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Abstract: The study aims to derive the generalized expression in the form of sequences and series for the n™
indefinite integration of the following types of integrands: First, non-transcendental function with any rational
number as an exponent; Second, the product of the non-transcendental and logarithmic function both having
any rational number as an exponent; Third, the product of exponential, sine or cosine function with a non-
transcendental function having any integral power. On analyzing the n™ indefinite integration of type third
integrand, it was observed that the solutions for the integral power of x can also be expressed in the form of
Pascal’s triangle which revealed a divine beautiful symmetry by each row of Pascal’s triangle. In the proposed
solution this symmetry generates a key for achieving the generalized expression for any higher integral exponent
of x, that will help to study the relationship between the number theory and repeated integration of periodic
functions, in which the coefficients of generalized expression can be expressed in terms of binomial coefficients
and it can also be derived by rows of Pascal’s triangle. Interestingly, all these results are also written in an
aesthetic form, which demonstrates the mathematical beauty in the generalized expressions which are discussed
in this paper. In the application of fractional calculus, these derived expressions can be used to obtain the
compact form of a particular integral of n™ order differential equation with constant coefficients in just a single
step. Here, the right-hand side of n™ order differential equation is the integrand of the following forms of
integrals:
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I. Introduction
In the area of mathematical analysis, there are several methods for evaluating the integration of elementary
functions through reduction formulae. In this paper, | have introduced some methods in which the product of
functions with higher exponent are integrated repeatedly n times and the results were arranged after every
integration in such a manner to generate an exact sequence that produces the multi-dimensional recurrence
relation.
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th
This relation will be helpful to deduce the generalized expression for the N indefinite integration into the finite
series.
In this study, the expressions of the following integrals (equation 1-7) were derived:

.én=mﬁ§j(axib)ip’q(dx)" ®
. Dln :Hjﬁﬁj(axip’qib)(dx)“ 2
. Dln - {If e [ (ax-£b)?" log, (ax £ b)*"* (c)" 3)
. Sn = [f %:m_/ [ (ax*?® £b)log, (cx°""*)(c)" 4)
. S“ = jj j et j (ax™ £ b)e@*? (dx)" ®)
. ;n =m#j(axmib)sin(cxid)(dx)" (6)
| Dln = [If o [[(ax™ by cos(cx: d) (e’ @)

. th . . . . . . . .
Here, F is the N fractional integral with respect to X, where D" is the differintegral which combined

d d? d® d"
differentiation and integration operator which is denoted by D = —, D? = — D3 = — D" = .
dx dx dx dx
There are 3 cases for n :-
1. If n > O Fractional Derivative
2. If N <O Fractional Integral
h
3. 1f n=0then N' differintegral of a given function is the function itself
1 th
In above seven forms of integrals, — is the N~ integral of the given integrands.
D
Since, we also know the basic formal properties of differentiation and integration for operator D :
Linearity-
« D'(f+g)=D"(f)+D"(9) ®)
. D"(af)=aD"(f) ©)
Zero Rule-
. D(f)=f (10)

th
In non-homogenous differential equation of N order having the right hand side is f (X) , then it can be written
as-

e D'y=1(x) (11)
Hence, the particular integral of the differential equation in equation (11) is

1 n
. P.I.:F-f(x):”J.-r-]-;i;n-e;-J.f(x)(dx) (12)

th . . . . . . .
So, | have to evaluate the N fractional integral of f (X) to obtain the particular solution of the differential

equation that is mentioned in equation (12).

Similarly, if the first four integral forms in equations (1), (2), (3) & (4) are integrated repeatedly, the solution of
these integrals will also generate a partial sum of the harmonic series. Here, the number of terms in this series
depends upon the number of integrations are performed. On performing a large number of integrations, it will
generate the harmonic series with the large number of terms. So in this case, we can also use the asymptotic

ISSN: 2231-5373 http://www.ijmttjournal.org Page 62




International Journal of Mathematics Trends and Technology (IJMTT) — Volume 66 Issue 1 — Jan 2020

approximation formula for the partial sum of the harmonic series, which are given by Euler (1741) and
Ramanujan (1998), and this result has been widely studied in [1-6] that are mentioned below.

I1. List of main symbolic notations, abbreviations, constants and important results are used in this article:

- (abcdpagrsmeR

e NeN
m m! N -
. = ——— — Binomial coefficient. (13)
r) ri(m-r)!
n
. Zi =142+ 3+---+n Capital Sigma notation for the summation of first N Natural numbers. (14)
i=1
1 th . . .
. ~ f(x)= m -------- j f (x)(dx)" N Fractional integral with respect to x (15)
n—times
. L. f(x) = m ........ f f (x)(dx)? p Fractional integral with respect to X (16)
Dp p—times
=C X th
. z ' Constant of N integration, where C is the any arbitrary constant. a7
i-o |
n
. i=1-2-3---n Capital Pi notation for the product of first N Natural numbers. (18)
i=1
L1 o th . . .
* H = Z_ N~ Partial sum of the Harmonic series. (19)
k=1
1 p™ partial sum of the Harmonic seri 20
. Hp = ZE artial sum of the Harmonic series. (20)

1
Here, value of H , is calculated by following results-

1 1 1 1
e H =)» =~Y+log,(n)= — . [1] (21)
"k +log.(n) 2n  12n? +120n4
* H, = l—Y+|09 (n) - Z : 1 [4] (22)
k= k k>1 n
. . . . - 2(2k)!
Here, I is the Euler-Mascheroni Constant and B,, are the Bernoulli numbers. Since B,, grows like (2k)2k ,
the asymptotic expansion to given k.
« H,~Y+ilogem4 -+ 4+ 1 1 I e
2 12m 120m® 630m® 1680m" 2310m> 360360m
n(n+1) _ o
Where, M = T , where m is a positive integer.
0 a;(r)
. = —~—Io 2m) + Y + — [3] (24)
;k 2 9. (2m)+ +Zm(,z(‘j m’ j

It’s a general form of an asymptotic expansion of Ramanujan’s n™ Harmonic number formula with a recursive

_ n(n+1) .
recurrence relation where m = T is the n™ triangular number.

For I =1, we can determine the coefficients aj (r)

1 1 5 b (25)

2T 3 7T 355
720P° 2835P° 24192P P

* H, :Y+%Ioge(2P)—
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1
Here, P=m +6 , M= n(n +l) where n is a positive integer and n approaches to the infinity.

37 =t
O<r < and the coefficient, M, of L isgivenby M, = - Z
187110 P 2r6 =

g
Where, Rr is the coefficient of — in Ramanujan’s expansion as mentioned above in equation (23)
m

The value of 1 i.e. Euler-Mascheroni Constant is calculated by following results-

* Y=Ilim }+£+1+---+£—Ioge(n) [1] 27)
oo (1 2 3 n

° Y:lim(l+1+...+1_i_i ..... izj [5] (28)
n— 2 n n+l n+2 n

Here-

Y =0.57721566490153286060651209008240243104215933593992359880576723--- [6] (29)

I11. Methodology
To solve the above integrals in equations (1) to (7), | have categorize them under three types i.e. Type-I, Type-II,
and Type-111, on the basis of the product of transcendental and non-transcendental functions.

Integrals of Type-I:
1 .
o = m' -------- I(Non —Transcendental function)*"?(dx)"
n—times
In Type-I: there are two forms of integrals mentioned from equations (1) & (2)
e Integral of form 1. — = J-_U -------- I(ax + )P4 (dx)"
n—times
. - J‘ I I ........ I (ax*P'% £ b)(dx)"
n—times
Integrals of Type-II:
1 + +
or = ”j -------- J'(Non Transcendental function)*”'@ x (Transcendental function)*"* (dx)"
n—times
In Type-II: there are two forms of integrals mentioned from equations (3) & (4)
e Integral of form 3. — = ”I ~~~~~~~~ I(ax +b)*P9 log, (ax +b)*""*(dx)"
n—times
e Integral of form4. — = HI -------- I(axi P19+ b) log, (cx*""*) (dx)"
n—times
Integrals of Type-IlI:
1 . .
o = ”_f -------- J'(Non —Transcendental function)™ x (Transcendental function)(dx)"
n—times
In Type-IlI: there are three forms of integrals mentioned from equations (5), (6) & (7)
e Integral of form5. — = ”_[ -------- I(ax +h)e™** (dx)"
n—times
. —J‘.”-r-]-t-;];;-’[(ax +b)sin(cx = d)(dx)"
e Integral of form7. — = IH -------- I (ax™ £b)cos(cx £ d)(dx)
n—times

ISSN: 2231-5373 http://www.ijmttjournal.org Page 64




International Journal of Mathematics Trends and Technology (IJMTT) — Volume 66 Issue 1 — Jan 2020

In the above mentioned integrals, all the three types that contain seven forms of integral are solved below in the
result section. The solution of these seven forms of integral are also arranged in a special way in order to obtain
the generalized expression along with its all the possible cases that are derived.

On successive integration of integrals that are under the category of Type-lI & Type-Il, the solution of these
integrals will also generate a harmonic series. So in this case, we can also use the asymptotic approximation
formula for the partial sum of the harmonic series which | have mentioned in [1-6].

I have also expressed each generalized expression in an aesthetic form to demonstrate its mathematical beauty
and also to obtain the compact formula. For the aesthetic form for the seven forms of integrals of Type-I, Type-
Il & Type-Ill, I have used some symbolic notations that are mentioned in equations (13) to (20).

The objective of the study is to derive the general solution of n" indefinite integrals of Type-I, Type-Il and
Type-I11 that are defined above. Significantly, it aims to-
1. Explore more methods for solving the integrals that have the solutions in the form of the series.
2. Reveal the divine beautiful symmetry that produces multi-dimensional recurrence relation which shows
the mathematical beauty of these derived formulae in this paper.

IV. Results
Proof for the Integrals of Type-I:
Integral of form 1

1. D° = (ax +b)**"

Solution=
i

(1g£p)/dg 0

— _I(ax+b)+"’qd _g(@xth) + C‘_*lx (30)
D' a'(19+ p) o !

l N qZ(axib)(Zqip)/q 1 C Xi
- aX+b p/q d — i+1 31
D? = [J by o = az(lqip)(Zqip)+; .

3 (3a+p)/q 2 i
%_J‘J’J‘(ax_i_b)+p/q(d ) =— q (aXib) +ZCI+1X
a’(lgt p)(29£ p)Bax p) % (32)

1 . qn(axib)(nqip)/q n-1 C. Xi
—= ||| (ax£b)*™(dx)" = - + 4l (33)
D m n—tmes j a'(19+ p)(29+ p)(3q+ p)---(nq £ p) zo
Aesthetic form:

1 s q"(ax b)Y atc X
— = (ax+b)*P(dx)" = — il (34)
D m P I 1_1[ a'(iqt p) o !
Here, we have 4 forms-
1. If in equation (33), p=mM & g =1

1 (ax +b)™™ = C X
= =l ax+b)"(dx)" = i+l 35
Dn J.J.J. n—times I( ) ( ) n(m+1)(m+2)(m+3)"'(m+n)+i:O i! ( )
Aesthetic form:

(n+m) n-1 i
ol oo on - [IGE 55
n—times i=1 i=0 :

2. If in equation (33), p=1 & ¢q=m (m"root)

1 m" (ax £ b) "™/ =C X

- —IH........ ax+b)!"(dx)" = il 3
o =Mz - J ()" (dey” = am D@ D@D (i) & i 37
Aesthetic form:

1 mn(axib)(nmﬂ)/m n-1 C Xi

= 1Il-------- ax+b)Y™(dx)" = il 38
o~ @by ey H aim+) e

3. If in equation (33), p=-1 & (=m (inverse of m" root)
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1 ) m" (ax + b)m'm = C xi

R N [ ax+b Um dx i+

o < M [ 00 = e o Sy & 9
Aesthetic form:

1 Um m"(ax£b)™ " L C X

ot [ R Ve e b “

4. 1f in equation (33), P/ =-m here me N. In this situation we have 3 cases-
Case 1.1- When n<m

LM, (-1)" (axxb)"™ O CiaX

o -l e @ = e e o & il “
Aesthetic form

1 (-)"(axxb)™™ LC X

o Moo ST @
Case 1.2-When n = m .
inzm ........ j(axib)*’“(dx)“= - (=1)" " log, (ax+b) +nlC' X (43)
T a"(m-1)(m-2)(m-3)-{m-(m-1} 5

Aesthetic form

1 0D (-1)" log, (ax£bh) & C, X

ol @ =TT 5 7 “

Case 1.3-When n > m. Here, letsay P = (n - m)

(-1 ‘1(ax+b)‘[log (ax+b)—{i+;+;+ +:)H

1
= :m ........ I(ax+b) (dx)" = a"(m-1)(m-2)(m—-3)---{m—(m-1}-(1-2-3---p) " (45)

Aesthetic form: |
3 sl - [ ey ) S,

n-times i=1 a (m_l) pl i=0

Integral of form 2
2. D° = (ax*™* £b)
Solution=

— = +h)dx=—— 47

D* J@ ¥z p) 1+§ 4
1 . q ax(2q+p)/q bX 1 C xi

— = || (ax*"* £ b)(dx)? ) T 48

D Ii¢ ()= AQ=p)@azp) 12 Zo )

(3atp)/q 2 i
2= [l ey = £ D3
D g+ p)(2q+p)Batp) 1- 2 3 = (49)
N qnax(nqip)/q n-1 C X

=[] (ax*? +b)(dx)" = — = (50)

D IIJ n—times '[ (1q * p)(zq * p)(3q * p) (nq * p) n! i=0

Aesthetic form:
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. ax(nqtp)/q n-1 C Xi
o e iy [T 00 S
n-times i=1 i=0
Here, we have 4 forms-
1. If in equation (50), p=mMm & g =1
aX(n+m) bXn n-1 C Xi
= —(ff-........ ax™ + b)(dx)" = + 4y = 52
Dn I”H’—’n t,meSI( G (m+)(Mm+2)(m+3)---(m+n) n! ,Z:O: il 52
Aesthetic form:
1 ax(“”“) ot C X
[ G O W e S W T e
n—times 1 - i=0 -
2. If in equation (50), p=1 & @q=m (m"root)
n (nm+1)/m n n-1 i
1. [ @™ £ by = m ax P SCTEL I
D e Im+)(2m+1)(Bm+1)---(nm +1) nt = i
Aesthetic form:
1 _ - _ rT]nax(nm+1)/m bXn n-1 C”lxi
F_m';'{.;;j(ax =D& 1_1[ meD e X 5)
3. If in equation (50), p=-1 & (=m (inverse of m" root)
n (nm-1)/m n n-1 C X-
........ ax Y™+ b)(dx m ax + I+ 56
Dn I”m“ ()= (Im-1)(2m-1)(3m-1)---(nm— 1) n! ,Z 0)
Aesthetic form:
1 ”‘j '''''''' _[(ax UM 4 ) (dx)" _H mnaX(nm—l)/m . i i -
D" - i (im=1) nl = il

4. 1f in equation (50), P/ =-m here me N. In this situation we have 3 cases-
Case 2.1- When n<m

1 \ (-1)"ax"™ X" GC, X xi
i e [CELICY T (m-DMm-2)(m-3)-—-(m-n) n!+|o o0

n—times
Aesthetic form:
1 . (-)"ax™™  bx" nlCHlxi
o M st <[T=EE0 = 5.5 e
Case2.2-When n = m
1 \ (-D)™*alog, (x) bx" &C.,X
=1l +b)(dx)" = + iy
o e e ey % i @
Aesthetic form:
1 o " (—1)"*alog. (x bx nlC xi
5= (@ = [T B0 5.5 o
D n—times i=1 (m I) i=0

Case 2.3-When n > m, Hereletsay P = (n —m)

(-D™ ax"{loge —{1+1+1+ +1H
1 _ 1 2 3 p
_:J‘J ........ (ax ™+ b)(dx)" =

D" n—times - (m-H(m-2)(m-3)--{m-(m-1)}-(1-2-3--p) (62
bx" C X

4y T
n' = 1!
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Aesthetic form:

m . m-1 _ n n-—. i
F_m- ........ j(axm+b)(dx) _(l_f( 1 ax”[logex Hp]+bx . lCii+1!X (63)

n—times i=1 (m_l)p' B n! i=0

Proof for the Integrals of Type-II:
Integral of form 3

3. D° = (ax+hb)** log, (ax +b)*"

Solution=
1 £olq crrs r| g'(ax£b)terr (_q
= _I(ax+b) log, (ax +b)*""*dx = +S{ 095 D) {Ioge(axib) ((mip)]H -
0 Ci-+-1|.xI
+§ T
i +plq +r/s - q2(axib)(2qip)/q { _
o7 _Jj(ax+b) log, (ax +b)*"*(dx)* = + [az(lqip)(ZqJ_rp) log, (ax £ b)
LC.X (©)
((1q+ p) (29 D)JH+§ il
i_ +p/ +r/s 3(ax+b)(3qip)/q { _
~ j”(ax+b) P9 00g, (ax £ b)*"*(dx)* =+ - L\ "< )20+ P)BIL D) 0g,(axtb)
q 2 C| Xi
( 1g+p) (2q+ p)+(3q+ p)j}}g . 0
1 : r/s r q" (ax +b)"=Pd
—=||{: ax+h)**log, (ax£b)*"*(dx)" =% —
D" .m —— I( )" 9. ( )" (dx)" [a "(19+ p)(2q+ p)(3q £ p)--- -
g g g & CipX
-<log, (ax*h) - + + oot
(nqip){ (D) ((1qip) (2axp) (3a*p) (nq+p)jH Zo
Aesthetic form:
........ +plq srls Q" (ax£b) ™"
D" _m tmes j(ax+b) 109, ()T = {1_1[ a"(ig£ p)
n-1 C Xi (68)
{Iog (@)= Z(Iq+ p)H+§T
Here, we have 4 forms-
1. If in equation (67), p=mM & q=1
1 1 1 P tr/s [ (aXib)(mm) .
F‘m —— J (x2b)"log, (ax-£b) " ()" = s{a“(m+1)(m+2)(m+3)~--(m+n)
(69)

1 1 l 1 n-1 C lXi
log, (ax£b) - + + ot + B
{ e ((m +1) (m+2) (m+3) (m+n)jH = jl

Aesthetic form:

+r/s b (n+m)
F‘Wﬁ;ﬂif(aﬁb) log, (ax+b)™" (dx)" = {]:[(f:zmll)

{Ioge(axib)—
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< C|+1Xi
+ 70
;(mH)H 27 7
2. If in equation (67), p=1 & @q=m (m"root)
1 1Um +r/s r mn (aX T b)(nm+l)/m
........ | —
o =l - J (a0 log, (ax-£b) " (0" = SL "M +1)(2m+ D)Em+1)---
(71)
n-1
-{Ioge(aXib)—( m ,m ,m .., jHJFZC'HX
(nm+1) @m+1) (2m+1) (@Bm+1) (nm+1) N
Aesthetic form:
1 Um rs r n mn(axib)(nm+l)/m
N —Ij‘f'r‘]';&'e;'f(aX*b) log, (ax £b)*"™* (dx)" = 3[1_1[ a(miD)
n—lC Xi (72)
i+1
{Iog (ax:£b) - Z(|m+1)H+§‘ il
3. If in equation (67), p=-1 & (=m (inverse of m" root)
1 -1Um +r/s r mn (aX * b)(nm—l)/m
........ | -
D" IJ.I n—times _[(aX+b) >0 (ax+b) (dX) {a (1m 1)(2m 1)(3m 1)
(73)
n-1
-{Ioge(aXib)—[ m ,m ,m ..., jH-%ZCHlX
(nm-1) @m-1) (2m-1) (3m-1) (hm-1) = il
Aesthetic form:
ER. o gyt o [y @
= [ oo [ (ax+b) ™™ log, (ax £ b)*™ (dx)" = 5[1‘1[ im0
e i (74)
i+1
{Iog (ax+b)— Z(lm 1)H+i§ T
4. 1f in equation (67), P/ =-m here me N. In this situation we have 3 cases-
Case 3.1-When n<m
1 m it LI (-D)"(ax £b)™™
—{fl........ I / _ )
pr ~ e e lom a4 - L "(m-1(m - 2)(m-3)—(m—n)
(75)
1 1 1 1 e X
{Ioge(axib){(m—l)+(m—2)+(m—3)+ +(m—n)jH+§‘ T
Aesthetic form:
m srls (-1)" (axxb)™™
oMzt on ocsty oy = | T LS
- C : (76)
{Iog (ax+ b)+Z—H+ ZinX
'—1 i=0 -
Case3.2-When n = m
1 m +r/s r (_1)m—1
= =t | / - .
o =Ml @by log. (axy™ (00 - s[a"(m “D(m-2)(m-3)--{m-(m-1}
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{|Oge2 (axthb) N [ log, (ax +b) N log, (ax +b) N log, (ax£b) ey log, (ax£b) jH N

2 (m-1) (m-2) (m-3) {m-(m-1)} -
S C|+1X
Aesthetic form:
1 _ m +r/s = ( 1)ml |Oge2(aXib)
F_m-;"-n-e;-j(ax+b) log, (ax +b)*""* (dx)" = Sh;[a o o+
(m-1) n-1 i (78)
Z log, (ax+b) N C...x
S m-) [ &
Case 3.3- When n > m. Here, let say p:(n—m)
1 N T (™t
= —{f------- +b) ™| +b)*s (dx)" =
o My ™ og. ey (@9” - {a "(m-D(m-2)(m-3)-
p
1 Ioge (axth) (ax+b) log, (ax+b) - 1+£+£+...+£ . 79
{m-(m-1)} D 2 a’p! 1 2 3 p
n-1 i
! o L +ZC'+—1X
(m-1) (m-2) (m-3) {m-(m-1)} o !
Aesthetic form:
1 ri e )™ [ 1 log,’(ax+b)
= = +b) ™| +b)*"5(dx)" =+ — e \PR Y
Dn JJ.J. n-times J.(ax ) Og (aX ) ( X) S|:H (m_l){ 2 !
(80)
(b (ax+b)° {log, (ax+b)—H,} +”1C.+1X
i1 a’(m-i)- p! i !
Integral of form 4
4. D° = (ax*™* +b)log, (cx"")
Solution=
1,y (lgxp)/q 1
ilzj(ax*p’qJ_rb)loge(cxi”s)dx: Ja {Iog x-”sii-( f j} i{bl
D (1a£p) s \(la£p) 1
1 & CpyX )
| ir/s___ - i+1X
{Ogecx (JH@ i
2y, (20£p)/g
1 [[ (ax*" +b)log, (ex"*)(d)? =| - {Iogecxi”s$£-( T
(lg+ p)(29+ p) s ((Aq£p)
(82)

b )] g

(3axp)/q
ézm(ax*‘”‘*ib)loge(cx*f“)(dx)s—{ g ax { s g

w|=

Ggtp@azp@EaEp L T
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( q + q + q J}j|+|: bX3 {Iogecxir/s—L_(]_'+1+1J}:|+icif—lxi
Qgxp) (gxp) (Bgzxp) 1.2-3 s\1 2 3 = 1!

{ qnax(nqtp)/q
(lg9£ p)(29+ p)(3q£ p)---(ng £ p)

— m e [ (@x*P £ b) log, (ox*™*)(dX)" =

o=
D n—times

{Ioge oxtrls —[( q + q n q o q J |:bX {Ioge CXir/s I
(la+p) (29£p) (Bq*p) (nq £ p) n! s

111 1 = C X
=ttt — | [+ )
1 2 3 n o !

Aesthetic form:

F = [[Jzs [ @ £y log, ()@ {H e {

n—times i=1 (I * p)

iZ:‘(iqip)H {bn' {logecst_ '(Hn)H+nzlc'*1X

= !
Here, we have 4 forms-
1. If in equation (84), p=m & (=1

o

mlﬁ

aX(n+m)
(Mm+1)(Mm+2)(m+3)---(m+n)

{ e T ( 1 1 1 1 ]H
log, ox™ " ¥ —- + + 4ot +
(m+1) (m+2) (m+3) (m+n)

bx" +r,s_r 11 1 nlc, X'
log, cx —|=+=+=+- +
n! 1 2 3 n = !

Aesthetic form:

n (n+m) n
[:)Ln :”.J- ........ J.(aX +b) |Og (Cxir/s)(dx) { ar);—i_i) {loge oxtrls $£Z 1 . }:|i
bXn trls F S C|+1X
[ n! {Iogecx (H )H Z .

i=0

2. If in equation (84), p:1 & g=m (m"root)

i_m' ........ I(axl"“ +b) log, (cx*"*)(dx)" {

mnax(nm+1)/m
@m+1)(2m+1)(Bm+1)---(nm+1)

+r/s T r m m m m bXn *r/s T
log, cx —- + + 4ot log, cx —-
@m+1) (2m+1) (Bm+1) (nm+1) n!

n-1
]_'+1+£+...+1 +ZC'+1X
1 2 3 n = !

Aesthetic form:

-

UJ

(83)

(84)

(85)

(86)

(87)

(88)

1m *r/s L mnax(nm+l)/m ir/s_r N m
F_m ........ [ (@™ £b) log, (cx*"*)(dx)" —{Hw{'ogecx +_'Z(im+1)H

n—times i=1 S i=1
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+r/s T r < C|+1Xi
! {Ioge cX — H ZO“ (89)

n
N bx
n S
3. If in equation (84), p=-1 & @ =m (inverse of m"root)

III %,_/f (ax™ +b) log, (cx*""*)(dx)" [

n—times

{ . [ m m m m jH {bX“ { s
log, cx —- + + +oet log, cx —- (90)
@m-1) (2m —l) (Bm-1) (nm-=1) n! s

ek

Aesthetic form:

mnaX(nm—l)/m .
@Am-1)(2m-1)(3m-1)---(nm-1)

D”_

-

|+1

gM’

........ ~Lm trls - mnaX(nm—l)/m ir/s—[.

—-If s [ (X b) log, o) (@) { o {los. o .
n m bx *r/s F—- 'S Ci+1xi

Z-1:(|m 1)H {n {Iogecx s (H”)HJFE‘ il
4. 1f in equation (84), P/ =-m here me N. In this situation we have 3 cases-
Case 4.1- When n<m

1 -m +rls n (—1)”ax(“‘m)

= = 1{f-------- +b)l Y(dx)" = .

D" m n—tmes I(ax 109, (&) {(m—l)(m—Z)(m—S)...(m—n)
Iogecxi”sif. t ot v 1 . 92)

s \(m-1) (m-2) (m-3) {m-(m-1}
{bx” { et o T (1 11 jH n 1C,+1xi
Ioge - +—+—+-
n! s 17273 =
Aesthetic form:
n (n—-m)
= [[fze (e £bylog, (ex° )@ —[H( D {Iogecx”s+;
n—times i=1 -
S | *r/s T r H < CI 1Xi (93)
2 (m—|)H { {Ogecx 7l ”)H+.o T
Case4.2-When n = m
1 m *rls ( 1)m N { S
= = I}------- +b)l V(dx)" = Z.
D" m TI (™ by log, ()" {( m-1)(m-2)(m-3)---{m—-(m-D} [ r
log”, o™ +f log, x + log, x + log, x +oee log, X T i {'ogecx”’s_L (94)
2 si(m-1) (m-2) (m-3) {m (m-1} n! S

n-1
]_'+1+£+...+1 +ZC|+1X
1 2 3 n = 1!
(m-1) ¢ qym-1 2 tris
-1 a{is log®, ox™™ 1

o= <ax‘"‘ib>'°9e<cxﬂ“’<dx>”{HW

ISSN: 2231-5373 http://www.ijmttjournal.org Page 72




International Journal of Mathematics Trends and Technology (IJMTT) — Volume 66 Issue 1 — Jan 2020

(m-1) n n-1 i
Z log. x X H{bx {Iogecxrr/S —E.(Hn)}}r —C‘_*lx (95)
iz (Mm—1i) n! io !

Case 4.3- When n > m, Here let say p=(n—m)

1 -m +r/s ( l)m 1 S
o = [ @ £bylog. (o)’ {(m ~1)(m-2)(m—-3)-{m—(m— 1)}{ r

1 Iogecx“’s rox’ 1 1 1 1 1 1 1
— ———+—-—| log, x— 1+E+—+~--+B + + +---+  (96)

U)

(m-1) (m-2) (m-3)

1 bx" as_ (11 1 1 = C,,,X
{—m—(m—l)}]Hi[ n!{Iogecx +g.(1+§+§+...+HJH+§ T

Aesthetic form:

1 . el @D (-D™a(,s 1 log’ cx*  r
F:J‘H ........ I(ax +b)log, (cx*"*)(dx)" _[1:1[ D) {i +

(m_l)xp(logeX_Hp) bx" ir/s_ S Ci+1x
; (m—i)-p! }] { n! {loge CX (Hn)}}'FZT

i=0
Proof for the Integrals of Type-III:

97)

U)|-1

th
Integral of form 5- Initially, | have found the expression for the N integral of these integrands
(ax’ £b)e®™ @ (ax' £b)e®™*® (ax® £b)e®™* ) & (ax® £b)e™*® that are solved below-

DO — (aXO ib)e(cxid)
Solution=

é = j (ax° £ b)e@* gy = [

C0+1

e(cx+d)(ax +b):| 0 C xi

+ Z i+l (98)

1 i

=0

FR— p ﬂiq .

“ (100)

1 N e D@ax’+h) | & C xi
—= [ (ax® £ b)e™* (dx)" {— + 0y = (101)
D III n—times j i=0
Combination form:

1 (cx+d) n-1 C Xi
—=[f (ax® £b)e™* ) (dx)" = [c (ax’ £ b)(-1)° ( HJr i (102)
D -[.[J. n-times .[ i=0
DO — (axl + b)e(cxird)

Solution=
(cx+d) 1 . 0 i
é = f(axl +b)e™dx = {e {C(;)il =b) a}} +2 Cii”,X (103)
i=0 :
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1 . N e fe(axt +b) 2a} | & C X
— = || (ax" £b)e™* ¥ (dx)* = 104
== [[ (@ £D)e ™ (dy) { = ZO (104)
1 1 (cx+d) 3 e(cx+d){c(ax +b) 3a} & Cy X'
F_m(ax +h)e®*9 (dx) { = +§0: _ (105
1 (oxtd) e c(ax' £h)—na} | &:C, X
F_U I S I (axt £b)e ™ (dx)" [ R +§ T (106)
Combination form:
(cx+d) 1
_”.[ -------- I(ax +b)e ™ (dx)" = c'(ax' £b)(-1)° ( j+ na(cx)o(—l)l[lj +
n-times (107)
nz—chle
o !
DO — (aX2 ib)e(cxid)
Solution=
1 o e Ifc?(ax’ £b) - 2acx+2a} | - C. X
E:I(axzib)e( —‘”dx:{ 1 cz*l) }} Z 1| (108)
= il
(cx+d) 1 i
L ([ +bye gy = {e e (@ +b) - 4acx+6a}} Z 109)
D ¢’ -0
1 ) o) qna | €7 P{c?(ax® £b) —bacx+12a} | & C,, X
S =[] @ £0)e (dx) —{ e +§ _ (110)
(cxtd) g2 2 _
%:m- '''''''' _[(ax + B)e) (ch)" {e {c? (ax J_rb2:2+n2nacx+n(n+1)a}}r
_ n—times (111)
nz_lcnlxl
i !
Combination form:
1 B (oxd) e(c><+d) 1 L 2
5= | e [ (ax® +b)e ™ (dx)" = c?(ax? +b)(-1)° +na(cx) ]
_ (112)
2 n-1 ] 1
n(n+1)a(cx)’ (=1)° (ZH + zcl—llx
i=0 .
DO — (aXS ib)e(cxid)
Solution=
(cxtd) £A3 3+ _ 2,2 _ 0 _ i
é _ _[ (2 £b)e dx{e {c*(@C £b) leac x? +6acx 6a}}rzcI X w13)
i=0

3+2
C

iz - ”‘ (a £b)e) (dx)? {e(“*d){cs(axs +h) —6ac’x’ +18acx—24a}} L C. X
D
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e Lc? (ax® £b) —9acx? + 36acx — 60a}} N 5 CyX
i=0

% = [[] (ax® £ b)e™=) (de* = {

¢ i! (115)
1 3 oty rqonn | €904 (@x® £b) —3nac?x? +3n(n +1)acx —
5= m' ........ J.(ax +b)e®* D (dx)" = 5
e | (116)
n(n+1)(n+ 2)a}} N “C, X
o !
Combination form:
1. ] [ (@ £b)e™**) (dx)" = i (@ £b)(1°[ ° |+ na(ayt] ° |+
Dn n—times C3+ﬂ 0 1
(117)

n(n+a(cx)' (-1)° @j +n(n+1)(n+2)a(cx)’ (1) (3} + "iCH_lx

io !

th
Now to get the expression for the N integral of (ax’“ T b)e(CXid), I did some analysis in all the solutions of
integrals that are solved above in equations (102), (107), (112) & (117). Let us consider a Pascal’s triangle

. . th th . . L .
having rows starting from 0" rowto M™ row with elements in the form of binomial coefficients.

o (0]
1 Row
0

1 1 Ron [(1)] @
2 I
L A U A

DO EE-E0 O 0
Row
0 1 2 3 m 0 1 2 3
Now in equation (118), | have introduced a sequence diagonally:
1 n, n(n+1), n(n+1)(n+2), -, n(n+1)(n+2)(n+3)--{n+(m-1)} and we get-

1
[J oN(n+1) (119)

[Zj on(n+1)(n+2)

SN+ +2)(n+3)--{n+(m-1)}

m m m m m

0 1 2 3 m
After introducing this sequence in equation (119), | have multiplied the entire diagonal elements by the
respective terms of this sequence and we get-
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”ﬁ (120)

3 3 3
n[lj n(n +1)[2) n(n +1)(n+2)(3]

1[mj n(Tj n(n +1)(r;] n(n +1)(n+2)(2) n(n+1)(n+2)(n+3)-{n +(m —1)}(2]
Now again in equation (120), I have introduced a sequence diagonally:
c"(ax™ £b), (cx)™, (cx)™2, ()™, -+, (©X)™™ and we get-

cM(ax™ +b)

{) . (121
) ) e
SIS wf]
() o} v (v 0n+ 23
R s s ; : _ a(ogr
lm "m n(n+1)["2“] n(n+1)<n+2)[r§] n(n+1)(n+2)(n+3)~-»{n+(m71)}(2]

After introducing this sequence in equation (121), | have multiplied the entire diagonal elements by the
respective terms of this sequence and we get-

1™ (ax™ 1b)[g]
1™ (ax™ 1b)[(1)] na(cx)’“’l[ﬂ (122)
1M (axmtb)[g} na(cx)m’lﬁj n(n+1)a(cx)”"2(§j
1cm(axmib)(§] na(cx)m’]'[i] n(n+1)a(cx)m’2[§] n(n+1)(n+2)a(cx)m’3[zj
1c’“(ax’“tb)['g) na(cx)m’l(Tj n(n+1)a(cx)’”’2[':] n(n+1)(n+2)a(cx)m’3(':] n(n+1)(n+2)(n+3)~‘{n+(m—1)}a(c><)m"“[:j

Now again in equation (122), I have introduced a sequence: (—1)°, (<1), (=1)?, (-2)°, -, (D)™ and
we get-

S0
1cm(ax'“1h)[g] St (123)
1cm(axm1b)[;j na(cx)m’l(ﬂ (12

M (M spyf 2 m-1(2) m-2(2 3
1c™ (ax tb)L ) na(cx) [ J n(n+1)a(cx) [ ] (-1

(3 ° 3) : 3 2 3

Rm(axmlb)b] "a(c")mil(lj "("+1)3(CX)'“’2[2] n(n+1)(n+2)a(cx)'“’3[3]

"
: : ; ; ; ; : - "
1c’“(ax'"1b)[';] na(cx)m’l('r) n(n+1)a(cx)”"2(':) n(n+1)(n+2)a(cx)m’3;(2] n(n+1)(n+2)(n+3)--{n+(m—1))a(cx)m’m(2]
\

After introducing this sequence in equation (123), | have multiplied the entire diagonal elements by the
respective terms of this sequence and we get-

1c™ (axM +b)( 1)"[8\\ (124)
16M (ax'"ib)(fl)g[/i\: na(cx)™ 1(71)1[11\‘
\o) o \1) o
1¢M (ax™ :b)(—l)ufé\: na(cx)m’1(71)1[i ‘ n(n+1)a(e)™ 2 (12 ;J
. lo) . J {
lcm(ax'“:h)(—l)ntil na(cx)m’l(—l)ltﬂ n(n+1)a(cx)m’z(—1)2[izw n(n+1)(n+2)a(cx)m’3(—1)3[2]

1:’“(ax”‘+b)(f1)°\"rg] na(cx)'“’l(—l)l;/'lﬂ\; n(n+1)a(cx)""2(f1)2\‘"2“\‘ n(m)(n+2)a(cx)'“’3(f1)3\'";] n(n+1)(n+2)(n+3) {nf(mfl))a(cx)m’m(fl)m[/m]
L L \é) \ \m/

Now in equation (124), we can observe that, on putting m=0,1 2,3, ---, m in
0" Row, 1%Row, 2" Row, 3“Row, --- , m"Row respectively. Then each row of Pascal’s triangle is

th
representing  the  coefficients  of N" indefinite  integral of the following integrands:
(aXO ib)e(cxid), (axlib)e(CXid), (aXZ ib)e(CXid), (aX3 ib)e(cxid)1 . (axm ib)e(cxid)
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oth
(oxzd) te i

Row:——ﬂ'l ----------- f(@x0£b)e(X+d) (g & {CO(axotb)H)o[OH ZCMX
n-times 0n = on

st
Ruwii,m ........... j(ax1+b (ex£d) ()= Q[cl(axhrb)(fl)o[g)Ana(cx 1[ H C lx
=]

(125)

n—times

2 d pie
Rowﬁﬁ:jﬂ vvvvv J(ax +b)e(cx*”)(dx)”,e(czi+)[ (ax2b)(~ 0[ j na(cx)l(—1)1(1]+n(n+1)a(cx)0( 1) [;H+§C'ﬁx

n-times

3rd
Rowssef o (@ 2)el ) (a1
n-1 Umes

&(© SCaxX

+d)
[ ¢ (@3 +b)(-1) Lo}rna(cx)z(71)1(1]+n(n+l)a(cx)1(71)2(z]w\(n+1)(n+2)a(cx)0(71)3[2]}21 2
\ i=0 N

CinX'

(ox
(cx+d e
(09" 4

_ CmH\)[cm(axmtb)(fl)n[rg}rna(cx) 1[ ]+n (n+1)a(cx)™ 2(71)2(r:}rn(n+1)(r\+2)a(cx)'"’3(—1)3[2)+vn-n(n+1)(n+2)(n+3)..{n+(m71)}a(cx)m m '“[ )}z

o 1 m
ROW=>—==f]] e (aX" £b)e
n-times

th
On rewriting the solutions of N integral from equations (102), (107), (112) & (117) in form of Pascal’s
triangle as shown above in equation (125), a beautiful pattern generates. Hence, on comparing all the elements

th . . .
of the M ROW of Pascal’s triangle, 1 have concluded that these elements are the coefficients of the generalized

. th .
expression for the N Integral of form 5: (ax™ £ b)e™*®) as discussed below.

5. D° = (ax" £ h)e!™*?
Solution=

[ (axm £ b)) (ax)" Q[ " (ax" £b)(~ 1)( ]+na<cx)"‘l(—1)1-

n-times

D”_

[Tj+ n(n+1)a(ex)™ 2 (~1)2 (2} n(n+1)(n +2)a(cx)m‘3(—1)3(2}+~--+ n(n+1)(n+2)- (126)

nlC Xi

i=0

it

(n+3)---{n+(m-D}¥a(cx)™ " (-n" ( j}r

Here, from the equation (126), we can also determine the coefficient of any Xq, where =(m— p) and
gs<m.

For the any term of X" where q= (m— p)

If 0 < p <2, then the solution will be:

e(cxid) m
p=0= —m| C(ax™ £ b)(-1)° [ j (127)
c 0
e(cx+d)
p=l=—-rr NCED {na(cx) -0 [ H (128)
e(cx+d)
Pp=2=— R {n(n +1a(cx)? (1) [ ﬂ (129)
If 3< P <m, then the solution will be:
(cxxd)
I<psm= i(m*”) {n(n +D(n+2)(n+3)---{n+(p-D}a(cx)*(-1)° [?H (130)
Aesthetic form:
p(ed) [ (p-D) m
3I<psm=> o (n+1)a(cx)* (—1)"( pj (131)
i=0

h
Integral of form 6- Initially, | have found the expression for the nt integral of these integrands
(ax’ £b)sin(cx = d), (ax" £b)sin(cx £ d), (ax* £ b)sin(cx +d), & (ax® +b)sin(cx £ d) that are
solved below-
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D = (ax’ +h)sin(cx = d)

Solution= .
il:j(axoib)sin(cxid)dx:(;02 {(axoib)sin{ +(cx+d)H+ZO:C' X (132)
— = ﬂ (ax® + b) sin(cx + d)(dx)? _(;i); [(ax +b)sin —+(cx+d)H+leC. X (133)
= m (ax® +b)sin(cx + d)(dx)? = (0)3 {(ax +b)sm{—+(cx+d)H+§C' _Xi a
i:ﬂj -------- [ (@ +b)sin(ex+d)(dx)" _( Dn {(ax +b)sm{n—+(cx+d)H
Dn n—times 2
v o (135)
Z
Combination form:
o _H_[ -------- _[(ax +b)sin(cx+d)(dx)" = ( 0?\ {c (ax’ +b)( jsm{—+(cx+d)H
C n-times (136)
n-1 1X
D° = (ax' +b)sin(cx +d)
Solution=
1 1 ; (_1)1 Loyl 7
—lzf(ax th)sin(cx+d)dx =7 {c (ax ib)sm{—+(cxid)}+1a-
D c 2
, (137)
sin{%+(cxid)H+_ CraX
—_jj(ax +b)sin(ex + d)(dx)? =< 122 {Cl(axlib)sin{%+(cxid)}+2a-
(138)

(3 L. C, X
S|n{7ﬂ+(cxid)H+z '_*!X

()3

——jjj(ax +b)sin(cx +d)(dx)® = {c (axt +b)sm{37+(cx+d)}+3a

sm{—+(cx+d)H+z 'I+1 (139)

[ ot w2 ot i (2 s e ra
(140)
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Combination form:

— m ........ I(ax +h)sin(cx+d)(dx)" = ( l)n [c (ax* +b)[;jsin{n§+(cxid)}+

D n—times . | (141)
na(cx)°[1Jsin{w+(cxid)ﬂ+ C”—lx
1 2 i 1!
D° = (ax® £b)sin(cx +d)
Solution=
(1)1 20042 LT
——J'(ax *b)sin(cx+d)dx =-—-3 [c (ax ib)3|n{5+(cxid)}+2acx-
¢ (142)
S|n{27+(cx+d)}+2asm{37+(cx+d)H+zC'l*lx
(-1 2 (g2 . |27
——”(ax +b)sin(cx = d)(dx)? —T[c (ax J_rb)sm{?+(cxid)}+4acx-
. i (143)
sin{s?ﬂ+(cxid)}+6asin{47”+(cxid)H+_
m.(ax +b)sin(cx £d)(dx)* —( )3 {c (ax? +b)sm{3?+(cx+d)}+6acx
sin{%’%(cxid)}+12asin{%"+(ex¢d)H+jCi;—1‘X' (149)

1 = [[[ o (@x® £b)sin(ex + d)(dx)” n_( 21) [cz(axzib)sin{“f+(cxid)}+

n—times - (145)

2nacxsin { (n ;1)” +(cx+ d)} +n(n+1)asin { (n +22)ﬂ +(cx & d)H + Y Cii+1'X'

i=0
Combination form:

= [ @ ebysines ayanr = S [c (o +b>[ )S'”{—ﬂcxm)}

n—times

na(cx)l(i]sin{%chid)}jtn(nﬂ)a(cx) (stm{(n 2) +(cx+d)H (146)

n—:

O
x_

i:0 I.

D° = (ax® £ b)sin(cx +d)
Solution=

— = _f(ax +h)sin(cx +d)dx = (c D) {ce’(ax3 +b)sin {%+ (cx+ d)}+3a(cx)2 :

3+1

(147)

S|n{27+(cx+d)}+6acxsm{37ﬂ+ (cx+d)}+6asm{47+(cx+d)H+Ci)i(—:
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3+2

—”(ax +b)sin(cx£d)(dx)* = _CY {c (ax® +b)sm{—+(cx+d)}+6a(cx)

C
(148)
S|n{3?+(cx+d)}+l8acxsm{47+(Cx+d)}+24asm{5?+(c><+d)H+_ C'ﬁx
—.m(ax +b)sin(cx £d)(dx)® —( ) {c (ax® +b)sm{3?+(cx d)}+9a(cx)2-
sm{47+(cx+d)}+36acxsm{57+(cx+d)}+60asm{67+(cx+d)H iciiﬂl)(i (149)
g _m -------- [ (@ £b)sin(cx+ d)(dx)" = (j)nn [cg(ax3ib)sin{n—ﬂ+(cxid)}+
D —— c 2
3na(cx)2sin{%Jr(cxid)}+3nacx(n+l)sin{(n+22)”+(cx4_rd)}+n(n+1)- (150)

(n+2)asin{(n I7 | (ox +d)H+nZ 11X

Combination form:

1 :J‘H ........ j(ax +b)sin(cx+d)(dx)" = ( 1) {CS(aﬁib)@jsin{%+(cxid)}+

n—times

na(cx)? (Jsm { (n +21)7[ +(cx £ d)} +n(n+1)a(cx)" (gsin {(n +22)7T +(cx+ d)} + (151)

n(n+1)(n+2)a(cx)° @Sin{@”“id)ﬂ S C,ﬁx

i=0

. th . . .
Now to get the expression for the N Integral of (ax™ £ b)sin(cx+d), I did some analysis in all the
solutions of integrals that are solved above in equations (136), (141), (146) & (151). Let us consider a Pascal’s

. . . th th . . . . ..
triangle having rows starting from 0" rowto M row with elements in the form of binomial coefficients.

1 1 Ron @ @
N N
L w0 e

m m m m m m" m m
Row

o (G B (D

Now in equation (152), | have introduced a sequence diagonally:

1 n, n(n+1), n(n+1)(n+2), -, n(n+1)(n+2)(n+3)--{n+(m-1)} and we get-
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1
[J n(n+1) (153)

(ZJ n(n+D(n+2)

on(n+D)(n+2)(n+3)---{n+(m-1)}

m m m m m
0 1 2 3 m
After introducing this sequence in equation (153), | have multiplied the entire diagonal elements by the

respective terms of this sequence and we get-

”ﬁ (154)

l(g] n[ij n(n +1)[2] n(n +1)(n+2)[2]
1[2) n(Tj n(n +1)(r:] n(n +1)(n+2)(2j n(n+1)(n +2)(n +3)-fn+(m —1)}(2}
Now we again in equation (154), | have introduced a sequence diagonally:
c"(ax™ £b), (cx)™, (cx)™2, ()™, -+, (©X)™™ and we get-

_c"(ax" +b)
1
1[8) a(ex)™ ( 55)
1[(1)] n(i] a(ex)™?
1[(2)] n(ij n(n +1)[§] aex)™?®

1[3] n[i] n(n +1)(2) n(n +l)(n+2)[§]
S : : : : : : . _a(e)m™
1(2} n(Tj n(n+l)[r;] n(n+l)(n+2)[r;] n(n+1)(n+2)(n +3)-~-{n+(m—1)}($]

After introducing this sequence in equation (155), | have multiplied the entire diagonal elements by the
respective terms of this sequence and we get-

1c'"(axm1b)[g]
lcm(axmtb)[j)] na(cx)m’l[ﬂ (156)
1cm(axmib)[(2)) na(cx)mflﬁj n(n+l)a(cx)m’2(§j
U
lcm(axmtb)(z] na(cx)m’lﬁ] n(n+1)a(cx)m’2[zj n(n+1)(n+2)a(cx)m’3[2]
1cM (axMsb)| ™ na(ex)™Y ™ n(n+t)aex)™ 2" (1) (n+2)ae)™3 " n(n+)(n+2)(n+3)-{n+(m-Hae)™ M "
0 1 2 3 m

Now in equation (156), we can observe that, on putting m=0,1 2,3, ---, m in
0" Row, 1*Row, 2" Row, 3“Row, --- , m"Row respectively. Then each row of Pascal’s triangle is
representing  the  coefficients  of nth indefinite  integral of the following integrands:
(ax’ £b)sin(cx+d), (ax' +b)sin(cx+d), (ax® £b)sin(cx+d), (ax®+b)sin(cx+d), -,
(ax™ +b)sin(cxtd)
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j(ax”:n)sm(cxm)(dx)":%[c“(ax“:n)‘g‘sm{%mx:u) Byt :X
o

:xtd)(dx)"f%lrci(axlih)‘\ojsm\?qcxtd)}wna(:x)u{ \;sm

E
o e

2 (ax?+b) ; ‘sm{"”v(:xm)}wna(cx)l[i‘sm“&—tcxm) n(nHacex
o) )

g

B
:} b f] inf 21 (ex:)nace »H :‘(”*21’” J)}m(m ‘\ (w2 s nniniz)a \ \ (( s }]Z:Cl—jx

”’-wmm}]é%x‘ (157)

n y \
'R“omuinzm — J(axmth)sm(cx:d)(dx)":%{cm ‘n ( 7 (ox d)} ‘\ \ {‘ ‘)”w(cx:a))m(nma(cx)'“’z[';‘}sm(@‘(ma)’m(mmm)a(cx)”’zjZ‘\sm{(”f)”w(cx:w]. —n(n+)(n+2)(N43) - (e (m 1)}a1cx)m’m[:;sm{(n v
s ¢ J M J [E J )

On rewriting the solutions of n integral from equations (136), (141), (146) & (151) in the form of Pascal’s
triangle as shown above in equation (157), a beautiful pattern generates. Hence, on comparing all the elements

th - .
of the M ROW of Pascal’s triangle, | have concluded that these elements are the coefficients of the generalized

h .
expression for the N Integral of form 6 (ax™ £ b)sin(cx £ d) as discussed below.

6. D° = (ax™ £h)sin(cx = d)
Solution=

D" o= e [ @ bysin(excs d)ony —(m{)n {Cm(ax”‘ib)(msm{%ﬂﬂcxid)}

n—times

+na(cx)”‘1( jsm{(n D7 +(cx £ d)}+ n(n+1)a(cx)"? [mjsin {M+ (cx + d)}
1 2 2 2
+n(n +1)(n+2)a(cx)m3[3j {(n 37 +(cx+d)}+ +n(h+D)(n+2)(n+3)---

{n+(m-D}a(cx)" " (Ejsin {W +(cx+ d)H 5 CuX!

i !

(158)

Here, from the equation (158), we can also determine the coefficient of any Xq, where :(m— p) and
g=m.

For the any term of X" where gq= (m— p)

If 0 < p <2, then the solution will be:

p=0= ((m{)n: {cq(axm ib)(@sin{@ﬂcxid)ﬂ (159)
p= ((:(m)n) {na(cx)q (Tjsin{%ﬂcxid)ﬂ (160)
p=2= ((ml)nn) {n(n +1)a(cx) (r;jsin {_(n +22)7T +(cx+ d)H (161)
If 3< p <M, then the solution will be:
(=" g M

3<psm= S n(n+1)(n+2)(n+3)---{n+(p-1}a(cx) :

P (162)
sin{@ﬂcxid)}}
Aesthetic form:
3<p<m :> S r 1)(n +i)a(cx)* ( pjsm{(n 2p) +(cx* d)H (163)
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h
Integral of form 7- Initially, | have found the expression for the nt integral of these integrands
(ax® +b)cos(cx +d), (ax" +b)cos(cx +d), (ax* £b)cos(cx £d), & (ax® £b)cos(cx £ d)  that
are solved below-

D° = (ax® £b)cos(cx £ d)

Solution: .
—= _[(ax +b)cos(cx+d)dx = (002 [(ax0 +b) cos{ +(cx + d)H + ZO: C' X (164)
D2 ”(ax +b) cos(cx = d)(dx)? _( O%); [(ax +b) cos —+(cx+d)H+ C' X (165)
= = j [[ (ax® +b)cos(ex +d)(dx)° = ( 011 {(axo ilo)cos{7+(cxtol)H+§Cii+l!xi 156
Di_ [[feee [ (ax +b)cos(cx+d)(dx)" = (_m)n {(ax +b) cos{—+(cx+d)H
C . n—times (167)
< |+1XI
i= i!
Combination form:
- J'” ........ I (ax® +b) cos(cx £ d)(dx)" = ( 0%): [co(ax0 +b) [8) cos {%4‘ (cx =+ d)H
. n-times (168)
+ C|+1X
i=0 II
D° = (ax" b)cos(cx +d)
Solution=
—J'(ax +b)cos(cx+d)dx = - 1)1 {c(ax er)cos,{2 +(cxid)}+1a-
. ¢ (169)
coS {2—” +(cx+ d)H CuaX.
2 i=0
= j [ (ax’ +b) cos(ex+ d)(dx)” = ( 1)2 [c(ax +b) cos{%+(cx+d)}+2a
. Ly (170)
cos{7”+(cxid)H z .+1X
—_jjj(ax +b)cos(cx +d)(dx)® = ( )3 [c(ax +b)cos{3?+( x+d)}+3a
oS {47” +(cx+ d)H + ZZ:C'I*—llxl (171)

__m;;;;j(ax +b)cos(cx+d)(dx)" = (Ci)nn [c(ax +b)cos{7+(cx+d)}+ na-

n
D n—times
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n-1 i
cos (n+hz +(cxxd) ¢ |+ C'*—lx 172)
2 i!

i=0
Combination form:

D" —Iﬁ oo [ (@xt £ b)cos(ex £ d)(dv)” = ( 11) [Cl(axlib)[éjcos{%+(cxid)}+

n—times

B (173)
na(cx)° [1] Ccos { (n +21)7Z +(cxxd )H C'I+1IX
D° = (ax® £b)cos(cx £ d)
Solution=
= J'(ax +b)cos(cx+d)dx = - 1) {c (ax® +b)cos 5 " (cxid)}+2acx-
e . . (174)
cos{%[+ (cx + d)}+ 2acos{37ﬁ+ (cx + d)H + ; Cilﬂlx
— =[] (ax* +b) cos(cx + d)(dx)° = ( 1)2 {c (ax? £b) 005{27+ (cx+ d)}+ 4acx-
. i (175)
cos{%+(cxid)}+6acos{47ﬁ+ (cxid)H+ZCii*—tX
- m(ax +h) cos(cx + d)(dx)® = ( ) {c (ax® +b)cos{37+(cx+d)}+6acx
cos {47 +(cxxd )} +12acos {57 +(cx =+ d)H - Z C'“XI (176)
| 1 D" 2,2 nz
= J'” ........ I(ax +b)cos(cx+d)(dx)" = e {c (ax® £b) cos{7+ (cx+ d)}+
n—times (177)

2nacx cos {w +(cx+ d)} +n(n+1)acos {% +(cx+ d)H + ni C'+1X

Combination form:

__I”%/_Jj(ax +b)cos(cx+d)(dx)" D7 2+)n {c (ax? +b)(0]cos{n7ﬂ+(cxid)}+na(cx)l

n
D n—times

[i]cos{@+(cxid)}+n(n+1)a(cx) (chos{(n )+(cx+d)H+n§‘C‘iﬂlxi (178)

i=0

D° = (ax® £b)cos(cx £ d)
Solution=

—_[(ax +b)cos(cx+d)dx—( D) {c (ax® +b)cos{2+(cxid)}+3a(cx)2-

_ (179)

0 I

cos{%er (ex+ d)}+ 6acxcos {377[+ (ex+ d)}+ 6acos{47ﬂ+ (cx+ d)H +y Ci?tx
i!

i=0
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3+2

é = [[ (ax® £ b) cos(cx + d)(dx)? = (;1)2 [03(aX3 +b)cos {277[ +(ox =+ d)} +6a(cx)’ -

180
cos {37”+ (cx £ d)}+18acx cos {47”+ (cx + d)} +24acos {57”+ (cx £ d)H N g Ciiﬂ!xl (180)
% = [[] (ax® £b)cos(ex:+ d)(dx)* = (;i)j {c%axs +b) cos{%ﬂ (cxid)}+9a(cx)2 :
cos {47”+ (cx+ d)}+36acx CoS {5?”+ (cx+ d)}+ 60acos {67” +(cx+ d)H + IZ:: CiﬁXi (181)

% _ J‘H ........ j (ax® +b)cos(cx +d)(dx)" = ((;RH {c3(ax3 +b) cos {%ﬂ +(cx+ d)} +

n—times

3na(cx)? cos {w +(cx+ d)} +3n(n+1)acxcos {@ +(cx + d)} +n(n+1)- (182)

(n+2)acos{(n +23)ﬂ + (cxid)}}r_nic‘;—l)(

Combination form:

Sn = .m%;m;egj(aﬁ +b)cos(cxxd)(dx)" = (;{)n” {03(ax3 +b) (SJ cos {%[+ (cx+ d)}+
na(cx)* GJ . cos{(n +21)7[ +(ex £ d)} +n(n+1a(cx) (2) cos{(n +22)7[ +(cx+ d)} +n- (183)

(n+1)(n+2)a(cx)°@cos{@ucxm)}} $ CaX’

io

h
Now to get the expression for the N'" Integral of (ax™ £ b)cos(cx +d), 1 did some analysis in all the
solutions of integrals that are solved above in equations (168), (173), (178) & (183).

. ) ) . th th . .
Let us consider a Pascal’s triangle having rows starting from 0" rowto M row with elements in the form of
binomial coefficients.

g
DO EE-ne0 o

Now in equation (184), | have introduced a sequence diagonally:

1 n, n(n+1), n(n+1)(n+2), -, n(n+1)(n+2)(n+3)--{n+(m-1)} and we get-
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1
(1] on(n+1) (185)

£2j Nn(n+1)(n+2)

n(n+D)(n+2)(n+3)---{n+(m-1)}

m m m m m
0 1 2 3 m
After introducing this sequence in equation (185), | have multiplied the entire diagonal elements by the

respective terms of this sequence and we get-

”ﬁ (186)

l(g] n[ij n(n +1)[2] n(n +1)(n+2)[2]
1[2) n(Tj n(n +1)(r:] n(n +1)(n+2)(2j n(n+1)(n +2)(n +3)-fn+(m —1)}(2}
Now we again in equation (186), | have introduced a sequence diagonally:
c"(ax™ £b), (cx)™, (cx)™2, ()™, -+, (©X)™™ and we get-

,C"(ax™ +b)
o) e (187)
1(3 n [i] Lalex)™?
2 2 2 3
l[oj n[lj n(n+l)[2J sa(cx)

1[2} n[i) n(n +l)(2} n(n +1)(n+2)[§]
S : : : : : : . a()m"
1[2) ”[Tj n(n+1)[2] n(n+l)(n+2)[2) n(n+1)(n+2)(n+3)-~-{n+(m—1)}[$]

After introducing this sequence in equation (187), | have multiplied the entire diagonal elements by the
respective terms of this sequence and we get-
lc'“(axmtb)(g)
1Cm(axmib)[(1)] na(cx)m@ (188)
1cm(ax'"1b)[;] na(cx)’“’l[i] n(n+1)a(cx)'"’2[§j
1cm(axmtb)[gj na(cx)’"’l[i] n(n+1)a(cx)’“’2(zj n(n+1)(n+2)a(cx)""3[§]

1Cm(axmib)[?j : na(cx);—lw n(n+1>a(c;,m—2[j] ‘ n(mn("u);(cx)mfs@] n(M,(M)(n+3,,..{n.'gm,l)}a(cx)mfm[:J
Now in equation (188), we can observe that, on putting m=0,1 2,3 ---, m in
0" Row, 1%Row, 2" Row, 3“Row, --- , m"Row respectively. Then each row of Pascal’s triangle is
representing the coefficients of nth indefinite integral of following integrands:
(ax® £b)cos(cx £ d), (ax" £b)cos(cx+d), (ax* £b)cos(cx+d), (ax® +b)cos(cx+d), ---
(ax™ +b)cos(cx +d)
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dh . o
Rou=s—L- = e sb)aos(oec) (00" ‘”[ (@) o (2o HJ}Zf
o D" n-times ¢ .
1 (1) 0 os 0207 S
fon el (@ b)cos(exc a)(ux)” ! (ads n)\ \cosL +(ex u)} ‘H‘cosj (ox u;” ‘an—"

n-times

(189)

g0 i
Lo 3 n_(0"] [0z
RnwwDMU]":I# J(@xb)cos(cxd)(dx)" =@ 15 ax b)‘xU/' 2 } na(c)

(1)
T2

o ) o o e
oL o (@) e )= ( { (@ Zh)é} {Z <)\ naoo) f} {(";)" 1) (et O[3 oo 2 ﬁ)“}zc“l—:x
0" h-times ) ) J 21 14
3 ol
1) f

|
3 [0s2e D (edn e
1 ﬂﬂ {‘”ZZ) J)}m(ml)(mz)a(cxjﬂ[3/‘cos{(”;)n(cx:d)’}}‘;c'%

[(n:)x
12

+d } 1 )'“’2\\';‘} {(”‘ZZ)” w)’ n(r<1)(n+2)a(e)™ 3\ (3) m)‘r n(n+1) 34 “))a(cx)"""‘uj ;(""“)" m)}f;%‘

th .
rr{“w:i"—m e (@M sb)cos(oxd)(60)" { (™ h ‘ws{ (e )}wa(m'“’lf'r
D" n-times o

th .
On rewriting the solutions of N integral from equations (168), (173), (178) & (183) in the form of Pascal’s
Triangle as shown above in equation (189), a beautiful pattern generates. Hence, on comparing all the elements

th . .
of the M ROW of Pascal’s triangle, I have concluded that these are the coefficients of the generalized

th
expression for the N Integral of form 7: (ax™ £ b)cos(cx + d) as discussed below.

7. D° = (ax™ +b)cos(cx +d)

Solution=
e for s 2ol

cos {n%[ +(cx £ d)} +na(cx)™ (chos {_(n +21)7z +(cx+ d)} +n(n+La(cx)"? (r;j

cos{—(ngz)”+(cxid)}+n(n+1)(n+2)a(cx)m3(3j {(nz) +(CX+d)}+ ~+n-

(190)

n-1 C

i=0

X'

it

(n+1)(n+2)(n+3)~-{n+(m—1)}a(cx)'“‘m(mj {(n 2) +(cx+d)H

Here, from the equation (190), we can also determine the coefficient of any Xq, where ( :(m— p) and
g<m.

For the any term of X" where g= (m— p)

If 0 < p <2, then the solution will be:

p=0= ((m1+)nn) {cq(axm ib)(?]cos{@ﬂcxid)}} (191)
p= ((m+)n) [na(cx)q {mj Ccos {w +(cx+d )H (192)
c 1 2

p=2= ((m{)nn) {n(n +Da(cx)" (chos{(n +2 27 +(cx +d)H (193)
If 3< P <M, then the solution will be:
s<pem= T {n(nﬂ)(n+2)(n+3)~--{n+(p—1)}a(cx)q m

¢ P (194)
cos{@ﬂcxid)}}
Aesthetic form:
3I<p<m= ((:(m1+)n”) {(ﬁn(n +i)a(cx)* (?)cos{@+ (cxid)H (195)
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V. Discussion
For the Integrals of Type-I:

th . . . .
Integral of form 1- We can clearly see the N integral of a non-transcendental function with any rational
power is evaluated as per the different values of p/ g are shown in equations (33), (35), (37) & (39) and when

p/q =—MN the integral is solved easily until n < m as shown in case 1.1 in equation (41) and when n=m,

I have used the case 1.2 in which logarithmic form appears as shown in equation (43). After performing more
successive integration such that n > m, then | have defined P such that P =N —M for this | have used case

1.3 then the solution of this integration will generate a harmonic series of P terms as shown in equation (45).
Since the partial sum of the harmonic series can be easily evaluated for large values of P by using Euler-
Mascheroni formula.

Similarly, for integral of form 2- Initially, | have split the integral into two by using linearity property of the

operator D as shown in equations (8) & (9) and then, we will perform the same procedure and steps which are
discussed above to evaluate the generalized solution of the integral of form 2.

For the Integrals of Type-I11:

th .
Integral of form 3- We can clearly see the N integral of the product of non-transcendental and transcendental
function i.e. the product of algebraic and logarithmic function having the same coefficients with any rational

number p/q and I'/S as an exponent respectively. We can easily evaluate the integrals by substitution of
ax+b =t and rearranging the terms after every integral, in such a manner to form a sequence that is easy to

th
achieve generalized expression for NN integral as shown in equation (67). The solution of integration will be
changed as per the different values of p/ J and I/ are shown in equations (69), (71) & (73) and when

p/q = —M the integral is done easily until N < m as shown in case 3.1 of equation (75) and when n=m, |

log, (ax+b log.*(ax+b

M form appears which is equals to M and
(ax*b) 2a

here I have taken this a as common from denominator which is shown in equation (77). After performing more

successive integration such that n > m , then | have defined P such that P =N —M, for this | have used case

1 log,’(ax+b) log,” (ax +b)
P 2

manually and the solution of this integration will also generate a harmonic series of P terms as shown in

equation (79). Since the partial sum of the harmonic series can be easily evaluated for large values of P by

using Euler-Mascheroni formula.

have used case 3.2 in which integral of

3.3 and here again appears i.e. pth integral of which is calculated

Similarly, for integral of form 4- Initially, I have split the integral into two by using linearity property of

operator D as shown in equations (8) & (9) and then, we will perform the same procedure and steps which are
discussed above to evaluate the generalized solution of the integral of form 3.

For the Integrals of Type-I111:
Integral of form 5- Initially, | have considered this integrand as the increasing integral exponent of X i.e.

(ax’ £b)e®*?, (ax* £h)e™* M (ax® £h)e™ ™ & (ax® £b)e™*®. on evaluating these integrals one
by one, at every integral- | have arrange all the terms of the solution in descending power of X . Now taking

cxtd) . .
L.C.M. of all terms e( ) is taken as common from numerator and € is taken as common from the

. . . . . th .
denominator. On performing the same operation repeatedly, we will get the expression for N integrals having
e(cxrd) e(cxrd) e(cxrd) e(c><id)

C0+n ! Cl+n ! C2+n ! & C
equations (101), (106), (111) & (116) respectively. The numbers are present in these four results of equations

(101), (106), (111) & (116), are written in the form of Binomial coefficients as shown in equations (102), (107),

s all are taken out as common from the square brackets as shown in
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th
(112) & (117). Now to get the expression for the N Integral of (ax™ +b)e™" | did some analysis in all
the solutions of integrals discussed in equations (102), (107), (112) & (117). | have considered a generalized
th th th th
Pascal’s triangle as shown in equation (118) which starts from 0" rowto M rowand 0" columnto M
column with elements in the form of binomial coefficients. In equation (118), | have introduced a sequence i.e.
L n, n(n+1), n(n+1)(n+2), ---, n(n+1)(n+2)(n +3)---{n+(m—l)}. Here, the entire

diagonal elements of Pascal’s triangle are multiplied by the respective terms of this sequence as shown in
equation (119). After multiplying the entire diagonal elements by the respective terms of this sequence, we get
equation (120). From equation (120), first five diagonals of Pascal’s triangle represents, 1°s, Natural numbers,
Triangular numbers, Tetrahedral numbers and Pentatope numbers respectively. Now in equation (120), I have

introduced a sequence ie. C"(ax™ £b), (cx)™", (€X)™ 2, (cX)™°, -+, (CX)™™. Here, the entire

diagonal elements of Pascal’s triangle are multiplied by the respective terms of this sequence as shown in
equation (121). After multiplying the entire diagonal elements by the respective terms of this sequence, we get
equation  (122). Now again in equation (122), | have introduced a sequence i.e.

(—1)0, (—1)1, (—1)2, (—1)3, ey (—1)m. Here, the entire diagonal elements of Pascal’s triangle are

multiplied by the respective terms of this sequence as shown in equation (123). After multiplying the entire
diagonal elements by the respective terms of this sequence, it forms an alternating series in which every even
term will become negative and every odd term will become positive in every row of Pascal’s triangle, we get

equation (124). Now in equation (124), we can observe that, on putting m=0,1, 2, 3, -« , m in
0"Row, 1%Row, 2" Row, 3“Row, --- , m"ROW respectively. Then each row of Pascal’s triangle is

. - th, . . .
representing  the  coefficients  of N indefinite  integral of the following integrands:
(ax® £b)e™® | (ax' £b)e ™ (ax® £b)e™ ™ (ax®£h)e™ ! ... (ax™ +£b)e™* respectively.

th
On rewriting the solutions of N integral from equations (102), (107), (112) & (117) in form of Pascal’s
triangle as shown above in equation (125), a beautiful pattern generates. Therefore, on comparing all the

th . -
elements of the M ROW of Pascal’s triangle, | have concluded that these elements are the coefficients of the

. . th o . .
generalized expression for the N Integral of (ax”‘ T b)e(CXid). Hence, it is the generalized solution for the
integral of form 5 as shown in equation (126).

We can also find coefficient of x® directly by using the formula as shown in equations (127), (128), (129) &
(130). For calculating coefficient of x4, we express ( as an exponent of X intermsof m and .

Here-

q=(m-p) where g<m.

m - is the exponent of X that is given in the integrand.

P -is the value which is calculated by putting the values of & m .

Now after expressing the exponent of X in terms of (], we have two cases are raised as per the range of P :
First case- if P is lies in the range 0 < p< 2 ie. p= 0, 1 & 2 so we use formula as shown in equations
(127), (128) & (129).

Second case- if P is lies in the range 3 < p <mie P= 3, 4,5, -+, M so we use formula as shown in
equation (130).

Integral of form 6- Initially, | have considered this integrand as the increasing integral exponent of X i.e.

(ax® £b)sin(cx£d), (ax" £b)sin(cx£d), (ax® £b)sin(cx£d), & (ax* £b)sin(cx+d). Now on

. ) (x 0.C. X V2

evaluating these given integrals, | have express jSIn(CXJ_rd)dX:uSIH{EHCXid) +Z% by adding EY
c i-0

in theta after performing every integral. So we get the solution in the terms of sin{f (X)} with a negative sign

as shown above. Now arrange all the terms of the solution in descending power of X and taking the L.C.M. of
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1. . .
all the terms, (—1) is taken as common from numerator and c is taken as common from denominator. On

h
performing the same operation repeatedly, we will get the expression for nt integrals having
D" D" D" o (D"
+

CO+n ! Cl+n ! Cz+n ! CS n

equations (135), (140), (145) & (150) respectively. On comparing the results of equations (135), (140), (145) &
nt (n+)z (n+2)x (n+3)x _

(150), we also observe the sequence: —, . , & that are added in theta to get

2 2 2 2
solution in terms of sin{f (X)} Now the numbers are present in these four results of equations (135), (140),
(145) & (150), are written in the form of Binomial coefficients. as shown in equations (136), (141), (146) &

th .
(151). Now to get the expression for the N Integral of (ax™ £ b)sin(cx £ d), I did some analysis in all the
solutions of integrals in equations (136), (141), (146) & (151). | have considered a generalized Pascal’s triangle

all are taken out as common from the square brackets as shown in

. . . th th th th .
as shown in the equation (152) which starts from 0" rowto M rowand 0" column to M column with
element in the form of binomial coefficients. In equation (152), | have introduced a sequence i.e.

L n, n(n+1), n(n+1)(n+2), -, n(n+1)(n+2)(n+3)---{n+(m—1)}. Here, the entire

diagonal elements of Pascal’s triangle are multiplied by the respective terms of this sequence as shown in
equation (153). After multiplying the entire diagonal elements by the respective terms of this sequence, we get
equation (154). From equation (154), first five diagonals of Pascal’s triangle represents: 1°s, Natural numbers,
Triangular numbers, Tetrahedral numbers and Pentatope numbers respectively. Now in equation (154), | have

introduced a sequence i.e. C"(ax™ £b), (cx)™*, (€X)™2, (cx)™3, -+, (CX)™™ . Here the entire

diagonal elements of Pascal’s triangle are multiplied by the respective terms of this sequence as shown in
equation (155). After multiplying the entire diagonal elements by the respective terms of this sequence, we get
our required result as shown in equation (156). Now in equation (156), we can observe that, on putting

m=0,1 2,3, ---, m in 0"Row, I"Row, 2" Row, 3“Row, --- , m"ROW respectively. Then

each row of Pascal’s triangle is representing the coefficients of nth indefinite integral of following integrands:
(ax® £b)sin(cx+d), (ax' £b)sin(cx+d), (ax® £b)sin(cx+d), (ax®+b)sin(cx+d), -,

. th
(ax™ £b)sin(cx+d) respectively. On rewriting the solutions of N integral from equations (136), (141),
(146) & (151) in the form of Pascal’s triangle as shown above in equation (157), a beautiful pattern generates.

. th .
Therefore, on comparing all the elements of the M ROW of Pascal’s triangle, I have concluded that these

-~ . . th .
elements are the coefficients of the generalized expression for the N Integral of (ax™ £ b)sin(cx£d).
Hence, it is the generalized solution for the integral of form 6 as shown in equation (158).

We can also find coefficient of X° directly by using the formula as shown in equations (159), (160), (161) &
(162). For calculating coefficient of X%, we express ( as an exponent of X intermsof m and .
Here-

q=(m—p) where g<m.

m - is the exponent of X that is given in the integrand.
P -is the value which is calculated by putting the values of § and m .

Now after expressing the exponent of X in terms of (], we have two cases are raised as per the range of P :
First case- if P is lies in the range 0 < p< 2ie. p= 0,1 & 2 so we use the formula as shown in equations
(159), (160) & (161).

Second case- if P is lies in the range 3 < p<mie. p= 3, 4, 5, =+, M so we use the formula as shown
in equation (162).

Similarly, for the integral of form 7- In order to obtain the generalized solution for the integral of form 7, we

will perform the same procedure and steps which are discussed above to evaluate the generalized solution of the
integral of form 6.
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VI. Conclusion

In this paper, | have derived the generalized expression for the n" indefinite integration of transcendental and
non-transcendental functions with a higher exponent. It eliminates the entire long procedure of successive
integration and generates the compact form of the final solution in just a single step. These derived expressions
shortcut the entire process of complex calculations and also remove the computational errors from the solution.
The tedious and troubling repeated integration of a function having higher powers will also become easy to solve
for students and researchers. In the generalized expression for the integrals which are categorized in integrals of
Type-l111, the divine beautiful symmetry in the derived expressions is revealed and it generates the key to achieve
the solution of the n™ integration of periodic functions which was previously impossible to evaluate analytically.
The coefficients of these generalized expressions are expressed in the terms of binomial coefficients and derived
by the rows of Pascal’s triangle. I have also expressed these generalized expressions in the aesthetic form of
sequence and series that produces the multi-dimensional recurrence relation which shows the mathematical
beauty of the derived formulae in this paper. This research paper shows the relationship between the number
theory and repeated integration of periodic functions. In the future, these generalized expressions will be very
applicable in various fields of computer science to build the more efficient calculators for fractional calculus and
in the area of signals and systems, these formulae will be very useful for solving the n" integration of various
integral transforms. These expressions can also be used to obtain the compact form of the general solution for
Simple Harmonic Motion (S.H.M.) differential equations of a physical system such as a system of N-coupled
oscillators and also for the particular integral of n™ order differential equation with constant coefficients. In
guantum mechanics, these expressions will also helpful for solving the harmonic wave function of the particle in
the n-dimensional space i.e. Hilbert Space. Hence, using these formulas and expressions which are discussed in
this paper, are very useful for the mathematicians and physicists to examine and explore the more applications of
successive integration.
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