Total Neighborhood Prime Labeling of Cycle Related Graphs

Rajesh Kumar T.J.
Department of Mathematics, TKM College of Engineering, Kollam, Kerala, India

Abstract

Let $G=(V, E)$ be a graph with p vertices and q edges. A bijectionf: $V(G) \cup E(G) \rightarrow\{1,2,3, \ldots, p+q\}$ is said to be total neighborhood prime labeling if it satisfies that for each vertex of degree at least two ,the gcd of labeling on the neighborhood vertices is one and for each vertex of degree at least two, the gcd of labeling on the induced edges is one. In this paper we investigate total neighborhood prime labeling of cycle C_{n} with a chord, switching of any vertex in a cycle C_{n}, path union of finite number of copies of the cycle C_{n} and the graph obtained by joining two copies of a cycle C_{n} by a path P_{k}.

Keywords: Neighborhood prime labeling, total neighborhood prime labeling, vertex switching, path union

I. Introduction

The prime labeling concept was initiated by Roger Entringer and was introduced in 1980's by Tout et al [1]. S K Patel and N P Shrimali [2] introduced the neighborhood prime labeling and proved many results on it. Total neighborhood prime labelingwere introduced in [3] and proved paths and cycles are total neighborhood prime graphs. In [4] proved total neighbourhood prime labeling of disjoint union of paths, disjoint union of sunlets, disjoint union of wheels, graph obtained by one copy of path P_{n} and n copies of $K_{1, \mathrm{~m}}$ and joining $i^{\text {th }}$ vertex of P_{n} with an edge to fix vertex in the $i^{\text {th }}$ copy of $K_{1, m}$, corona product of cycle with m copies of K_{1} and, subdivision of bistar.

In this paper we consider finite graphs which are simple, connected and undirected. For notations and definitions in graph theory we follow [5] and Gallian [6] for all terminology regarding prime and neighborhood prime labelings. We follow [7] for number theoretical results.

Total neighbourhood prime labeling of cycle C_{n} was discussed in [3]. In this paper we investigate total neighborhood prime labeling of cycle C_{n} with a chord for all $n \geq 4$, switching of any vertex in a cycle C_{n}, path union of finite number of copies of cycle C_{n} and the graph obtained by joining two copies of a cycle C_{n} by a path P_{k}. In this paper there are three sections in which section I deals with introduction of total neighborhood prime labeling. Section II is about preliminaries which contains some definitions. Section III includes main results regarding total neighborhood prime labeling.

II. Preliminaries

Definition 1.

Let $\mathrm{G}=(\mathrm{V}(\mathrm{G}), \mathrm{E}(\mathrm{G}))$ be a graph with p vertices. A bijection $f: V(G) \rightarrow\{1,2,3, \ldots, p\} \quad$ is called prime labeling if for each edge $\mathrm{e}=\mathrm{uv}, \operatorname{gcd}(\mathrm{f}(\mathrm{u}), \mathrm{f}(\mathrm{v}))=1$. A graph which admits prime labeling is called a Prime graph.

Definition 2.

Let $\mathrm{G}=(\mathrm{V}(\mathrm{G}), \mathrm{E}(\mathrm{G}))$ be a graph with p vertices. A bijection $f: V(G) \rightarrow\{1,2,3, \ldots, p\} \quad$ is called neighborhood prime labeling if for each vertex $\mathrm{v} \in V(G)$ with $\operatorname{deg}(\mathrm{v})>1, \operatorname{gcd}\{\mathrm{f}(\mathrm{u}): \mathrm{u} \in N(v)\}=1$. A graph which admits neighborhood prime labeling is called a Neighborhood prime graph.

For a vertex $v \in V(G)$, the set of all vertices in G which are adjacent to v is called the neighborhood of v and is denoted by $\mathrm{N}(\mathrm{v})$. If every vertex is of degree at most one in a graph G , then it is neighborhood prime graph. In [8] proved that, every cycle C_{n} with a chord is neighborhood prime for all $n \geq 4$,the graph obtained by switching of any vertex in a cycle C_{n} is neighborhood prime, the graph obtained by the path union of finite number of
copies of cycle C_{n} is neighborhood prime and the graph obtained by joining two copies of cycle C_{n} by a path P_{k} is neighborhood prime.

Definition 3.

Let $\mathrm{G}=(\mathrm{V}(\mathrm{G}), \mathrm{E}(\mathrm{G}))$ be a graph with p vertices and q edges. A bijection $f: V(G) \cup E(G) \rightarrow\{1,2,3, \ldots, p+q\}$ is said to be total neighborhood prime labeling if it satisfies the following two conditions:

1. For each vertex of degree at least two, the gcd of labeling on its neighborhood vertices is one;
2. For each vertex of degree at least two, the gcd of labeling on the induced edges is one.

A graph which admits total neighborhood prime labeling is called Total neighborhood prime graph. The cycle C_{4} is a total neighborhood prime graph but the cycle C_{3} is not a total neighborhood prime graph. The path P_{n} is a total neighborhood prime graph and the cycle C_{n} is a total neighborhood prime graph if n is even and $n \not \equiv$ $2(\bmod 4)$.

Definition 4.

A vertex switching G_{v} of a graph G is obtained by taking a vertex v of G, removing all the edges incident with v and adding edges joining v to every vertex which are not adjacent to G .

Definition 5.

Let $G_{1}, G_{2}, \ldots, G_{n}, n \geq 2$ be n copies of a fixed graph G. The graph obtained by adding an edge between G_{i} and $\mathrm{G}_{\mathrm{i}+1}$ for $\mathrm{i}=1,2, \ldots, \mathrm{n}-1$ is called the path union of G .

III. Main Results

Theorem 1.

Every cycle C_{n} with a chord is total neighborhood prime graph for all $n \geq 4$.

Proof.

Let G be the graph obtained by joining two non-adjacent vertices of cycle C_{n} with a chord for all $n \geq 4$.Let $\{$ $\left.\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}\right\}$ be the vertex set of G. Let $\left\{\mathrm{e}_{1}, \mathrm{e}_{2}, \ldots, \mathrm{e}_{\mathrm{n}-2}\right\}$ are the vertices in the cycle of G and e be the edge connecting two non-adjacent vertices of the cycle C_{n}. Let the number of vertices of G be n and the number of edges of G be $\mathrm{n}+1$.
(1) If $n \not \equiv 2(\bmod 4)$, define a function $f: V(G) \cup E(G) \rightarrow\{1,2,3, \ldots, 2 n+1\}$ as follows:

Case (1). If n is odd, let

$$
\begin{gathered}
f\left(v_{2 j-1}\right)=\frac{n-1}{2}+j, 1 \leq j \leq \frac{n+1}{2} \\
f\left(v_{2 j}\right)=j, 1 \leq j \leq \frac{n-1}{2} \\
f\left(e_{i}\right)=f\left(v_{n}\right)+i, 1 \leq i \leq n \\
f(e)=f\left(e_{n}\right)+1
\end{gathered}
$$

Case (2). If n is even, let

$$
\begin{gathered}
f\left(v_{2 j-1}\right)=\frac{n}{2}+j, 1 \leq j \leq \frac{n}{2} \\
f\left(v_{2 j}\right)=j, 1 \leq j \leq \frac{n}{2} \\
f\left(e_{i}\right)=f\left(v_{n}\right)+i, 1 \leq i \leq n \\
f(e)=f\left(e_{n}\right)+1
\end{gathered}
$$

The neighborhood vertices of each vertex v_{i} except v_{n} is $\left\{v_{i-1}, v_{i+1}\right\}$ and they are consecutive integers, so it is neighborhood prime. The neighborhood vertices of v_{n} is $\left\{\mathrm{v}_{\mathrm{n}-1}, \mathrm{v}_{1}\right\}$ and the corresponding labels are consecutive integers $\frac{n-1}{2}$ and $\frac{n+1}{2}$ if n is odd, n and $\frac{n}{2}+1$ if n is even. Select the vertex v_{i} and join this to any vertex of G which is not adjacent to v_{i}. Then the gcd of labeling of the neighborhood vertices of each vertex is one. Also for each vertex of G, the gcd of labeling on the induced edges is one. So G is a total neighborhood prime graph.
(2) If $\mathrm{n} \equiv 2(\bmod 4)$, the labeling of the same function shows that there exists at least one vertex v_{i} whose neighborhood set is not prime. Now join with a chord to the vertex v_{j} which is not adjacent and relatively prime to v_{i} and e be the edge connecting v_{i} and v_{j}. Then G is a neighborhood prime graph.

Corollory 1.

Every cycle $\mathrm{C}_{\mathrm{n}}, \mathrm{n} \in \mathrm{N}$ with $\mathrm{n}-3$ chords from a vertex is total neighbourhood prime graph if $\mathrm{n} \geq 5$.

Proof.

Let G be a graph such that $G=C_{n}, n>5$. Let $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}\right\}$ be the vertexset of G.Choose an arbitrary vertex v_{i} and joining v_{i} to all the vertices whichare not adjacent to v_{i}. Then there are $n-3$ chords to v_{i} and from Theorem $1, \mathrm{G}$ admits neighborhood prime labeling.

Theorem 2.

The graph obtained by switching of any vertex in a cycle C_{n} is total neighbourhood prime graph for every $\mathrm{n} \in \mathrm{N}$.

Proof.

Let $G=C_{n}$ and $v_{1}, v_{2}, \ldots, v_{n}$ be the successive vertices of C_{n}. Let $G_{v}{ }^{*}$ denotes the vertex switching of G with respect to the vertex v_{k}. Here $\left|\mathrm{V}\left(\mathrm{G}_{\mathrm{v}}{ }^{*}\right)\right|=\mathrm{n}$ and $\left|\mathrm{E}\left(\mathrm{G}_{\mathrm{v}}{ }^{*}\right)\right|=2 \mathrm{n}-5$.

Define a function $\mathrm{f}: \mathrm{V} \cup \mathrm{E} \rightarrow\{1,2,3, \ldots, 3 \mathrm{n}-5\}$ as follows:
$\mathrm{f}\left(\mathrm{v}_{\mathrm{k}}\right)=1$
$\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=\mathrm{i}+1,1 \leq \mathrm{i} \leq \mathrm{k}-1$
$\mathrm{f}\left(\mathrm{v}_{\mathrm{k}+\mathrm{i}}\right)=\mathrm{f}\left(\mathrm{v}_{\mathrm{k}-1}\right)+\mathrm{i}, 1 \leq \mathrm{i} \leq \mathrm{n}-\mathrm{k}$
$\mathrm{f}\left(\mathrm{e}_{\mathrm{j}}\right)=\mathrm{n}+\mathrm{j}, 1 \leq \mathrm{j} \leq 2 \mathrm{n}-5$.
Clearly f is a bijective map. Then for any vertex v_{i} other than v_{k}, theneighborhoodvertices containing v_{k} andsothegcdofthelabelofvertices in $\mathrm{N}\left(\mathrm{v}_{\mathrm{i}}\right)$ is 1 .

Also $\operatorname{gcd}\left\{\mathrm{f}(\mathrm{u}): \mathrm{u} \in \mathrm{N}\left(\mathrm{v}_{\mathrm{k}}\right)\right\}=\operatorname{gcd}(2,3, \ldots, \mathrm{n})=1$. The gcd of labeling onincident edges of every vertex in $\mathrm{G}_{\mathrm{v}}{ }^{*}$ is one. Hence $\mathrm{G}_{\mathrm{v}}{ }^{*}$ is a total neighborhood primegraph.

Theorem 3.

The ring sum of the cycle C_{n} and the star graph $K_{1, n}$ is total neighbourhood prime graph for every $n \in N$.

Proof.

Let $G=C_{n} \oplus K_{1, n}$ be the graph with ring sum of the cycle C_{n} and $K_{1, n}$. Let $v_{1}, v_{2}, \ldots, v_{n}$ be the vertices of C_{n} and u $=v_{1}, u_{1}, u_{2}, \ldots, u_{n}$ be the vertices of $K_{1, n}$. The corresponding edges in C_{n} are $e_{j}=v_{j} v_{j+1}, 1 \leq j<n, e_{n}=v_{n} v_{1}$ and the corresponding edges in $K_{1, n}$ are $e_{k}={u u_{k}}, 1 \leq \mathrm{k} \leq \mathrm{n}$. The total number ofvertices and edges in G is 4 n .

Define a function $\mathrm{f}: \mathrm{V} \cup \mathrm{E} \rightarrow\{1,2, \ldots, 4 \mathrm{n}\}$ as follows.
$\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=2 \mathrm{i}-1,1 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=2 \mathrm{i}, 1 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{e}_{\mathrm{j}}\right)=2 \mathrm{n}+\mathrm{j}, 1 \leq \mathrm{j} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{e}_{\mathrm{k}}\right)=3 \mathrm{n}+\mathrm{k}, 1 \leq \mathrm{k} \leq \mathrm{n}$.
Clearly f is a bijective map.
Here $u_{1}, u_{2}, \ldots, u_{n}$ are pendant vertices. The labeling on the neighbourhood vertices of $v_{i}(i \neq 1)$ are alternate odd integers. They arerelatively prime. Also, for each vertex of degree atleast two, the gcd of labelingon the incident edges is one. Hence G is a neighbourhood prime graph.

Corollory 2.

The ring sum of G and the star graph $\mathrm{K}_{1, \mathrm{n}}$ is total neighbourhood graph, where G is a cycle with one chord and chord form a triangle with two edges of the cycle, for every $\mathrm{n} \in \mathrm{N}$.

Corollory 3.

Let G be a cycle C_{n} with ($n-3$) chords from a vertex. Then $G \oplus K_{1, n}$ is total neighbourhood prime graph for every $\mathrm{n} \in \mathrm{N}$.

Theorem 4.

The graph obtained by the path union of finite number of copies of cycle $C_{n}, n \in N$ is total neighborhood prime graph if n is even and $n \nVdash 2(\bmod 4)$.

Proof.

Let G^{*} be the path union of cycle C_{n} and $G_{1}, G_{2}, \ldots, G_{k}$ be k copies of cycle C_{n}. The vertices of G^{*} is nk and edges of G^{*} is $(\mathrm{n}+1) \mathrm{k}-1$. Let us denote the vertices of G^{*} be $\mathrm{v}_{\mathrm{ij}}, 1 \leq \mathrm{i} \leq \mathrm{n}, 1 \leq \mathrm{j} \leq \mathrm{k}$ and the successive vertices of the graph G_{r} by $v_{1 r}, v_{2 r}, \ldots, v_{n r}$. Let $e_{i j}$ be the edge joining consecutive vertices in the cycleof G_{r} and $e_{m}=$ $\mathrm{v}_{1 \mathrm{r}} \mathrm{V}_{1(\mathrm{r}+1)}$ betheedgejoining G_{r} and $\mathrm{G}_{(\mathrm{r}+1)}$ forr $=1,2, \ldots, \mathrm{k}-1$.

Define a function $\mathrm{f}: \mathrm{V} \cup \mathrm{E} \rightarrow\{1,2, \ldots, 2 \mathrm{nk}+\mathrm{k}-1\}$ as follows.
For $1 \leq \mathrm{j} \leq \mathrm{k}$:

$$
\begin{aligned}
& f\left(v_{(2 i-1) j}\right)=n j+i-\frac{n}{2}, 1 \leq i \leq \frac{n}{2} \\
& f\left(v_{(2 i) j}\right)=n(j-1)+i, 1 \leq i \leq \frac{n}{2} \\
& f\left(e_{i j}\right)=n(k+j-1)+i, 1 \leq i \leq n \\
& f\left(e_{m}\right)=2 n k+m, 1 \leq m \leq k-1
\end{aligned}
$$

Clearly f is a bijection.
We claim that f is a neighborhood prime labeling.
If $v_{i r}$ is any vertex of G in the $r^{\text {th }}$ copy of the cycle C_{n} diff erent from $v_{1 r}$, then $N\left(v_{i r}\right)=\left\{v_{(i-1) r}, v_{(i+1) r}\right\}$. Since $f\left(v_{(i-1) r}\right)$ and $f\left(v_{(i+1) r}\right)$ are consecutiveintegers,gcdoflabelingoftheneighbourhoodverticesof $v_{i r}$ is1. Since $N\left(v_{11}\right)=\left\{v_{n 1}, v_{21}\right\}$ and $f\left(v_{21}\right)=1$, the gcd of labeling of the neighbourhood vertices of v_{11} is 1 . Now we consider $v_{1 r},(1 \leq r \leq k)$.

$$
\begin{aligned}
& \mathrm{N}\left(\mathrm{v}_{1 \mathrm{r}}\right) \text { are } n\left(r-\frac{3}{2}\right)+\frac{1}{2}, n\left(r+\frac{1}{2}\right)+\frac{1}{2}, n(r-1)+2 \text { and } n\left(r-\frac{1}{2}\right) . \\
& \begin{aligned}
\operatorname{gcd}(n & \left.\left(r-\frac{3}{2}\right)+\frac{1}{2}, n\left(r+\frac{1}{2}\right)+\frac{1}{2}, n(r-1)+2, n\left(r-\frac{1}{2}\right)\right) \\
& =\operatorname{gcd}\left(2 n, n\left(r+\frac{1}{2}\right)+\frac{1}{2}, n(r-1)+2, n\left(r-\frac{1}{2}\right)\right) \\
& =\operatorname{gcd}\left(2 n, n+\frac{1}{2}, n(r-1)+2, n\left(r-\frac{1}{2}\right)\right) \\
& =\operatorname{gcd}\left(2 n, n+\frac{1}{2}, \frac{n}{2}-2, n\left(r-\frac{1}{2}\right)\right)
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& =\operatorname{gcd}\left(1,9, \frac{n}{2}-2, n\left(r-\frac{1}{2}\right)\right) \\
& =1 .
\end{aligned}
$$

Finally we consider $\mathrm{v}_{1 \mathrm{k}}$. $\mathrm{N}\left(\mathrm{v}_{1 \mathrm{k}}\right)$ are $n\left(k-\frac{3}{2}\right)+\frac{1}{2}, n(k-1)+1$ and $n\left(k-\frac{1}{2}\right)$.

$$
\begin{aligned}
\operatorname{gcd}(n & \left.\left(k-\frac{3}{2}\right)+\frac{1}{2}, n(k-1)+1, n\left(k-\frac{1}{2}\right)\right) \\
& =\operatorname{gcd}\left(n-\frac{1}{2}, \frac{n}{2}-1, n\left(k-\frac{1}{2}\right)\right) \\
& =\operatorname{gcd}\left(n-\frac{1}{2}, 2 k+1,2 k-\frac{n}{2}\right) \\
& =\operatorname{gcd}\left(\frac{1}{2}+4 k, 2 k+1,2 k-\frac{n}{2}\right) \\
& =\operatorname{gcd}\left(2 k-\frac{1}{2}, 2 k+1,2 k-\frac{n}{2}\right) \\
& =1
\end{aligned}
$$

Also, for each vertex of degree at least two, the gcd of labeling on the incident edges is one.
Hence G^{*} is total neighborhood prime if $n \not \approx 2(\bmod 4)$ and n is even.

Corollory4.

Let G^{*} be the graph obtained by the path union of finite number of copies of cycle C_{n}, then

1. If $\mathrm{n} \equiv 2(\bmod 4), \mathrm{G}^{*}$ is not a total neighbourhood prime graph.
2. If n is odd, G^{*} is not total neighbourhood prime graph.

Proof.

The cycle C_{n} is not total neighborhood prime if $n \equiv 2(\bmod 4)$. Thus G^{*} is not total neighborhood prime if $n \equiv$ $2(\bmod 4)$. The cycle C_{n} is not total neighborhood prime if n is odd. Thus G^{*} is not total neighborhood prime if n is odd.

Theorem 5.

The graph obtained by joining two copies of cycle C_{n} by a path P_{k} istotal neighborhood prime graph if n is even and $n \not \approx 2(\bmod 4)$.

Proof.

Let $G^{* *}$ be the graph obtained by joining two copies of cycle C_{n} by a path P_{k}. The vertices of $G^{* *}$ are $2 n+k-2$ and edges of $G^{* *}$ are $2 n+k-1$. Let $v_{1}, v_{2}, \ldots, v_{n}$ be the vertices of the first copy of cycle C_{n} and $w_{1}, w_{2}, \ldots, w_{n}$ be the vertices of the second copy of cycle c_{n}. Let $u_{1}, u_{2}, \ldots, u_{k}$ be the vertices of path P_{k} with $v_{1}=u_{1}$ and $w_{1}=u_{k}$. Let $e_{1 i}$ $=v_{i} v_{j}$ be the edge joining the vertices in the first copy of cycle C_{n} and $e_{2 i}=w_{i} w j$ be the edge joining the vertices in the second copy of cycle C_{n}. Let $e_{m}, 1 \leq m \leq k-1$ be the edge joining the vertices in the path P_{k}.

Define a bijective function $\mathrm{f}: \mathrm{V} \cup \mathrm{E} \rightarrow\{1,2,3, \ldots, 4 \mathrm{n}+2 \mathrm{k}-3\}$ as follows.
The labeling on C_{n} are:

$$
\begin{gathered}
f\left(v_{2 i-1}\right)=\frac{n}{2}+i, 1 \leq i \leq \frac{n}{2} \\
f\left(v_{2 i}\right)=i, 1 \leq i \leq \frac{n}{2} \\
f\left(w_{2 i-1}\right)=\frac{3 n}{2}+i, 1 \leq i \leq \frac{n}{2}
\end{gathered}
$$

$$
f\left(w_{2 i}\right)=n+i, 1 \leq i \leq \frac{n}{2}
$$

The labeling on Pk are:
Case 1: If k is odd:

$$
\begin{gathered}
f\left(u_{2 i}\right)=2 n+\frac{k-3}{2}+i, 1 \leq i \leq \frac{k-1}{2} \\
f\left(u_{2 i+1}\right)=2 n+i, 1 \leq i \leq \frac{k-3}{2}
\end{gathered}
$$

Case 2: If k is even:

$$
\begin{gathered}
f\left(u_{2 i}\right)=2 n+\frac{k-2}{2}+i, 1 \leq i \leq \frac{k-2}{2} \\
f\left(u_{2 i+1}\right)=2 n+i, 1 \leq i \leq \frac{k-2}{2}
\end{gathered}
$$

The labeling on the edges are
$\mathrm{f}\left(\mathrm{e}_{\mathrm{li}}\right)=(2 \mathrm{n}+\mathrm{k}-2)+\mathrm{i}, 1 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{e}_{2 \mathrm{i}}\right)=(3 \mathrm{n}+\mathrm{k}-2)+\mathrm{i}, 1 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{e}_{\mathrm{m}}\right)=(4 \mathrm{n}+\mathrm{k}-2)+\mathrm{m}, 1 \leq \mathrm{m} \leq \mathrm{k}-1$.
We claim that f is a neighborhood prime labeling.
If v_{i} isanyvertexof G inthefirstcopyofthecycleC C_{n} diff erentfromv v_{1}, thenN $\left(v_{i}\right)=\left\{v_{i-1}, v_{i+1}\right\}$. Since $f\left(v_{i-1}\right)$ and $f\left(v_{i+1}\right)$ are consecutive integers, gcd ofthe label of the vertices is 1 . Also $N\left(v_{1}\right)$ contains the vertex v_{2} and $f\left(v_{2}\right)=1, g c d$ of the label of vertices in $N\left(\mathrm{v}_{1}\right)$ is 1 .

If w_{i} is any vertex of G in the second copy of the cycle C_{n} diff erent from w_{1}, then $N\left(w_{i}\right)=\left\{w_{i-1}, w_{i+1}\right\}$. Since f $\left(\mathrm{w}_{\mathrm{i}-1}\right)$ and $\mathrm{f}\left(\mathrm{w}_{\mathrm{i}+1}\right)$ areconsecutiveintegers, gcd of the label of the vertices is 1 . Now, consider w 1 :
$\mathrm{N}\left(\mathrm{w}_{1}\right)$ are $\left\{\mathrm{w}_{2}, \mathrm{w}_{\mathrm{n}}, \mathrm{u}_{\mathrm{k}-1}\right\}$ and the labelings are $\mathrm{f}\left(\mathrm{w}_{2}\right)=\mathrm{n}+1, \mathrm{f}\left(\mathrm{w}_{\mathrm{n}}\right)=\frac{3 n}{2}$.
$\operatorname{gcd}\left(\mathrm{n}+1, \frac{3 n}{2}\right)$
$=\operatorname{gcd}(\mathrm{n}+1,4 \mathrm{n}+1)$
$=\operatorname{gcd}(\mathrm{n}+1,3 \mathrm{n})$
$=\operatorname{gcd}(\mathrm{n}+1,3)$
$=1$.
Since $\mathrm{n} \not \approx 2(\bmod 4), \mathrm{n}+1$ is not a multiple of 3 .
Finally, if u_{i} is any vertex of G in the path P_{k} diff erent from u_{i} and u_{k}, then
$N\left(u_{i}\right)=\left\{u_{i-1}, u_{i+1}\right\}$. Since $f\left(u_{i-1}\right)$ and $f\left(u_{i+1}\right)$ are consecutive integers, gcd ofthe label of vertices of $N\left(u_{i}\right)$ is 1 . Also, for each vertex of degree atleast two, the gcd of labeling on the incident edges is one. $\mathrm{G}^{* *}$ is total neighborhood primegraph, if $n \nsubseteq 2(\bmod 4)$.

Corollory 5.

Let $G^{* *}$ be the graph obtained by joining two copies of cycle C_{n} by a path P_{k}, then

1. If $n \equiv 2(\bmod 4), \mathrm{G}^{* *}$ is not total neighbourhood prime graph.
2. If n is odd, $\mathrm{G}^{* *}$ is not total neighbourhood prime graph.

Proof.

The cycle C_{n} is not total neighborhood prime if $\mathrm{n} \equiv 2(\bmod 4)$. Thus $\mathrm{G}^{* *}$ is not total neighborhood prime if $\mathrm{n} \equiv$ $2(\bmod 4)$. The cycle C_{n} is not total neighborhood prime if n is odd. Thus $G^{* *}$ is not total neighborhood prime if nis odd.

References

[1] Tout, A. N. Dabboucy, K. Howalla, "Prime labeling of graphs", Nat. Acad. Sci. Letters, 11 (1982), 365-368.
[2] S. K. Patel, N. P. Shrimali," Neighborhood-prime labeling", International Journal of Mathematics and Soft Computing, 5, No. 2. (2015), 135-143.
[3] Rajesh Kumar T.J., Mathew Varkey T.K., "A note on Total neighborhood prime labeling", International journal of Mathematics Combinatorics, $4 \quad$ (2018).
[4] N.P.Shrimali,Parul B. Pandya, " Total Neighborhood Prime Labeling of Some Graphs",International Journal of Scientific Research in Mathematical and Statistical Sciences,5,Issue 6,pp.157-163,Dec 2018
[5] J. Gross, J. Yellen, "Graph theory and its applications", CRC press, (1999).
[6] J.A.Gallian, "A dynamic survey of graph labeling", The Electronic Journal of Combinatorics (2017), \# DS6.
[7] David M. Burton, Elementary Number Theory, Sixth Edition, Tata MacGraw Hill, India, 2012.
[8] Mathew VarkeyT.K.,Rajesh Kumar T.J.,"A Note on Neighbourhood PrimeLabeling",International Journal of Math.Combin.4,pp.161-167,2016.

