressions could not have been tested and confirmed for correctness. ${ }^{[1]}$

The expressions on π

$$
\sum_{2}^{i n f}\left(\frac{\left(2^{\wedge} n\right)}{\binom{n}{n}}\right)=\pi / 2
$$

The above expression has been checked in Wolfram alpha. ${ }^{[1]}$
WolframAlpha $=$

If we take $1 /\binom{2 n}{n},(n * n) /\binom{2 n}{n},(n * n * n) /\binom{2 n}{n},(n * n * n * n) /\binom{2 n}{n}, \ldots \ldots\left(n * n^{*} n^{*} n^{*} n^{*} n^{*} n\right) /\binom{2 n}{n} \ldots .$. and so on the result of summation from 0 to infinity is some rational number+some number* π in all the cases. Some snapshots from Wolfram alpha is attached below.[1] fingutanine inaligiencr

sum of (1/comb(2an) for n = 0 to infinity			E
佔 Kıtedad Kaybued	t. cupluat		3 Randian
\|nintiner			
$\sum_{n=\infty}^{\infty} \frac{1}{\binom{2 n}{n}}-\frac{2}{27}(1 n+\sqrt{3} n)$			
a tours - cinnetur	A nam mer		

卷WolframAlpha


```
if terndeilkegherel 3 uplond En Eumple 24 tantom
```


ntimsen

$$
\sum \frac{2 n}{\binom{2 n}{\pi}}=\frac{2}{111}(54+5 \sqrt{3} \pi)
$$

Geental aninaphilias

$20051108756+2309907327436391710316937832987499293607620581$

WolframAlpha

sum of $\left(i^{+} n^{+} n\right) / c o m b(2 n n)$ for $n=0$ to infinity

intisem

Demmel wercantion
4-9+6yts
$40003440416212404092545+210065436224535813609360676575211$

		\square	
	L Uplood	隹 tomenin	94 Rundos
$\sum_{=}^{\infty} \frac{n m m n}{\binom{2 n}{n}}=\frac{32}{3}+\frac{2 n 8 r}{81 \sqrt{3}}$			
		$\left[\begin{array}{l} \pi \end{array}\right]+\operatorname{entwn}$	derenter
Deame apmationy			kure Syti

WolframAlpha

Sian of 6 (fn*n* $0^{*} n^{*} n^{*} n^{*} n$	combi 2 nn) far $n=0$ te infinty		E
	t tiplost	\#\# breplm	34 lantom
3 ${ }^{\text {chasame }}$			
$\underset{\sim}{\sum} \frac{\pi n \pi \pi N \pi}{\binom{2 \pi}{n}}=\frac{3 \times 0}{3}$	$\frac{235042}{81 \sqrt{3}}$		

The expression on \mathbf{e}

$\sum_{0}^{\inf }\left(\frac{\binom{2 n}{n}}{\text { permutation }(2 n, n)}\right)=\mathrm{e}$
The above expression has been checked in Wolfram alpha. ${ }^{[1]}$
WolframAlpha =

The expression on 1.61803., the Golden Ratio
$\frac{1}{2}+1 / 2 \sum_{0}^{i n f}\left(\left(\left(5^{n}\right)\binom{2 n}{n}\right)=1.61803 \ldots \ldots\right.$.
The above expression has been checked in Wolfram alpha. ${ }^{[1]}$

WolframAlpha $=$

```
0.5plas num of ($5*(-al)(camo(2n~l))/2, for n=0 to infinity (a)
```



```
meutiturpantum
    0.5+\sum\sum= \frac{n}{2}
    Menat
    1.61803
```

The expressions on irrational numbers of the type $\sqrt{ }$ n
$\sum_{0}^{i n f}\left(\left(2^{-3 n}\right)\binom{2 n}{n}\right)=\sqrt{ } 2$
$3 / 2 \sum_{0}^{\text {inf }}\left(\left(4^{-2 n}\right)\binom{2 n}{n}\right)=\sqrt{ } 3$
$\sum_{0}^{i n f}\left(\left(5^{-2 n}\right)\binom{2 n}{n}\right)=\sqrt{ } 5$
$\sum_{0}^{i n f}\left(\left(\left(17^{-3 n}\right) /\left(34^{-2 n}\right)\right)\binom{2 n}{n}\right)=\sqrt{ } 17$
The above expression has been checked in Wolfram alpha. ${ }^{[1]}$
漛WolframAlpha:

WolframAlpha=

		\square
If tersubuit Maptosit	t wower	FEEEmper 36 atatum
2tionem		
$\sum_{i=1}^{n-1 \pi \cdot\binom{2 n}{n}} \frac{34^{n n}}{17}$		
Q trion 0 Com	A Nerelven	
peiser wermerver		Hentiy
4.1271066256176605wis	2140sescu7409712514710622s393620424	

References

[1] https://www.wolframalpha.com/

