Some discussion on properties of Wronskian in boundary value problem

Mr. Ikbal Hussain Laskar ${ }^{1}$, Dr.Gitumani Sarma ${ }^{2}$
University of Science \& Technology, Meghalaya
Techno City, $9^{\text {th }}$ Mile, Kling Road, Baridua, Ri-Bhoi
Meghalaya-793101

Abstract

In this paper we have discussed some properties of Wronskian and explained these properties with suitable examples. In the present work we also established some new properties of Wronskian and verified the result with examples.

Keywords - Wronskian, Properties of Wronskian.

1. Introduction

Differential equation is very useful in the field of engineering, physics, chemistry, economics etc. Boundary value problem plays an important role in several branches, having a physical differential equation together with a set of additional constraints called the boundary condition.

Example: A boundary value problem is given by,
$y^{z \prime}+8 \mathrm{y}=0$, subject to the condition, $\mathrm{y}(0)=3$ and $\mathrm{y}\left(\frac{\pi}{2}\right)=0$.
Ch. equation is, $r^{2}+8=0$

$$
\begin{aligned}
& \Rightarrow \mathrm{r}=0+\mathrm{i} 2 \sqrt{2} \\
& \Rightarrow \mathrm{y}=c_{1} \operatorname{Cos}(2 \sqrt{2} t)+c_{2} \operatorname{Sin}(2 \sqrt{2} t)
\end{aligned}
$$

using the boundary condition, $\mathrm{y}(0)=3$ and $\mathrm{y}\left(\frac{\pi}{2}\right)=0$.

$$
\begin{aligned}
& \Rightarrow 3=c_{1} \cdot 1+c_{2} .0 \\
& \Rightarrow c_{1}=3
\end{aligned}
$$

And, $\quad 0=3 \operatorname{Cos}(\sqrt{2} \pi)+c_{2} \operatorname{Sin}(\sqrt{2} \pi)$

$$
\Rightarrow c_{2}=-\frac{3 \operatorname{Cos}(\sqrt{2} \pi)}{\operatorname{Sin}(\sqrt{2} \pi)}=-3 \operatorname{Cot}(\sqrt{2} \pi)
$$

Hence, $\quad y=3 \operatorname{Cos}(2 \sqrt{2} t)-3 \operatorname{Cot}(\sqrt{2} \pi) \operatorname{Sin}(2 \sqrt{2} t)$.

Wronskian:

In the field of Mathematics the term Wronkian is a determinant introduced by Jozef Hoene-Wronski (1776). It is required in the field of differential equation where it helps to find out the linear independence in the set of solution [1] \& [2]. The properties and the solution of Wronskian diff erential equation was studied in [3] \& [4].

Let a linear homogeneous equation of the form, $y^{z \prime}+\mathrm{p}(\mathrm{t}) y^{z}+\mathrm{q}(\mathrm{t}) \mathrm{y}=0$,
Let two solution of this equation are u and v, So Wronskian of this equation can be written as
$\mathrm{W}[\mathrm{u}, \mathrm{v}]=\mathrm{u} v^{t}-\mathrm{v} u^{\prime}$.
(a) If u is a constant multiple of v then $\mathrm{W}[\mathrm{u}, \mathrm{v}]$ is identically zero. Then u and v are linearly dependent.
(b) If u and v agree at some point t_{o} and their derivative also exist at t_{o}, then $\mathrm{W}[\mathrm{u}, \mathrm{v}]$ vanishes at t_{o}, that is if u and v are two solution of same initial value problem then their Wronskian vanishes at t_{o}.

Let $\mathrm{f}(\mathrm{t})$ and $\mathrm{g}(\mathrm{t})$ be two differential function then they are linearly dependent, if there are non-zero constants c_{1} and c_{2} with, $c_{1} \mathrm{f}(\mathrm{t})+c_{1} \mathrm{~g}(\mathrm{t})=0$, for all t , otherwise they are called linearly independent.
Example: The functions, $f(t)=10 t^{2}+t^{3}$ and $g(t)=-t^{4}$ are linearly independent.
If the function $\mathrm{f}(\mathrm{t})$ and $\mathrm{g}(\mathrm{t})$ are linearly dependent then there would be a nonzero constant c_{1} and c_{2} such that,
$c_{1} \mathrm{f}(\mathrm{t})+c_{2} \mathrm{~g}(\mathrm{t})=0$.
$c_{1}\left(10 t^{2}+t^{3}\right)+c_{2}\left(-t^{4}\right)=0$, for all t ,
When $\mathrm{t}=-1$, then,
$9 c_{1}-c_{2}=0$
When $\mathrm{t}=-2$, then,
$2 C_{1}-c_{2}=0$
Equations (1) and (2) are the system of linear equations. Now the determinant of the corresponding coefficient matrix is,
$\left|\begin{array}{ll}9 & -1 \\ 2 & -1\end{array}\right|=-9+2=-7 \neq 0$.
Since the determinant is nonzero, the only solution is the trivial solution,
That is, $c_{1}=c_{2}$.
Hence the given two functions are linearly independent.

2. Theorems

2.1 Theorem

$\mathrm{W}\left[\Phi_{1}, \Phi_{2}\right]=-\mathrm{W}\left[\Phi_{2} \Phi_{1}\right]$
Example: $\Phi_{1}=\tan \mathrm{x} \quad$ and $\quad \Phi_{2}=$ Cosecx, then
$\mathrm{W}\left[\Phi_{1}, \Phi_{2}\right]=\left|\begin{array}{cc}\tan x & \operatorname{Cos} x e c \\ \operatorname{Sec}^{2} x & -\operatorname{Cosec} x \operatorname{Cot} x\end{array}\right|$
$=-\tan \mathrm{x} \cdot \operatorname{Cosec} \mathrm{x} \cdot \operatorname{Cot} \mathrm{x}-\operatorname{Cosec} \mathrm{x} \cdot \operatorname{Sec}^{2} x$
$=-\operatorname{Cosec} x\left(1+\operatorname{Sec}^{2} x\right), \quad$ And,
$\mathrm{W}\left[\Phi_{2}, \Phi_{1}\right]=\left|\begin{array}{cc}\operatorname{Cosec} x & \tan x \\ -\operatorname{Cosec} x \operatorname{Cot} x & \operatorname{Sec}^{2} x\end{array}\right|$
$=$ Cosecx. $\operatorname{Sec}^{2} x+\tan x \cdot \operatorname{Cosec} x . \operatorname{Cot} x$
$=\operatorname{Cosec} x\left(1+\operatorname{Sec}^{2} x\right)$,
$=-\mathrm{W}\left[\Phi_{1}, \Phi_{2}\right]$
So, $\mathrm{W}\left[\Phi_{1}, \Phi_{2}\right]=-\mathrm{W}\left[\Phi_{2}, \Phi_{1}\right]$

2.2 Theorem

$\mathrm{W}\left[\alpha \Phi_{1}, \beta \Phi_{2}\right]=\alpha \beta \mathrm{W}\left[\Phi_{1}, \Phi_{2}\right]$, where α and β are constant,
Example: $\Phi_{1}=a^{x}$ and $\Phi_{2}=e^{x}$, and $\alpha=5$ and $\beta=7$, then
$\mathrm{W}\left[\alpha \Phi_{1}, \beta \Phi_{2}\right]=\mathrm{W}\left[5 a^{x}, 7 e^{x}\right]$

$$
\begin{aligned}
& =\left|\begin{array}{cc}
5 a^{x} & 7 e^{x} \\
5 a^{x} \log a & 7 e^{x}
\end{array}\right| \\
& =5 \times 7\left|\begin{array}{cc}
a^{x} & e^{x} \\
a^{x} \log a & e^{x}
\end{array}\right|=5 \times 7 \mathrm{~W}\left[\Phi_{1}, \Phi_{2}\right]
\end{aligned}
$$

2.3 Theorem

Let Φ_{1} and Φ_{2} be any two differential function, then
$\mathrm{W}\left[\Phi_{1}+\alpha, \Phi_{2}+\alpha\right]=\mathrm{W}\left[\Phi_{1}, \Phi_{2}\right]+\alpha \frac{d}{d x}\left[\Phi_{2}-\Phi_{1}\right]$ where α is a constant.
Example: Let $\Phi_{1}=\operatorname{Sin} 3 \mathrm{x}, \quad \Phi_{2}=\operatorname{Cos} 5 \mathrm{x}$, and let $\alpha=7$,

$$
\begin{aligned}
\mathrm{W}[\operatorname{Sin} 3 \mathrm{x}+7, \operatorname{Cos} 5 \mathrm{x}+7] & =\left|\begin{array}{cc}
\operatorname{Sin} 3 \mathrm{x}+7 & \operatorname{Cos} 5 \mathrm{x}+7 \\
3 \operatorname{Cos} 3 x & -5 \operatorname{Sin} 5 x
\end{array}\right| \\
& =(\operatorname{Sin} 3 \mathrm{x}+7)(-5 \operatorname{Sin} 5 x)-(3 \operatorname{Cos} 3 x)(\operatorname{Cos} 5 \mathrm{x}+7) \\
& =(-5 \operatorname{Sin} 3 \mathrm{x})(\operatorname{Sin} 3 \mathrm{x})-(3 \operatorname{Cos} 3 x)(\operatorname{Cos} 5 \mathrm{x})+7[-5 \operatorname{Sin} 5 x-3 \operatorname{Cos} 3 x] \\
& =\mathrm{W}\left[\Phi_{1}, \Phi_{2}\right]+7 \frac{d}{d x}\left[\Phi_{2}-\Phi_{1}\right] .
\end{aligned}
$$

2.4 Theorem

Let Φ_{1} and Φ_{2} be any two differential function, then
$\Phi_{1} \mathrm{~W}\left[\frac{\Phi_{2}}{\Phi_{1}}, \Phi_{1}\right]+\Phi_{2} \mathrm{~W}\left[\frac{\Phi_{1}}{\Phi_{2}}, \Phi_{2}\right]=\frac{d}{d t}\left(\Phi_{1}, \Phi_{2}\right)$.
Example: Let us consider two differential function, Φ_{1} and Φ_{2} such that
$\Phi_{1}=2 \operatorname{Sin}^{2} \mathrm{t}$ and $\Phi_{2}=e^{2 t}$,
$\Phi_{1} \mathrm{~W}\left[\frac{\Phi_{2}}{\Phi_{1}}, \Phi_{1}\right]=2 \operatorname{Sin}^{2} \mathrm{t} \mathrm{W}\left[\frac{e^{2 t}}{2 \operatorname{Sin}^{2} \mathrm{t}}, 2 \operatorname{Sin}^{2} \mathrm{t}\right]$

$$
=2 \operatorname{Sin}^{2} \mathrm{t}\left|\begin{array}{cc}
\frac{e^{2 t}}{2 \operatorname{Sin}^{2} \mathrm{t}} & 2 \operatorname{Sin}^{2} \mathrm{t} \tag{3}\\
\frac{2 e^{2 t} 2 \operatorname{Sin}^{2} \mathrm{t}-\mathrm{e}^{2 t} 4 \operatorname{Sin} t \operatorname{Cos} t}{4 \operatorname{Sin}^{4} t} & 4 \operatorname{Sin} t \operatorname{Cos} t
\end{array}\right|
$$

$=8 e^{2 t} \operatorname{Sin} t \operatorname{Cos} t-4 e^{2 t} \operatorname{Sin}^{2} \mathrm{t}$
And, $\Phi_{2} \mathrm{~W}\left[\frac{\Phi_{1}}{\Phi_{2}}, \Phi_{2}\right]=e^{2 t} \mathrm{~W}\left[\frac{2 \operatorname{Sin}^{2} t}{e^{2 t}}, e^{2 t}\right]$

$$
\begin{align*}
& =e^{2 t}\left|\begin{array}{cc}
\frac{2 \operatorname{Sin}^{2} t}{e^{2 t}} & e^{2 t} \\
\frac{4 \operatorname{Sin} t \operatorname{Cost} \cdot e^{2 t}-2 \operatorname{Sin}^{2} \mathrm{t} \cdot 2 e^{2 t}}{e^{4 t}} & 2 e^{2 t}
\end{array}\right| \\
& =e^{2 t}\left(8 \operatorname{Sin}^{2} \mathrm{t}-4 \operatorname{Sin} t \operatorname{Cos} t\right) \\
& =8 e^{2 t} \operatorname{Sin}^{2} \mathrm{t}-4 e^{2 t} \operatorname{Sin} t \operatorname{Cos} t \tag{4}
\end{align*}
$$

Adding (3) and (4) we get,

$$
\begin{aligned}
\Phi_{1} \mathrm{~W}\left[\frac{\Phi_{2}}{\Phi_{1}}, \Phi_{1}\right]+\Phi_{2} \mathrm{~W}\left[\frac{\Phi_{1}}{\Phi_{2}}, \Phi_{2}\right]= & 4 e^{2 t} \operatorname{Sin} t \operatorname{Cos} t+4 e^{2 t} 2 \operatorname{Sin}^{2} \mathrm{t} \\
& =\frac{d}{d t}\left[\left(2 \operatorname{Sin}^{2} \mathrm{t}\right)(e)^{2 t}\right. \\
= & \frac{d}{d t}\left[\Phi_{1}, \Phi_{2}\right] .
\end{aligned}
$$

2.5 Theorem.

Let Φ_{i} and φ_{j} are the differential function of x for $i=1,2 \ldots n$ and $j=1,2 \ldots n$,

$$
\begin{aligned}
& \text { then, } W\left[\prod_{i=1}^{n} \Phi_{i}, \prod_{j=1}^{n} \varphi_{j}\right]=\sum_{i=1}^{n}\left\{\left(\prod_{j=1, i \neq j}^{n} \Phi_{j} \varphi_{j}\right) W\left[\Phi_{i}, \varphi_{i}\right]\right\} \\
& \qquad \text { (For, } \mathrm{i}=1,2 \ldots, \mathrm{n} \text { and } \mathrm{j}=1,2, \ldots . \mathrm{n} \text {) }
\end{aligned}
$$

Example: - For $\mathrm{i}=1,2$ and $\mathrm{j}=1,2$,
Let, $\Phi_{1}=$ Sint, $\quad \Phi_{2}=$ Cost, $\quad \varphi_{1}=a^{t}, \quad \varphi_{2}=e^{t}$
$\mathrm{W}\left[\prod_{i=1}^{2} \Phi_{i}, \prod_{j=1}^{2} \varphi_{j}\right]=\mathrm{W}\left[\Phi_{1} \Phi_{2}, \varphi_{1} \varphi_{2}\right]=\mathrm{W}\left[\right.$ Sint Cost, $\left.a^{t} e^{t}\right]$

$$
\begin{align*}
& =\left|\begin{array}{cc}
\operatorname{Sint} \operatorname{Cost} & a^{t} e^{t} \\
\operatorname{Cos}^{2} t-\operatorname{Sin}^{2} t & a^{t} \log a \cdot e^{t}+a^{t} \cdot e^{t}
\end{array}\right| \\
& =a^{t} e^{t} \operatorname{Sint} \operatorname{Cost}(1+\log a)-a^{t} e^{t} \operatorname{Cos} 2 t \tag{5}
\end{align*}
$$

$$
\begin{aligned}
\text { And, } & \sum_{i=1}^{n}\left\{\left(\prod_{j=1, i \neq j}^{n} \Phi_{j} \varphi_{j}\right) W\left[\Phi_{i}, \varphi_{j}\right]\right\}=\Phi_{1} \varphi_{1} \mathrm{~W}\left[\Phi_{2}, \varphi_{2}\right]+\Phi_{2} \varphi_{2} \mathrm{~W}\left[\Phi_{1} \varphi_{1}\right] \\
& =\text { Sint. } a^{t} \mathrm{~W}\left[\operatorname{Cost}, e^{t}\right]+\text { Cost. } e^{t} \mathrm{~W}\left[\operatorname{Sint}, a^{t}\right] \\
& =a^{t} . \text { Sint }\left|\begin{array}{cc}
\text { Cost } & e^{t} \\
-\operatorname{Sint} & e^{t}
\end{array}\right|+\text { Cost. } e^{t}\left|\begin{array}{cc}
\text { Sint } & a^{t} \\
\text { Cost } & a^{t} \log a
\end{array}\right|
\end{aligned}
$$

$$
\begin{equation*}
=a^{t} e^{t} \operatorname{Sin} t \operatorname{Cos} t(1+\log a)-a^{t} e^{t} \operatorname{Cos} 2 t \tag{6}
\end{equation*}
$$

From (5) and (6) we conclude that,

$$
\mathrm{W}\left[\Phi_{1} \Phi_{2}, \varphi_{1} \varphi_{2}\right]=\Phi_{1} \varphi_{1} \mathrm{~W}\left[\Phi_{2}, \varphi_{2}\right]+\Phi_{2}, \varphi_{2} \mathrm{~W}\left[\Phi_{1} \varphi_{1}\right]
$$

3. Important properties of Wronskian:

$3.1 \mathrm{~W}[0, \mathrm{~g}(\mathrm{t})]=0$
$3.2 \mathrm{~W}[\mathrm{f}(\mathrm{t}), \mathrm{f}(\mathrm{t})]=0$
3.3 $\mathrm{W}[1, \mathrm{~g}(\mathrm{t})]=g^{\prime}(\mathrm{t})$
3.4 W $[f(t), g(t)+h(t)]=W[f(t), g(t)]+W[f(t), h(t)]$
3.5 $W^{t}[\mathrm{f}(\mathrm{t}), \mathrm{g}(\mathrm{t})]=\mathrm{f} g^{\prime \prime}-f^{\prime \prime} \mathrm{g}=\mathrm{W}\left[\mathrm{f}, g^{\prime}\right]+\mathrm{W}\left[f^{\prime}, \mathrm{g}\right]$

Example: (3.5)
Let, $\mathrm{f}(\mathrm{t})=1-t^{3}$ and $\mathrm{g}(\mathrm{t})=7 t^{5}$
$\mathrm{W}[\mathrm{f}(\mathrm{t}), \mathrm{g}(\mathrm{t})]=\left|\begin{array}{cc}1-t^{3} & 7 t^{5} \\ -3 t^{2} & 35 t^{4}\end{array}\right|$
$=35 t^{4}-14 t^{7}$
$W^{t}[\mathrm{f}(\mathrm{t}), \mathrm{g}(\mathrm{t})]=\frac{d}{d t}\left(35 t^{4}-14 t^{7}\right)$
$=140 t^{3}-98 t^{6}$
$=\left(1-t^{3}\right)\left(140 t^{3}\right)-(-6 \mathrm{t})\left(7 t^{5}\right)$
$=\mathrm{f} g^{\prime \prime}-f^{n} \mathrm{~g}$
$\mathrm{W}\left[\mathrm{f}, g^{\prime}\right]+\mathrm{W}\left[f^{\prime}, \mathrm{g}\right]=\left|\begin{array}{cc}\mathrm{f} & g^{\prime} \\ f^{\prime} & g^{\prime \prime}\end{array}\right|+\left|\begin{array}{ll}f^{\prime} & g \\ f^{\prime \prime} & g^{\prime}\end{array}\right|$
$=\left|\begin{array}{cc}1-t^{3} & 35 t^{4} \\ -3 t^{2} & 140 t^{3}\end{array}\right|+\left|\begin{array}{cc}-3 t^{2} & 7 t^{5} \\ -6 t & 35 t^{4}\end{array}\right|$
$=140 t^{3}-98 t^{6}$
From (7) and (8) we conclude that,

$$
\begin{equation*}
W^{\prime}[\mathrm{f}(\mathrm{t}), \mathrm{g}(\mathrm{t})]=\mathrm{f} g^{\prime \prime}-f^{\prime \prime} \mathrm{g}=\mathrm{W}\left[\mathrm{f}, g^{\prime}\right]+\mathrm{W}\left[f^{\prime}, \mathrm{g}\right] \tag{8}
\end{equation*}
$$

3.6 For any constant, c

$$
\mathrm{W}[\mathrm{f}(\mathrm{t}), \mathrm{cg}(\mathrm{t})]=\mathrm{c} \mathrm{~W}[\mathrm{f}(\mathrm{t}), \mathrm{g}(\mathrm{t})]=\mathrm{W}[\mathrm{cf}(\mathrm{t}), \mathrm{g}(\mathrm{t})]
$$

3.7 $\mathrm{W}[\mathrm{f}(\mathrm{t}), \mathrm{g}(\mathrm{t})]=-\mathrm{W}[\mathrm{g}(\mathrm{t}), \mathrm{f}(\mathrm{t})]$

4. Some more important results:

4.1 $\mathrm{W}[\mathrm{f}(\mathrm{t}), \mathrm{c}(\mathrm{g}(\mathrm{t})+\mathrm{h}(\mathrm{t}))]=\mathrm{W}[\mathrm{f}(\mathrm{t}), \mathrm{cg}(\mathrm{t})]+\mathrm{W}[\mathrm{f}(\mathrm{t}), \mathrm{ch}(\mathrm{t})]$

Example: Let, $\mathrm{f}(\mathrm{t})=a^{t}, \mathrm{~g}(\mathrm{t})=e^{t}, \mathrm{~h}(\mathrm{t})=t^{3}$ and $\mathrm{c}=7$
$\mathrm{W}[\mathrm{f}(\mathrm{t}), \mathrm{c}(\mathrm{g}(\mathrm{t})+\mathrm{h}(\mathrm{t}))]=\left|\begin{array}{cc}a^{t} & 7\left(e^{t}+t^{3}\right) \\ a^{t} \log a & 7\left(e^{t}+3 t^{2}\right)\end{array}\right|$

$$
\begin{equation*}
=7 a^{t} e^{t}(1-\log a)+7 a^{t} t^{2}(3-t \log a) \tag{9}
\end{equation*}
$$

$\mathrm{W}[\mathrm{f}(\mathrm{t}), \operatorname{cg}(\mathrm{t})]+\mathrm{W}[\mathrm{f}(\mathrm{t}), \operatorname{ch}(\mathrm{t})]$

$$
\begin{align*}
& =\left|\begin{array}{cc}
a^{t} & 7 e^{t} \\
a^{t} \log a & 7 e^{t}
\end{array}\right|+\left|\begin{array}{cc}
a^{t} & 7 t^{3} \\
a^{t} \log a & 21 t^{2}
\end{array}\right| \\
& =7 a^{t} e^{t}(1-\log a)+7 a^{t} t^{2}(3-t \log a) \tag{10}
\end{align*}
$$

From (9) and (10) we conclude that,

$$
\mathrm{W}[\mathrm{f}(\mathrm{t}), \mathrm{c}(\mathrm{~g}(\mathrm{t})+\mathrm{h}(\mathrm{t}))]=\mathrm{W}[\mathrm{f}(\mathrm{t}), \mathrm{cg}(\mathrm{t})]+\mathrm{W}[\mathrm{f}(\mathrm{t}), \mathrm{ch}(\mathrm{t})]
$$

4.2 $\mathrm{W}[\mathrm{f}(\mathrm{t}), \mathrm{g}(\mathrm{t})+\mathrm{h}(\mathrm{t})+\mathrm{s}(\mathrm{t})]=\mathrm{W}[\mathrm{f}(\mathrm{t}), \mathrm{g}(\mathrm{t})]+\mathrm{W}[\mathrm{f}(\mathrm{t}), \mathrm{h}(\mathrm{t})]+\mathrm{W}[\mathrm{f}(\mathrm{t}), \mathrm{s}(\mathrm{t})]$

Example: Let, $\mathrm{f}(\mathrm{t})=\mathrm{t}^{4}, \mathrm{~g}(\mathrm{t})=t^{3}, \mathrm{~h}(\mathrm{t})=t^{2}+1$, and $\mathrm{s}(\mathrm{t})=\mathrm{t}+1$.

$$
\begin{align*}
\mathrm{W}[\mathrm{f}(\mathrm{t}), \mathrm{g}(\mathrm{t})+\mathrm{h}(\mathrm{t})+\mathrm{s}(\mathrm{t})] & =\left|\begin{array}{cc}
t^{4} & t^{3}+t^{2}+\mathrm{t}+2 \\
4 t^{3} & 3 t^{2}+2 \mathrm{t}+1
\end{array}\right| \\
& =t^{4}\left(3 t^{2}+2 \mathrm{t}+1\right)-4 t^{3}\left(t^{3}+t^{2}+\mathrm{t}+2\right) \\
& =-t^{6}-2 t^{5}-3 t^{4}-8 t^{3} \tag{11}
\end{align*}
$$

$\mathrm{W}[\mathrm{f}(\mathrm{t}), \mathrm{g}(\mathrm{t})]+\mathrm{W}[\mathrm{f}(\mathrm{t}), \mathrm{h}(\mathrm{t})]+\mathrm{W}[\mathrm{f}(\mathrm{t}), \mathrm{s}(\mathrm{t})]=$

$$
\begin{align*}
&=\left|\begin{array}{cc}
t^{4} & t^{3} \\
4 t^{3} & 3 t^{2}
\end{array}\right|+\left|\begin{array}{cc}
t^{4} & t^{2}+1 \\
4 t^{3} & 2 \mathrm{t}+1
\end{array}\right|+\left|\begin{array}{cc}
t^{4} & \mathrm{t}+1 \\
4 t^{3} & 1
\end{array}\right| \\
&=-t^{6}+\left(-2 t^{5}-4 t^{3}\right)+\left(-3 t^{4}-4 t^{3}\right) \\
&=-t^{6}-2 t^{5}-3 t^{4}-8 t^{3} \tag{12}
\end{align*}
$$

From (11) and (12) we conclude that,
$\mathrm{W}[\mathrm{f}(\mathrm{t}), \mathrm{g}(\mathrm{t})+\mathrm{h}(\mathrm{t})+\mathrm{s}(\mathrm{t})]=\mathrm{W}[\mathrm{f}(\mathrm{t}), \mathrm{g}(\mathrm{t})]+\mathrm{W}[\mathrm{f}(\mathrm{t}), \mathrm{h}(\mathrm{t})]+\mathrm{W}[\mathrm{f}(\mathrm{t}), \mathrm{s}(\mathrm{t})]$
4.3 W $[f(t), g(t) . h(t)] \neq W[f(t), g(t)] . W[f(t), h(t)]$

Example: Let, $\mathrm{f}(\mathrm{t})=t^{5}, \mathrm{~g}(\mathrm{t})=\operatorname{Sin} \mathrm{t}$, and $\mathrm{h}(\mathrm{t})=e^{t}$

$$
\begin{align*}
\mathrm{W}[\mathrm{f}(\mathrm{t}), \mathrm{g}(\mathrm{t}) \cdot \mathrm{h}(\mathrm{t})] & =\left|\begin{array}{cc}
t^{5} & \operatorname{Sin} t \cdot e^{t} \\
5 t^{4} & \operatorname{Sin} t \cdot e^{t}+\operatorname{Cos} t \cdot e^{t}
\end{array}\right| \\
& =t^{5}\left(\operatorname{Sin} t \cdot e^{t}+\operatorname{Cos} t \cdot e^{t}\right)-\operatorname{Sin} t \cdot e^{t} \cdot 5 t^{4} \\
& =t^{4} e^{t}[\mathrm{t} \operatorname{Cos} t+(\mathrm{t}-5) \operatorname{Sin} t] \tag{13}
\end{align*}
$$

$\mathrm{W}[\mathrm{f}(\mathrm{t}), \mathrm{g}(\mathrm{t})] \cdot \mathrm{W}[\mathrm{f}(\mathrm{t}), \mathrm{h}(\mathrm{t})]=\left|\begin{array}{cc}t^{5} & \operatorname{Sin} t \\ 5 t^{4} & \operatorname{Cos} t\end{array}\right| \cdot\left|\begin{array}{cc}t^{5} & e^{t} \\ 5 t^{4} & e^{t}\end{array}\right|$
$=\left[t^{5} \operatorname{Cost}-5 t^{4} \operatorname{Sin} t\right]\left[t^{5} e^{t}-e^{t} 5 t^{4}\right]$
$=t^{4} e^{t} \cdot t^{4}[\{\mathrm{t} \operatorname{Cos} \mathrm{C}-5 \operatorname{Sint}\}\{\mathrm{t}-5\}]$
$=t^{8} e^{t}\left[t^{2} \operatorname{Cost}-5\{t \operatorname{Cos} t+(\mathrm{t}-5) \operatorname{Sin} t\}\right.$
$=t^{10} e^{t} \operatorname{Cost}-t^{4} .\left[t^{4} e^{t}\{\mathrm{t} \operatorname{Cos} t+(\mathrm{t}-5) \operatorname{Sin} t\}\right]$
From (13) and (14) we conclude that,
$\mathrm{W}[\mathrm{f}(\mathrm{t}), \mathrm{g}(\mathrm{t}) . \mathrm{h}(\mathrm{t})] \neq \mathrm{W}[\mathrm{f}(\mathrm{t}), \mathrm{g}(\mathrm{t})] . \mathrm{W}[\mathrm{f}(\mathrm{t}), \mathrm{h}(\mathrm{t})]$

$$
\text { 4.4 } \mathrm{W}[\mathrm{f}(\mathrm{t})+\mathrm{g}(\mathrm{t}), \mathrm{h}(\mathrm{t})+\mathrm{s}(\mathrm{t})]=\mathrm{W}[\mathrm{f}(\mathrm{t})+\mathrm{g}(\mathrm{t}), \mathrm{h}(\mathrm{t})]+\mathrm{W}[\mathrm{f}(\mathrm{t})+\mathrm{g}(\mathrm{t}), \mathrm{s}(\mathrm{t})]
$$

Example: Let, $\mathrm{f}(\mathrm{t})=t^{3}, \mathrm{~g}(\mathrm{t})=\operatorname{Sin} t, \mathrm{~h}(\mathrm{t})=t^{5}, \mathrm{~s}(\mathrm{t})=\operatorname{Cost}$,
$\mathrm{W}[\mathrm{f}(\mathrm{t})+\mathrm{g}(\mathrm{t}), \mathrm{h}(\mathrm{t})+\mathrm{s}(\mathrm{t})]=\left|\begin{array}{cc}t^{3}+\operatorname{Sin} t & t^{5}+\operatorname{Cost} \\ 3 t^{2}+\operatorname{Cos} t & 5 t^{4}-\operatorname{Sin} t\end{array}\right|$

$$
=\left(t^{3}+\sin t\right)\left(5 t^{4}-\operatorname{Sin} t\right)-\left(t^{5}+\cos t\right)\left(3 t^{2}+\cos t\right)
$$

$$
\begin{equation*}
=2 t^{7}-t^{3} \operatorname{Sin} t(1-5 t)-t^{2} \operatorname{Cost}\left(3+t^{3}\right)-1 \tag{15}
\end{equation*}
$$

And, $\mathrm{W}[\mathrm{f}(\mathrm{t})+\mathrm{g}(\mathrm{t}), \mathrm{h}(\mathrm{t})]+\mathrm{W}[\mathrm{f}(\mathrm{t})+\mathrm{g}(\mathrm{t}), \quad \mathrm{s}(\mathrm{t})]$

$$
\begin{align*}
& =\left|\begin{array}{cc}
t^{3}+\operatorname{Sin} t & t^{5} \\
3 t^{2}+\operatorname{Cos} t & 5 t^{4}
\end{array}\right|+\left|\begin{array}{cc}
t^{3}+\operatorname{Sin} t & \operatorname{Cost} \\
3 t^{2}+\operatorname{Cos} t & -\operatorname{Sin} t
\end{array}\right| \\
& =2 t^{7}-t^{3} \operatorname{Sin} t(1-5 t)-t^{2} \operatorname{Cost}\left(3+t^{3}\right)-1 \tag{16}
\end{align*}
$$

From (15) and (16) we conclude that,
$\mathrm{W}[\mathrm{f}(\mathrm{t})+\mathrm{g}(\mathrm{t}), \mathrm{h}(\mathrm{t})+\mathrm{s}(\mathrm{t})]=\mathrm{W}[\mathrm{f}(\mathrm{t})+\mathrm{g}(\mathrm{t}), \mathrm{h}(\mathrm{t})]+\mathrm{W}[\mathrm{f}(\mathrm{t})+\mathrm{g}(\mathrm{t}), \mathrm{s}(\mathrm{t})]$

REFERENCES

[1] A.Coddington, Norman Levinson, Theory of Ordinary Differential Equations, Tata McGraw-Hill Pub. Comp. (1994).
[2] S.G. Deo, V. Ragavendra, Ordinary Differential Equation and Stability Theory, Tata McGraw-Hill Pub. Comp. (1988).
[3] K. Ravi, B. Ravikrishanan, Wronskian differential equation, Applied Science Perodical, IX, No. 1 (2007).
[4] G. Ganapathy, S. Murthy, M. Arunkumar, properties of Wronkians and partial Wronkians, Article • January 2010, International Journal of Pure and Applied Mathematics.

