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Abstract — In this paper we have discussed some properties of Wronskian and explained these properties with 
suitable examples. In the present work we also established some new properties of Wronskian and verified the 

result with examples. 
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1. INTRODUCTION                  

Differential equation is very useful in the field of engineering, physics, chemistry, economics etc. Boundary 

value problem plays an important role in several branches, having a physical differential equation together with 

a set of additional constraints called the boundary condition. 

 

Example: A boundary value problem is given by, 

 + 8y = 0, subject to the condition, y (0) = 3 and y ( ) = 0. 

  Ch. equation is, + 8 = 0                      

 r = 0 + i2  

 y = Cos (2 ) +   Sin (2 )  

using the boundary condition,  y(0) = 3 and y ( ) = 0. 

 3 =  

  = 3  

           

And,      0 = 3 Cos (       

 = -  = -3 Cot  

        Hence,    y = 3Cos (2 ) - 3 Cot   Sin (2 ). 

 

  

 Wronskian: 
In the field of  Mathematics the term Wronkian is a determinant introduced by Jozef  Hoene-Wronski (1776). It 

is required in the field of differential equation where it helps to find out the linear independence in the set of 
solution [1] & [2]. The properties and the solution of Wronskian diff erential equation was studied in [3] & [4]. 

 

Let a linear homogeneous equation of the form,   + p(t)  + q(t) y = 0, 

Let two solution of this equation are u and v, So Wronskian of this equation can be written as  

W[ u, v] = u  - v .                                                                                                                1.1 

(a) If u is a constant multiple of v then W [ u, v] is identically zero. Then u and v are linearly dependent. 

(b) If u and v agree at some point  and their derivative also exist at , then W[ u, v] vanishes at , that 

is if u and v are two solution of same initial value problem then their Wronskian vanishes at .  
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Let f(t) and g(t) be two differential function then they are linearly dependent,  if there are non-zero constants  

and  with,  f(t) + g(t) =0, for all t, otherwise they are called linearly independent. 

Example:  The functions, f(t) =10  and   g(t) = -  are linearly independent. 

If the function f(t) and g(t) are linearly dependent then there would be a nonzero constant  and  such that, 

f(t) + g(t) = 0. 

10 + = 0, for all t,  

When t= - 1, then, 

9  - = 0                                                                                                                           (1) 

When t= - 2, then, 

2 -   = 0                                                                                                                          (2) 

Equations (1) and (2) are the system of linear equations. Now the determinant of the corresponding coefficient 

matrix is,   

 = - 9 + 2 = -7 ≠ 0. 

Since the determinant is nonzero, the only solution is the trivial solution, 

That is, =  . 

Hence the given two functions are linearly independent. 

 

 

 

2.  Theorems  

2.1 Theorem 

W [ , ]  = -  W [ ]  

 

Example: = tanx     and      = Cosecx, then 

W [ , ]  =  

                     = - tanx. Cosecx.Cotx – Cosecx.  

                     = - Cosecx ( 1 + ),       And, 

W [ , ]  =  

                     =  Cosecx.   + tanx. . Cotx 

                     =  Cosecx ( 1 +  ),     

                     = - W[ , ] 

So,   W [ , ]  = -  W [ ]        

2.2 Theorem 

W [α , β ] = αβ W [ , ],  where α and β are constant, 

 

Example:  =    and   = ,   and  α = 5 and β = 7,  then 

W [α , β ] = W [5  , 7 ]                     

                        =  

                        = 5 × 7  = 5 × 7 W [ , ]. 

2.3 Theorem 

     Let  and   be any two differential function, then  

W [ + α,  + α] = W [ , ] + α [  - ] where  α is a constant. 

 

Example: Let = Sin3x,    = Cos5x,  and  let  = 7, 
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W [Sin3x + 7, Cos5x + 7] =   

                                           = ( )( ) – ( )(  

                                           = (-5Sin3x)( ) – ( ( ) + 7[  - ] 

                                           = W[  ,  ] + 7 [  - ]. 

 

2.4 Theorem 

   Let  and   be any two differential function, then  

 W [  , ] +  W [  , ] =   ( ,  ). 

 

Example: Let us consider two differential function,  and  such that 

 = 2 t    and    = , 

W [ , ] = 2 t W  

                     = 2 t  

= 8  – 4                                                                                                       (3) 

And,   W [ , ] =  W  

                                     =   

                                     = ( 8 t - 4  ) 

                                     = t -                                                               (4) 

Adding (3) and (4) we get,     

W [ , ] +  W [  , ] =  4  +  4  2 t 

[(  )(  

                                                         =     [ ]. 

2.5 Theorem. 

   Let  and  are the differential function of x for i= 1,2…n and j= 1,2…n, 

 then, W [ ,  ] =  

           (For, i= 1,2….,n and j=1,2,…..n) 
 

Example: - For i= 1, 2   and j= 1, 2, 

Let, = Sint,   = Cost,   = ,   =  

W[ ,  ] =  W [ , ] = W[ Sint Cost,  ] 

                                     =  

                                     =  ( 1 + loga) -  Cos2t                                                 (5) 

And,  =  W [ , ] +  W[ ] 

         = Sint.  W[Cost, ] + Cost.  W[Sint, ] 

         = . Sint   +  Cost.     
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         =  ( 1 + loga) -  Cos2t                                                                                (6)        

From (5) and (6) we conclude that,   

         W [ , ] =  W [ , ] + ,  W[ ]            

 

 

3. Important properties of Wronskian: 

 

3.1  W [0, g(t)] = 0 

3.2  W [f(t), f(t)] = 0  

3.3 W [1, g(t)] = (t) 

3.4  W [ f(t), g(t) + h(t)] = W [f(t), g(t)]  + W [f(t), h(t) ]   

3.5  [f(t), g(t) ] = f  - g = W[ f, ] + W[ , g ] 

 

      Example: (3.5) 

Let, f (t) = 1 -   and  g(t) = 7   

W [ f(t),  g(t) ] =  

                        = 35  – 14  

                [f(t),  g(t) ] =  (35  – 14 ) 

                               = 140  - 98  

                               = (1 - )(140 ) – (-6t)(7 ) 

                               = f  - g                                                                                                            (7) 

                W [f, ] + W[ , g ]  =  +  

                                                      =   +   

                                                      = 140  - 98                                                                                  (8) 

        From (7) and (8) we conclude that,   

         [f(t), g(t) ] = f  - g = W[ f, ] + W[ , g ] 

 

3.6  For any constant, c 

                 W [ f(t), cg(t) ] = c W[ f(t), g(t)] = W[ cf(t), g(t) ] 

 

3.7 W[f(t),g(t)] = - W[g(t), f(t) ] 

 

4.  Some more important results: 
 

   4.1   W[ f(t),  c (g(t) + h(t))] = W [ f(t),  cg(t)] + W [ f(t),  ch(t)]    

  

Example: Let, f(t) = ,   g(t) =  ,   h(t) =  and c = 7 

W[ f(t),  c (g(t) + h(t))] =  

                                      = 7 (1 – loga) + 7 (3 – t loga)                                                             (9) 

W [ f(t),  cg(t)] + W [ f(t),  ch(t)]  

                                       =   +  

                                       =   7 (1 – loga) + 7 (3 – t loga)                                                         (10)     

From (9) and (10) we conclude that,   

                           W[ f(t),  c (g(t) + h(t))] = W [ f(t),  cg(t)] + W [ f(t),  ch(t)]     

 

   4.2  W [f(t), g(t) + h(t) + s(t)] =  W [f(t), g(t)] + W [f(t), h(t)] + W [f(t), s(t)] 

 

Example: Let, f(t) = ,   g(t)= , h(t) =  + 1, and s(t) = t +1. 
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W [f(t), g(t) + h(t) + s(t)] =  

                                         = ( ) - ( ) 

                                         = -  - 2  - 3  - 8                                                                        (11) 

W [f(t), g(t)] + W [f(t), h(t)] + W [f(t), s(t)] =  

  = +  +  

                                         = - + (-2  - 4 ) + (- 3  - 4  

                                         = -  - 2  - 3  - 8                                                                       (12) 

From (11) and (12) we conclude that,   

   W [f(t), g(t) + h(t) + s(t)] =  W [f(t), g(t)] + W [f(t), h(t)] + W [f(t), s(t)] 

 

 4.3  W [f(t),  g(t).  h(t) ]  ≠ W [ f(t),  g(t)] . W [ f(t),  h(t)] 

 

Example: Let, f(t) = ,  g(t) = Sint,  and  h(t)  =  

W [ f(t),  g(t).  h(t) ]  =   

                                  = ( ) - .  

                                  = t  + ( t – 5) ]                                                                 (13) 

W [ f(t),  g(t)] . W [ f(t),  h(t)] = .  

                                                = - [  -  

                                                = .  [{tCost – 5Sint}{t – 5}] 

                                                = [ Cost – 5{  + ( t – 5)  

                                                = Cost - .[ t  + ( t – 5) }]                        (14) 

From (13) and (14) we conclude that, 

W [ f(t),  g(t).  h(t) ]  ≠ W [ f(t),  g(t)] . W [ f(t),  h(t)]  

 

4.4  W [ f(t) + g(t),   h(t) + s(t) ]  = W [ f(t) + g(t),   h(t)] + W [ f(t) + g(t),   s(t)] 

 

Example: Let, f(t) =  ,  g(t) =  , h(t)  =  , s(t) = Cost, 

W [f(t) + g(t),   h(t) + s(t) ] =  

             = )(  – ( ) 

             = 2 - 1- 5t) - 3 + ) – 1.                                                             (15) 

And, W [f(t) + g(t),   h(t)] + W [ f(t) + g(t),   s(t)] 

         =  +    

         = 2 - 1- 5t) - 3 + ) – 1.                                                                 (16) 

From (15) and (16) we conclude that, 

W [ f(t) + g(t),   h(t) + s(t) ]  = W [ f(t) + g(t),   h(t)] + W [ f(t) + g(t),   s(t)] 
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