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Abstract : The aim of this paper is to investigate constructing confidence intervals for the common variance
of lognormal distributions using four approaches, namely the generalized confidence intervals approach (GCl),
the large sample approach (LS) and the adjusted method of variance estimates recovery approach (Adjusted
MOVER) based on cox’s method (AM-Cox) and based on Angus’s conservative method (AM- Angus). The
natural logarithm transformation was used to change the data to a normal distribution. The proposed intervals
were evaluated focusing on coverage probability and average length using a Monte Carlo simulation. The
results showed that the AM- Angus approach performs well in terms of coverage probability, but the average
length was wide. Moreover, the coverage probability of the AM-Cox approach was closer to the nominal level
more than the GCI approach. All approaches are illustrated using two real data examples.
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I. INTRODUCTION

Lognormal distribution is a continuous probability distribution of a random variable whose natural logarithm
function is close to normal distributed. Sometimes, the lognormal is called the anti-lognormal distribution,
because it is not the distribution of the logarithm of a normal variable, but is instead the anti-log of a normal
variable (Johnson and Kotz [1]). The lognormal distribution has been used in a wide range of applications, such
as environmental study, survival analysis, biostatistics and other statistical fields.

One of the main interests in statistical inferences is construction of the confidence intervals for the parameter
of lognormal distribution. Thus, estimating the common parameter of several lognormal populations is one of
the most interesting problems. There has been many papers investigating approaches for the construction of
confidence intervals for lognormal distributions in terms of the common mean. For example, interval estimation
of common lognormal mean of several populations was studied by Baklizi and Ebrahem [2], then Behboodian
and Jafari [3] presented the generalized inference for the common mean of several lognormal populations, and
then inferences on the common mean of several log-normal populations: The generalized variable approach was
proposed by Tian and Wu [4] and Lin and Wang [5], they proposed a modified method on the means for several
log-normal distributions. On the other hand, the construction of confidence intervals for lognormal distributions
in terms of the common variance has not yet gained attention from other researchers. Thus, researchers of this
paper have been motivated by ideas from previous papers about common mean to construct confidence intervals
of common variance for lognormal distributions. Therefore, methods to construct confidence intervals for a
common variance of lognormal distributions using the generalized confidence intervals approach (GCl), large
sample approach (LS) and adjusted method of variance estimates recovery approach (adjusted MOVER) based
on cox’s method (AM-Cox) and Angus’s conservative method (AM-Angus) are proposed. The concept of
generalized confidence interval was introduced by Weerahandi [6] and since then these ideas have been
frequently applied to develop confidence intervals for many common parameters and the results are all
contented. Example works of Tian and Wu [4], Tian [7], Krishnamoorthy [8], Ye et al. [9] and Lin Shu-Hui and
Jack C. Lee [10] pay attention to common mean. Tian [11] and C. K. NG [12] were interested in common
coefficient. In addition, Tian and Wilding [13] was also interested in common correlation coefficient. The
method of variance of estimates recovery (MOVER) was described by Zou and Donner [14]. Moreover,
numerous applications see papers by Donner and Zou [15], Suwan and Niwitpong [16], Li et al. [17] and
Sangnawakij and Niwitpong [18] have been studied. Thangjai and Niwitpong[19] proposed an adjusted method of
variance estimates recovery approach (adjusted MOVER). This approach used the concept of the Mover to
develop an approach to construct the confidence intervals from several populations; the result of this approach
was satisfactory. Therefore, the object of this paper is to present four approaches which can construct the
confidence intervals of common variance for the lognormal distributions obtained from the transformed data and
then compare them for each situation. Based on the literature review, there has been no previous works focusing
on construction of the confidence intervals of common variance for lognormal distributions the using proposed
approaches.
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The rest of the paper is structured as follows. Section 2 provides preliminaries of variance of lognormal
distribution. Section 3 presents the four approaches developed and describes the computational procedures.
Section 4 presents simulation results to evaluate performances of the four approaches on coverage probabilities
and average lengths. Two real data sets are used to illustrate the proposed approaches in Section 5. The paper
closes with a conclusion.

1. LOGNORMAL DISTRIBUTION AND PARAMETER OF INTEREST
Let Y =(Y,,Y,,...,Y,) be independent and identically distributed as lognormal with parameters x and o°.
This is to say that the log-transformed variables X, =logY,, X, =logy,,...., X, =logY, are independent and

identically distributed as normal, denoted here as N(, o) .
It is well known that the mean and variance of Y are

E(Y)= a = exp[,u—ko-?z) 1)

var(Y)= p* = eXp(2,u+Jz){eXp(02)—l} = o {exp(az)—l}.
(2

Consider k independent lognormal populations with a common variance .
Let Y,,Y,,,....Y,, bearandom sample from the i -th lognormal population. This is to say that the log-
transformed variables X, =1logY, [ N(g ,07), fori=1....k, 1 =1..,n,.

This chapter develops a confidence interval for the common variance. The following parameter of interest for
common variance

Thus, the common variance is n= exp(2,u+02){exp(az) —1} : (3)
The common log-variance is 0 =logn =2u+0° +log{exp(c®) -1} . (4)
Let X, and S’ denote the sample mean and variance for log-transformed data X, for the i -th sample

respectively. Let X and s’ denote the observed sample mean and variance respectively.

The estimator of @ has the following form

6 = 2X,+S’ +log{exp(S)) -1} , @4 =X, 67 =S7. (5)
2 4 2 2 4

The variance of 6, is Var(4) _doi 20 exp(;q ) 20 ||, (6)
n n-1 |{exp(c?)-1){n-1

The estimator and variance of estimator are used to construct confidence intervals for the common variance
of lognormal distributions in the next sections.

LEMMA 1. For a function g and random variable X we have
E[g(X)] =~ 9[E(X)] and

var[g(X)] =~ var(X){g'TEX)1Y" .

———var(X).

{EX)¥

Proof. The first two terms of the Taylor series for g are:
g(x) =g(a)+(x—a)g'@)+....

In particular var[log(X)] ~

Setting a=E(X)
9(9) =glE)]+[x—EX)IGTEX)] . ™)
Taking expectations on both sides of () gives
E[9(X)] ~ 9[E(X)].
Squaring both sides of (*) and taking the expectation gives
[90T =~ g[ECKT +[x—ECQF{GTEXN}Y +29[E(X)Ix—EC)IgTEX)]
E{[9(I'} ~ {g[EXIT} +var(X){g TEX)]Y
So var[g(X)] = E[g(X)*1-E[g(X)I’
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var[g(X)] ~ var(X){g'TE(X)]}’ -
The following lemma plays an important role in the derivation of the confidence intervals.
THEOREM 1 Let X, =logY, ~ N(x,07), i=12,....k,1=12,...,n, where x,c/ are respectively population
mean and population variance of X;. Then the estimator of 8 is HI = 2X, +S? +log{exp(S?) -1}, the variance

2 4 ’ 2 .
of @ is Var(d)) _ 4o n 20, . exp(;:i ) 20 |
nn-1 |{exp(e7)-1) (n -1

Proof. According to LEMMA 1

var[log(X)] =~ r(x).

1
{Elexp(s?) -10¥
Let g(o?) =exp(c?) -1, g'(c?) =exp(c?) exists and is not 0. Using the Delta method, one can obtain the
following approximate expression for the mean and variance of exp(S?) -1;
E[exp(S?) 1] ~ 9(c?) =exp(o?) -1,

{EX¥

Hence, Var[log{exp(S/) - 1] ~ Var[exp(S?) -1].

Var[exp(S!) - 1]~ {g' (07 ) Var (§ )= {expe )¥ [%J |

o[ _exe(ed) Y[ 20

2 4 2 2 4
Therefore, Var(é ) :4i+ 20 + exp(or) 20 )
' n n-1 [lexp(c’)-1)(n -1

I1l. THE APPROACHES OF CONFIDENCE INTERVAL ESTIMATION

1) The generalized confidence interval approach
An important concept of generalized confidence intervals (GCI) is based on the generalized pivotal quantity
(GPQ) for a parameter &, which was introduced by Weerahandi [6]. A generalized pivot R(X,x,8,v) for interval
estimation, where X is a random sample from a distribution which depends on a vector of parameters 6 =(6,v),
v is a nuisance parameters, x is an observed value of X, as a random variable having the following two
properties:
1. R(X,x,0,v) has a distribution free of the vector of nuisance parameters v .
2. The observed value of R(X,%,6,v)is 6.
Let R, be the 100« -th percentile of R. Then R, becomes the 100(1- «)% lower bound for € and ..

becomes a 100(1- @)% two-side generalized confidence interval for 6.
Let X,and S’ denote the sample mean and variance for log-transformed data X, for the i -th sample

respectively, X

where V, is y*variates with degree of freedom n, —1.

and s’ denote the observed sample mean and variance respectively. So, o7 = (n, —1)S? V,

The generalized pivotal quantity to estimate o” based on thei -th sample can be defined as
_ (ni _1)Si2 - (ni _1)Si2

R, 7
7 \ 7(|12i4 “
The generalized pivotal quantity to estimate z; based on thei -th sample can be defined as
Z —1)s?
R, =% - 2 [(=Ds ®)

o
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where Z, and U, denote standard normal variate and y* variate with degree of freedom n, —1 respectively.
The generalized pivotal quantity for estimating 6 based on the i -th sample is

R, = 2R, +R . +log{exp(R ,)-1]. ©)
From the i -th sample, the maximum likelihood estimator of & is
6, = 2/1,+67 +log{exp(67) -1}, where i = X, 6 =S} (10)
The sample variance for 4, is
2 4 2 2 4
Var(9) = foi L 200, exp(;q ) 20, , see Theorem 1. (11)
n n-1 |{exp(c’)-1){n-1

The generalized pivotal quantity proposed for the common log-variance 6 =log# is a weighted average of the

generalized pivot R, based on k individual samples as; Tian and Wu [4].
k

" R RW
R, =541 2 (12)
SR,
i=1 i
1
where R, = , (13)
I%/ar(é,)
2 2
4R, Z(R(,z) exp(R ) ’ Z(Rc,z)
Lo=— A a ' ) (14)
var(d) n —1 exp(R,)-1 n —1

That is, R,

Therefore, the 100(1- a)% two-sided confidence interval for the common variance of lognormal distributions
n based on the GCI approach is

Clge = (Lo Year) :(eXp(Re(a/2))vEXp(R9(1_a/2)))1 (15)
where R,(a/2) and R,(1-«/2) denote the 100(«/2)-th and 100(1-e«/2)-th percentiles of R,
respectively.

is Var(§,) with o replaced byR .

ar(4)

Algorithm 1
For a given data set X, for i=12,....,k, j=12,..,n, the generalized confidence intervals for » can be

computed by the following steps.
1) Compute X, and s’ for i=12,...,k.

2) Generate V, ~ Zf,_l and then calculate Rcr? from (1) for i=12,...,k.

3) Generate Z, ~N(0,1) and U, ~ ;(nzl_l,then calculate R, from (2) for i=1,2,...,k.
4) Calculate R, inequation (9) for i=1,2,....k.

5) Repeat steps 2-3, calculate R, from (7) and (8) for i=12,... k.

6) Compute R,following (6).

7) Repeat step 2- 6 a total m times and obtain an array of R,’s.

8) Rank this array of R,’s from small to large.

The (R,(a/2),R,(1—a/2)) is a two-sided 100(1- )% confidence interval.

2) The Large Sample Confidence Interval for the Common Variance
The large sample confidence interval is the standard confidence interval. According to Graybill and Deal [20],
the large sample estimate of the log-variance of lognormal distribution is a pooled estimated unbiased estimator
of the log-variance defined as follows:

A

A k gi k 1
0= ;Var(éi)/; Var(éi) ' (16)
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where 6, is defined in equation (5) and Var(é) is an estimate of Var(é,) in equation (6) with z and o?
replaced by X, and s?, respectively.

Therefore, the 100(1- «)% two-sided confidence interval for the common variance of lognormal distributions
n based on the large sample approach is

Cls = (LLS ’ULS) = {exp[é— A %Z\/a:(é)}EXp[é"' 2y a2 %Z\/al’l(é)]J ) (17)

where z,_,,, isthe (1—a/2)-th quantile of the standard normal distribution.

3) The Adjusted Method of Variance Estimates Recovery Confidence Interval for the Common Variance

The concept of the adjusted method of variance estimates recovery approach (the Adjusted MOVER) is based
on the large sample approach and the method of variance estimates recovery approach (the Mover). The Mover
approach was proposed by Zou and Donner [14], which considers confidence interval for two parameters & + 9, ,

the lower limit L and the upper limit U are given by
[LU] =(4 +6,)+ zam/vér(él) +Var(d,) , (18)
Suppose the 100(1— )% two-sided confidence interval for &, is given by(Ii U, ) , 1=12.
Thus, the estimates variances near the lower vér(éi) and upper vér(éi)limits of 6, as
var(0) = (é, —Ii)z/zi,z, var(9) = (ui —éi)z/zi,z .

Fori=1,2, two-side 100(1—«)% confidence limits for & + 6, given as
A A A~ 2 A 2 N N A\2 A \2
[L,u]:[(@1 +92)_\/(91—|1) +(6.-1,) (4 +92)+\/( =6) +(u,-0,) j (19)

Let 6,,0,,...,6, be k parameters of interest, where the estimates &,,6,,...,6, are independent. The concept of
the Mover was used to construct of a 100(1-«)% two-sided confidence interval (L, U) for 6, +6, +...+6, , the
lower limit L and upper limit U is defined as follows:

L=(8,+6,+..+6,) - za,z\/Vér(Q) +Var(6,) +...+Var(4,) (20)

and

U =(4+6, +...+ék)+za,z\/\/ér(él)+Vér(éz)+...+Vér(ék) , (21)
Suppose the 100(1-«)% two-sided confidence interval for 6, is given by (Ii,ui ) \where i=12,..,k. Thus, the

variance estimate for d,at 6, =1, and 6, =u, are equal to

var@) = (0 -1y’ /2, var@)=(u, -6/}, . (22)
Therefore, the lower limit L and upper limit U for 6, +6, +...+6, is given by
|_=(é1+é2+...+ék)—J(é1—|l)2+(é2—|2)2+...+(ék -1.)? (23)
and
U= +6,+..+6)+ U -60) +U, -6, +..+ (U, -6, , (24)

where z,,, denotes the (« /2)-th quantile of the standard normal distribution.

The Adjusted MOVER approach was motivated based on concepts of the large sample approach in
equations (16), (17) and the MOVER approach in equations (18)-(24). According to Graybill and Deal [20], the

common log-variance @ is weighted average of the log-variance 6' based on k individual samples is defined as

follows:
] 1
9_;Var(é'i)/;Var(‘§i)' @

where the variance estimate for 6, at 6 =1, and 6, =u, is the average variance between these two variances
and given by
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A 2 A \2
var@) =2 @ G=8) g5k, (26)
Co2l 2, 25

where z_,, denotes the (« /2) -th quantile of the standard normal distribution.
Therefore, the lower limit L and upper limit U for the common variance & are given by

R T T TI TR V) @)
‘ = _Ii)2 ‘ = _gi)2
where 6 = 2X; +S7 +log{exp(S7)~1} and  is defined in equation (25).
Therefore, the adjusted MOVER solution for confidence interval estimation is

n KooZ2, A ST
(LU)= [e— 2 . W zlm 0+z,_,, J// 21:(11—6”)2] . (28)

From the i -th sample, where i=1,2,..,k . The common log-variance 6 is
O=logn=2u+c"+log {exp(az) —1}
= 2(y+02/2)+ log {exp(oz)—l} (29)
Let 6, =2(u+0°/2), 6 =2(+67/2), where i = X;, 67 =S?.

Following Chami et al. [21], two methods for constructing the 100(1- «)% confidence interval for log-mean

( u+o’/ 2) of lognormal are Cox’s method and Angus’s conservative method.

According to Cox’s method, the confidence interval for 6 is

2 2 2 2 2 r
(Iilvuil): 2 )zi +S_i_217a/2 S_I"'S—I 2 )zi +S_i+z1fa/z S_i+ 5 . (30)
2 n. 2(n -1) 2 n 2(n -1

According to Angus’s conservative method, the confidence interval for 4" is

_ v S_iz_tl—aIZ,(ni—l) 2 5_,2 > 3_,2 qa/Z,(n,—l) 2 S_,Z
(Iiz,uiz)_{zixi + 5 —\ﬁ S, {1+ 5 H,Z[Xi + 5 +—ﬁ S, (1+ 5 JD (31)

which t,_,, 4 be the 1- o percentile of a t-distribution with n-1 degrees of freedom, and let

2

Aoz gy = g{n—_l—lJ where 2 isthe « - percentile of the chi-square distributions with n-1 degrees of
X (n-1)

freedom.
Let 6, =log{exp(c’) -1}, 6," =log(exp(67)—1), where 67 =S7.

The confidence interval for 6" is

()= (Iog P%@j _1}, log {exp(%j _1D | (32)

where V, denotes the (1- e« /2) -th quantile of the chi-square distribution with n, —1 degrees of freedom and U,
denotes the (o / 2) -th quantile of the chi-square distribution with n, —1 degrees of freedom.

The common parameter 6, and 6, is weighted average of 6" and 6" based on k individual samples. It is
defined in equation (25) and variance estimate for % and 6" in equation (26)

Consequently, L and U are defined in equation (28). One obtains two groups of confidence intervals(l,;,u;, ) in
equation (30) and (1,,,u;,) in equation (31) which are defined by am1 and am2.

Hence, the confidence intervals based on cox’s method (am1) of common 6, is
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(Lamss Yam) =[ A1 7 a/21f < (9(')a/2 2 0+7 | ~ (U1 _ag(,)) ] (33)

The confidence intervals based on Angus’s conservative (am2) of common 6, is

Lam 1~ am a ‘1/2 a a/Z " (34)
( 2 2) [ 1 1 /21f “ (H(I) 1 12 | — (uI2_0(|)) J

Consequently, L and U are defined in equation (28). One gains a group of confidence intervals(l u. ) in

equation (33) which is defined by am.
Hence, the confidence intervals (am) of common 6, is

L anm — Y a/2 Y a/2 . 35
( am ) ( 1 12 “ (H(I) 1 12 - (u 0(,)) ] ( )

Therefore, 6=2u+c" +Iog{exp(a) ~1}=6,+6,.

Hence, the adjusted MOVER approach based on cox’s method (AM-Cox) for confidence interval estimation
of common variance 7 is

CLAM —Cox — (LAM —Cox? UAM —Cox) (exp(Laml m)' eXp(Uam1 +Uam))' (36)

The adjusted MOVER approach based on Angus’s conservative method (AM-Angus) for confidence interval
estimation of common variancez is

CLAM—Angus = (LAM —Angus ? UAM —Angus) = (exp(Lam2+ Lam)' exp(uamz +Uam)) ) (37)

IV. SIMULATION STUDIES AND RESULTS
The performance of the proposed confidence intervals for common variance 7 of lognormal is investigated in

term of coverage probability and the average length through simulation with the R statistical program. We
choose a confident interval, which has coverage probability greater than or close to the nominal coverage level
at 0.95, and a shortest length interval.

In simulation, the data are generated from lognormal distributions for various combinations of the number of
samples k= 2, 4, 6 and 10, as estimated from 5000 randomly generated samples selected from a normal

distribution having sizes n, =n,...=n, =n= 10, 30 and 50. The population variances used were o’ = o, =
ol =c”=10.10, 0.30, 0.50, 0.80 and 1.00 and the common & =log7 take -1, 0 and 1. For the GCI approach,
2500 R, ’s were obtained for each of the random samples. The results of the 95% confidence intervals of
common variance n are show in Table 1- Table 4, respectively.

The following algorithm is used to estimate the coverage probability and average length:

Algorithm 2
Stepl For h=1to M

Generate data set X;, X;,,..., X, from N(u,07), i=1....k
Compute X and s’
Step2  Use Algorithm 1 to construct (Leg,nysYecin)
Use equation (18) to construct (L )Y sn))
Use equation (37) to construct (L _cony»Yam —cocn))
Use equation (38) to construct (L - angusny +Y am —anguscy)
If (L, <&<U,,),thenset p, =1;elseset p, =0
Compute U, — L,

(end h loop)
Step 3 Compute coverage probabilities and average lengths of the confidence intervals
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Table 1-Table 4 present the coverage probabilities and average lengths for 2, 4, 6 and 10 sample cases,
respectively. In all sample cases, the GCI approach tends to underestimate the coverage probabilities as the
number of samples goes up and depends on k and &*, when the k and & increases. It is shown that the proposed
the GCI interval estimates tend to drop from the nominal level 0.95. The coverage probabilities of the LS
approach were less than the nominal coverage level for all of the scenarios. The AM-Cox approach provide
coverage probabilities close to the nominal confidence level at 0.95, but the coverage probabilities depends on k,
n and o2, when n are small and k and o2 increases. It was also shown that the AM-Cox approach tends to drop
from the confidence level at 0.95. The AM-Angus approach tends to have high coverage probabilities compared
with the nominal level 0.95 for 2 and 4 sample cases. However, for k > 4, the coverage probabilities depend on n
and & similar to the AM-Cox approach.

Overall, the AM-Cox approach was found to have the coverage probabilities close to the nominal level better
than the AM-Angus approach, GCI approach and the LS approach respectively. Additionally, performance of all
the approaches in terms of average lengths increased when o increased. The average lengths of the LS approach
was shorter than the GCI approach, AM-Cox approach and the AM-Angus approach, respectively. However,
this study selected the approaches with the values of coverage probabilities close to the nominal confidence
level at 0.95 and shortest average lengths. Finally, it was also discovered that the AM-Cox approach performed
well for all cases and the average lengths were wide compared with another approaches.

V.TABLEI

The coverage probability (CP) and average length (AL) of 95% two-sided confidence intervals for the common variance of lognormal
distributions : 2 sample cases

n 6.2 9 C I GCI CI LS CI AM —Cox C I AM —-Angus
' cP AL cP AL cP

10 0.10 1 09466 16672  0.8884 14816 09746 20120 09886 22472
0 09500 16723  0.8994 14839 09808 20173 09728 22541

1 09514 16695  0.8996 14825 09772 20144 09860  2.2503

0.30 1 09436 22817 08592 18091 09722 26676 09886  3.0904
0 09406 22820 08572 18087 09698 26661 09838  3.0882

1 09396 22827 08470 18094 09682 26663 09852  3.0882

050 1 09360 28754  0.8284 21205 09584 32376 09788  3.8001
0 09400 28811  0.8252 21240 09600 32443 09820  3.8085

1 09420 28773 08258 21213 09634 32398 09830  3.8029

0.80 1 09424 37267 08084 25730 09530 40552 09780  4.7981
0 09438 37484 08064 25812 09538 40690 09788  4.8146

1 09394 37407 08042 25794 09508 40667 09780  4.8118

1.00 1 09396 43103 07954 28792 09466 46069 09758  5.4616
0 09336 43019 07928 28760 09404 46026 09720  5.4565

1 09374 42960 07818  2.8709 09462 45935 09768  5.4459

30 0.10 1 09480 09082 09186 08317 09816 11040 09902 12352
0 09516 09083 09224 08316 09806 11038 09898  1.2350

1 09462 09078 09174 08314 09792 11035 09902 12345

0.30 1 09460 12184  0.8888 10269 09780 14534 09932 16899
0 09522 12219  0.8982 10288 09768 14564 09908 16937

1 09422 12200  0.8860 10279 09764 14548 09904 16917

050 1 09486 15159  0.8746 12163 09732 17529 09904  2.0708
0 09438 15121 08706 12147 09706 17499 09898  2.0669

1 09472 15122 08726 12139 09712 17491 09906  2.0660

0.80 1 09482 19433 08504 14906 09720 21700 09914 25928
0 09448 19408  0.8600 14899 09648 21690 09872 25916

1 09464 19392 08588 14893 09678 21681 09880 25906

1.00 1 09436 22209 08466 16710 09644 24417 09884  2.9293
0 09434 22235 08448 16716 09620 24424 09870  2.9300

1 09368 22195  0.8494 16686 09582 24380 09884  2.9247

50 0.10 1 09516 06961 09242 06408 09834 08475 09910  0.9631
0 09528 06956 09288 06405 09822 08471 09916  0.9625

1 09524 06958 09282 06406 09838 08473 09912  0.9628

0.30 1 09488 09330 09046 07939 09808 11170 09942  1.3263
0 09482 09321 09004 07934 09788 11162 09932 13252

1 09504 09310 09066 07926 09800 11151 09932  1.3237

050 1 09518 11525  0.8854 09393 09782 13415 09920 16217
0 09482 11525 08784 09393 09748 13415 09914 16217

1 09438 11527 08816 09392 09734 13414 09930 16216

0.80 1 09474 14726 08706 11538 09698 16591 09912  2.0332
0 09460 14758 08670 11554 09678 16614 09900  2.0361

1 09478 14738 08658 11545 09708 16601  0.9908  2.0344

1.00 1 09448 16855 08608 12968 09662  1.8680  0.9868  2.3006
0 09458 16860  0.8528 12967 09676  1.8679 09898  2.3006

1 09448 16852 08576 12968 09654  1.8681  0.9898  2.3008
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TABLE I

The coverage probability (CP) and average length (AL) of 95% two-sided confidence intervals for the common variance of lognormal
distributions : 4 sample cases

n 6-2 6 C I GCI CI LS CI AM —Cox C I AM —Angus
' CP AL CP AL CP AL CP AL

10 0.10 -1 0.9398 1.1447 0.8738 1.0477 0.9766 1.4159 0.9866 1.5792
0 0.9338 1.1443 0.8664 1.0478 0.9664 1.4156 0.9824 1.5786

1 0.9332 1.1429 0.8668 1.0470 0.9708 1.4135 0.9836 1.5759

0.30 -1 0.9086 1.5301 0.8030 1.2727 0.9570 1.8623 0.9780 2.1529
0 0.9140 1.5261 0.8108 1.2705 0.9568 1.8573 0.9824 2.1465

1 0.9192 1.5311 0.8142 1.2741 0.9630 1.8645 0.9848 2.1557

0.50 -1 0.9032 1.8980 0.7726 1.4814 0.9490 2.2433 0.9758 2.6282
0 0.8982 1.9069 0.7720 1.4854 0.9480 2.2502 0.9788 2.6366

1 0.8954 1.8996 0.7636 1.4833 0.9430 2.2467 0.9738 2.6323

0.80 -1 0.8822 2.4418 0.7182 1.7848 0.9274 2.7878 0.9666 3.2943
0 0.8734 2.4374 0.7120 1.7823 0.9226 2.7833 0.9644 3.2889

1 0.8808 2.4444 0.7186 1.7869 0.9246 2.71922 0.9650 3.2997

1.00 -1 0.8746 2.7993 0.7084 1.9828 0.9166 3.1427 0.9638 3.7229
0 0.8732 2.7918 0.7020 1.9802 0.9104 3.1387 0.9550 3.7183

1 0.8748 2.8042 0.6956 1.9875 0.9138 3.1519 0.9610 3.7340

30 0.10 -1 0.9462 0.6356 0.9158 0.5877 0.9804 0.7785 0.9906 0.8705
0 0.9434 0.6355 0.9114 0.5879 0.9784 0.7788 0.9890 0.8708

1 0.9468 0.6357 0.9170 0.5877 0.9798 0.7786 0.9904 0.8706

0.30 -1 0.9396 0.8475 0.8794 0.7252 0.9750 1.0246 0.9898 1.1907
0 0.9344 0.8476 0.8740 0.7249 0.9746 1.0241 0.9922 1.1900

1 0.9394 0.8473 0.8808 0.7248 0.9782 1.0241 0.9926 1.1900

0.50 -1 0.9274 1.0489 0.8458 0.8559 0.9688 1.2314 0.9916 1.4536
0 0.9274 1.0484 0.8522 0.8555 0.9674 1.2307 0.9892 1.4528

1 0.9374 1.0468 0.8524 0.8547 0.9732 1.2296 0.9932 1.4514

0.80 -1 0.9274 1.3421 0.8252 1.0471 0.9598 1.5226 0.9888 1.8183
0 0.9206 1.3406 0.8246 1.0458 0.9580 1.5205 0.9876 1.8157

1 0.9222 1.3424 0.8242 1.0470 0.9548 1.5224 0.9870 1.8180

1.00 -1 0.9202 1.5344 0.8140 1.1714 0.9548 1.7098 0.9880 2.0502
0 0.9222 1.5352 0.8150 1.1723 0.9562 1.7111 0.9898 2.0518

1 0.9164 1.5339 0.8030 1.1717 0.9516 1.7103 0.9860 2.0508

50 0.10 -1 0.9482 0.4891 0.9174 0.4529 0.9820 0.5984 0.9910 0.6797
0 0.9454 0.4893 0.9164 0.4529 0.9786 0.5984 0.9902 0.6798

1 0.9498 0.4886 0.9188 0.4527 0.9804 0.5979 0.9912 0.6791

0.30 -1 0.9388 0.6527 0.8852 0.5603 0.9792 0.7874 0.9948 0.9344
0 0.9452 0.6527 0.8918 0.5603 0.9780 0.7874 0.9936 0.9343

1 0.9452 0.6527 0.8960 0.5604 0.9778 0.7876 0.9940 0.9346

0.50 -1 0.9384 0.8051 0.8668 0.6626 0.9738 0.9455 0.9916 1.1425
0 0.9366 0.8050 0.8576 0.6626 0.9722 0.9455 0.9916 1.1425

1 0.9444 0.8058 0.8738 0.6630 0.9766 0.9462 0.9942 1.1435

0.80 -1 0.9268 1.0283 0.8470 0.8132 0.9628 1.1688 0.9916 1.4318
0 0.9336 1.0281 0.8412 0.8130 0.9654 1.1684 0.9904 1.4313

1 0.9338 1.0292 0.8470 0.8135 0.9652 1.1691 0.9926 1.4322

1.00 -1 0.9306 1.1762 0.8396 0.9133 0.9608 1.3151 0.9892 1.6192
0 0.9266 1.1763 0.8388 0.9132 0.9558 1.3149 0.9906 1.6190

1 0.9310 1.1779 0.8474 0.9141 0.9608 1.3163 0.9898 1.6207

TABLE 111

The coverage probability (CP) and average length (AL) of 95% two-sided confidence intervals for the common variance of lognormal
distributions : 6 sample cases

n O-iZ 9 CIGCI Cl LS Cl AM—Cox CIAM—Angus
CP AL CP AL CP AL CP AL

10 0.10 -1 0.9302 0.9247 0.8452 0.8548 0.9688 1.1514 0.9840 1.2829
0 0.9252 0.9239 0.8450 0.8546 0.9692 1.1510 0.9834 1.2823

1 0.9238 0.9247 0.8396 0.8549 0.9668 1.1515 0.9806 1.2829

0.30 -1 0.8788 1.2253 0.7662 1.0365 0.9490 1.5110 0.9782 1.7450

0 0.8808 1.2241 0.7690 1.0358 0.9460 1.5100 0.9764 1.7438

1 0.8866 1.2258 0.7628 1.0367 0.9456 1.5116 0.9760 1.7458

0.50 -1 0.8566 1.5187 0.7106 1.2060 0.9318 1.8203 0.9686 21311

0 0.8520 1.5178 0.7050 1.2055 0.9248 1.8194 0.9666 2.1299

1 0.8556 1.5200 0.7142 1.2069 0.9250 1.8223 0.9676 2.1336

0.80 -1 0.8292 1.9453 0.6636 1.4499 0.8976 2.2569 0.9510 2.6654

0 0.8208 1.9447 0.6462 1.4492 0.9026 2.2562 0.9558 2.6647

1 0.8226 1.9494 0.6552 1.4515 0.8942 2.2602 0.9558 2.6696

1.00 -1 0.7988 2.2259 0.6198 1.6078 0.8736 2.5396 0.9412 3.0072

0 0.7980 2.2227 0.6090 1.6062 0.8756 2.5363 0.9370 3.0031

1 0.8010 2.2239 0.6152 1.6056 0.8750 2.5352 0.9404 3.0018
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TABLE IV (CONTINUED)

The coverage probability (CP) and average length (AL) of 95% two-sided confidence intervals for the common variance of lognormal
distributions : 6 sample cases

n 6-2 0 C I GCI CI LS CI AM —Cox C I AM —Angus
' CP AL CP AL CP AL CP AL

30 0.10 -1 0.9470 0.5171 0.9068 0.4798 0.9816 0.6351 0.9928 0.7100
0 0.9448 0.5173 0.9056 0.4799 0.9832 0.6355 0.9912 0.7105

1 0.9366 0.5177 0.9014 0.4800 0.9784 0.6355 0.9898 0.7105

0.30 -1 0.9322 0.6882 0.8606 0.5915 0.9722 0.8351 0.9930 0.9701
0 0.9344 0.6885 0.8662 0.5917 0.9788 0.8354 0.9944 0.9706

1 0.9224 0.6876 0.8604 0.5912 0.9694 0.8346 0.9914 0.9695

0.50 -1 0.9170 0.8500 0.8264 0.6973 0.9654 1.0026 0.9922 1.1831
0 0.9092 0.8502 0.8262 0.6979 0.9602 1.0034 0.9898 1.1842

1 0.9134 0.8503 0.8280 0.6977 0.9664 1.0033 0.9918 1.1841

0.80 -1 0.8942 1.0875 0.7976 0.8532 0.9480 1.2402 0.9830 1.4807
0 0.9018 1.0870 0.8032 0.8530 0.9508 1.2400 0.9856 1.4805

1 0.9070 1.0877 0.8046 0.8531 0.9566 1.2400 0.9884 1.4806

1.00 -1 0.8908 1.2444 0.774 0.9551 0.9418 1.3937 0.9840 1.6709
0 0.8994 1.2453 0.7920 0.9561 0.9470 1.3952 0.9846 1.6728

1 0.8952 1.2438 0.7752 0.9547 0.9442 1.3930 0.9818 1.6700

50 0.10 -1 0.9408 0.3081 0.9020 0.2863 0.9780 0.3781 0.9930 0.4294
0 0.9442 0.3081 0.9042 0.2863 0.9824 0.3780 0.9948 0.4293

1 0.9458 0.3084 0.9080 0.2864 0.9784 0.3781 0.9920 0.4294

0.30 -1 0.9258 0.4102 0.8674 0.3541 0.9724 0.4973 0.9924 0.5900
0 0.9286 0.4100 0.8684 0.3540 0.9710 0.4972 0.9944 0.5898

1 0.9322 0.4104 0.8656 0.3541 0.9748 0.4974 0.9932 0.5901

0.50 -1 0.9094 0.5061 0.8312 0.4187 0.9634 0.5972 0.9906 0.7215
0 0.9122 0.5059 0.8270 0.4186 0.9668 0.5970 0.9932 0.7212

1 0.9112 0.5062 0.8368 0.4189 0.9666 0.5974 0.9928 0.7218

0.80 -1 0.8818 0.6449 0.7824 0.5128 0.9504 0.7368 0.9916 0.9024
0 0.8904 0.6456 0.7992 0.5134 0.9526 0.7376 0.9926 0.9034

1 0.8940 0.6457 0.7954 0.5133 0.9558 0.7375 0.9930 0.9032

1.00 -1 0.8780 0.7378 0.7750 0.5757 0.9434 0.8287 0.9910 1.0201
0 0.8876 0.7379 0.7898 0.5759 0.9476 0.8291 0.9900 1.0207

1 0.8826 0.7376 0.7818 0.5756 0.9454 0.8286 0.9902 1.0199

TABLEV

The coverage probability (CP) and average length (AL) of 95% two-sided confidence intervals for the common variance of lognormal
distributions : 10 sample cases

n o? 0 Clog Clis Clamcox CIAM—Angus
' CP AL CP AL CP AL CP AL

10 0.10 1 0.9060  0.7104  0.7920 06617 09516  0.8892  0.9762  0.9900
0 09146 07101 08012 06617 09574  0.8893 09810  0.9901

1 09110 07107 07952  0.6620 09534  0.8897 09732  0.9906

0.30 1 0.8218 09355  0.6846 08011 09190 11646  0.9656  1.3439
0 08176 09360 06790 08013 09132 11650  0.9602  1.3444

1 0.8258 09357 06798 08011 09222 11650  0.9682  1.3446

0.50 1 07632 11551 06114 09314 08862 14019 09540  1.6401
0 07732 11570 06122 09319  0.8910 14032 09546 16418

1 07640 11552  0.6048 09313  0.8884 14017 09534 16400

0.80 1 0.6984 14747 05272 11165  0.8404 17324 09268  2.0449
0 0.6986 14757 05252 11171  0.8354 17338 09286  2.0467

1 07124 14781 05390  1.1183 08372 17365 09264  2.0501

1.00 1 0.6628 16815 04838 12350  0.8100  1.9431 09130  2.2998
0 0.6570 16789 04790 12340  0.8016 19417  0.9058  2.2982

1 0.6622 16847 04972 12368  0.8038 19475 09120  2.3053

30 0.10 1 0.9398  0.3996  0.8900 03716 09768 04918  0.9924 05497
0 0.9388  0.3996  0.8894 03717 09750 04918  0.9906  0.5498

1 09376  0.3996  0.8860 03716 09772 04917 09914 0549

0.30 1 0.9012 05306  0.8238 04578 09652 06459 09910  0.7502
0 0.9068 05303  0.8306 04576 09682 06457 09922  0.7500

1 0.9140 05306  0.8384 04578 09680 06459 09924  0.7501

0.50 1 0.8862  0.6555  0.7906 05402 09520  0.7764  0.9856  0.9162
0 0.8920  0.6557  0.7936 05403 09568  0.7766  0.9906  0.9164

1 0.8850  0.6551  0.7966 05398 09536  0.7758  0.9870  0.9154

0.80 1 0.8636  0.8383 07448  0.6603 09446 009594 09872  1.1453
0 0.8598  0.8365  0.7468  0.6591 09368 009576 09836  1.1431

1 0.8592  0.8367 07448 06593 09398 009580  0.9854 11436

1.00 1 0.8392 09567 07168 07378 09230 10762 09808  1.2901
0 0.8456 09589 07348 07390 09294 10781 09796 12924

1 0.8414 09580 07298 0738 09174 10775 09782 12917
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TABLE VI (CONTINUED)

The coverage probability (CP) and average length (AL) of 95% two-sided confidence intervals for the common variance of lognormal
distributions : 10 sample cases

n 6-2 6 C I GCI CI LS CI AM —Cox C I AM —Angus
' CP AL CP AL CP AL CP AL

50 0.10 -1 0.9408 0.3081 0.9020 0.2863 0.9780 0.3781 0.9930 0.4294
0 0.9442 0.3081 0.9042 0.2863 0.9824 0.3780 0.9948 0.4293

1 0.9458 0.3084 0.9080 0.2864 0.9784 0.3781 0.9920 0.4294

0.30 -1 0.9258 0.4102 0.8674 0.3541 0.9724 0.4973 0.9924 0.5900

0 0.9286 0.4100 0.8684 0.3540 0.9710 0.4972 0.9944 0.5898

1 0.9322 0.4104 0.8656 0.3541 0.9748 0.4974 0.9932 0.5901

0.50 -1 0.9094 0.5061 0.8312 0.4187 0.9634 0.5972 0.9906 0.7215

0 0.9122 0.5059 0.8270 0.4186 0.9668 0.5970 0.9932 0.7212

1 0.9112 0.5062 0.8368 0.4189 0.9666 0.5974 0.9928 0.7218

0.80 -1 0.8818 0.6449 0.7824 0.5128 0.9504 0.7368 0.9916 0.9024

0 0.8904 0.6456 0.7992 0.5134 0.9526 0.7376 0.9926 0.9034

1 0.8940 0.6457 0.7954 0.5133 0.9558 0.7375 0.9930 0.9032

1.00 -1 0.8780 0.7378 0.7750 0.5757 0.9434 0.8287 0.9910 1.0201

0 0.8876 0.7379 0.7898 0.5759 0.9476 0.8291 0.9900 1.0207

1 0.8826 0.7376 0.7818 0.5756 0.9454 0.8286 0.9902 1.0199

TABLE VII

The coverage probability (CP) and average length (AL) of 95% two-sided confidence intervals for the common variance of lognormal
distributions : 30 sample cases

n 0_.2 9 C I GCI CI LS CI AM —Cox C I AM -Angus
' CP AL cP AL CP

10 0.10 1 08334 04074 05806 03821 08772 05125 09374 05703
0 0.8308  0.4073 05672 03820 08718 05124 09310 05701

1 0.8330 04073 05664 03820 08748 05122 09326  0.5699

0.30 1 05476 05334 03714 04621 07448 06699  0.8708  0.7726
0 05624 05337 03802 04623 07488 06705  0.8774  0.7732

1 05610 05338 03722 04623 07560  0.6704  0.8790  0.7732

0.50 1 03772 06560 02628 05362  0.6332 08046  0.8092  0.9407
0 03902 06572 02734 05368  0.6362  0.8058  0.8032  0.9422

1 0.3956  0.6565 02654 05365  0.6334 08051  0.8090  0.9413

0.80 1 02390  0.8341 01800 06419 04964 09925 07016  1.1709
0 02318  0.8345 01670 06419 04898 09926 06992 11710

1 02364  0.8334 01782 06416 04860 09920 06956  1.1702

1.00 1 0.690 09493 01332 07087 04074 11113 06218 13147
0 01780 09522 01374 07105 04324 11149 06438 13192

1 01770 09503 01346 07095 04206 11128 06360 13165

30 0.10 1 09158 02302  0.8022 02145 009528 02837 09838 03170
0 09142 02300 08080 02145 09562 02837 09842  0.3170

1 09156 02302 08088 02145 009556 02837 09852  0.3171

0.30 1 08324 03053 07046 02643 09338 03727 09822  0.4329
0 0.8184 03049 06874 02641 09262 03724 09814  0.4325

1 08216 03050 06940 02642 009338 03726 09836  0.4327

0.50 1 07286 03763 06180 03114 08880 04473 09728 05277
0 07330 03761 06112 03113  0.8906 04472 09736 05276

1 07340 03764 06246 03114 08920 04474 09756 05278

0.80 1 0.6270 04803 05292 03801  0.8288 05521 09552  0.6589
0 0.6304  0.4807 05372 03802  0.8334 05522 09546  0.6501

1 0.6316  0.4807 05318 03802  0.8468 05523 09602  0.6592

1.00 1 05692 05495  0.4864 04254  0.8046 06203 09458  0.7435
0 05624 05492 04874 04253 07962 06201 09460  0.7433

1 05784 05494  0.4946 04253  0.8026  0.6202 09388  0.7434

50 0.10 1 09306  0.1776  0.8630 01653 009642 02182 009902  0.2478
0 09282 01777  0.8604 01653 009682 02182 09926  0.2477

1 09304 01776  0.8596 01653  0.9684 02182 09934  0.2478

0.30 1 0.8704 02362 07812 02043 09520 02869  0.9924  0.3403
0 08738 02362 07784 02043 09512 02868 09926  0.3402

1 0.8790 02363 07828 02043 09512 02869 09924  0.3404

0.50 1 0.8270 02914 07312 02416 009352 03446 09914  0.4163
0 08126 02913 07206 02415 09302 03444 09900  0.4160

1 0.8242 02914 07258 02416 009316 03446 09878  0.4163

0.80 1 07514 03714 06546 02960  0.8986 04252 09880 05208
0 07500  0.3714 06492 02960  0.9006 04252 09838 05207

1 07620 03716  0.6656 02961  0.9046 04254 09854 05209

1.00 1 07028  0.4242 06142 03318 08790 04776 09798 05878
0 07076  0.4242 06194 03318 08770 04776 09816 05878

1 07150 04242 06318 03320  0.8808 04779 09840 05882
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VI. AN EMPIRICAL APPLICATION

In this section, two real data examples are used to illustrate the given approaches in section 2. Both examples
also used by Lin and Wang (2013) to illustrate the approaches to calculate the 95% confidence intervals for
common mean of lognormal distributions. The first example (A) was the medical charge data discussed by
McDonald et al. [22], Zhou et al. [23], and Tian and Wu [4]. The data set (A) was divided into two groups, 119
of them were an American group and 106 of them were the white group. The second example (B) was the
pharmacokinetics data from alcohol interaction in men which was studied by Bradstreet and Liss [24]. The data
set (B) was equally divided into three groups, 22 of them were group 1, group 2 and group 3. Both examples
also used by Lin and Wang [5] to illustrate the approaches to calculate the 95% confidence intervals for
common mean of lognormal distributions. The sample mean and the sample variance of the log-transformed
data for the data set (A) were (9.067, 1.825) and (8.693, 2.693), respectively and the sample mean and the
sample variance of the log-transformed data for the data set (B) were (2.601, 0.24), (2.596, 0.20) and (2.599,
0.17), respectively.

Using the purposed approaches to construct 95% confidence intervals for overall variance of lognormal
distributions, the results showed that the GCI approach Cl ., =(21.0999, 23.0355) with an interval length of

1.9356, the LS approach Cl ¢ =(21.2582, 22.6841) with an interval length of 1.4259, the AM-Cox approach
Cl v cox = (21.0265, 23.0577) with an interval length of 2.0312 and the AM-Angus approach Cl,, s =

(21.0228, 23.7104) with an interval length of 2.6876. For data set (B), results showed that the GCI approach was
Clg, = (3.4638, 4.5040) with the length of interval 1.0402. In comparison, the confidence interval by the large

sample approach was Cl ¢ = (3.4420, 4.3380) with the length of interval 0.8960. In comparison, the confidence
interval by the Adjusted MOVER based on cox’s method approach was Cl,, ., = (3.3376, 4.5941) with the

length of interval 1.2564 and the confidence interval by the adjusted MOVER based on Angus’s conservative
method approach was Cl 0. = (3.3243, 4.7579) with the length of interval 1.4336.

In summary, the results from above two examples show that the Adjusted MOVER based on cox’s
method approach is much closer to sample variances and length of interval is shorter than the other approaches,
which support the simulation results in the previous section. In simulation, the large sample confidence interval
has the shortest average lengths because the coverage probabilities provide less than the nominal confidence
level of 0.95. Moreover, the large sample confidence interval uses the concept of the central limit theorem.
Hence, the coverage probability of the large sample confidence interval is close to nominal confidence level of
1-« when the sample size is large. Therefore, the large sample approach is not recommended to construct the
confidence interval for the common variance of lognormal distributions when the sample size is small. Clearly,
results from the two real data examples support the results of the simulation.

VII. CONCLUSIONS

This article has presented a simple approach to construct confidence intervals for common variance of
lognormal distributions. The four approaches were the generalized confidence interval approach (GCI), the large
sample approach (LS) and the adjusted MOVER approach based on cox’s method (AM-Cox) and Angus’s
conservative method (AM-Angus). Simulation results showed that the LS approach gave unsatisfactory
coverage probabilities. The coverage probabilities of the GCI approach was close to the nominal confidence
level at 0.95. The AM-Cox approach overestimated the coverage probabilities same as the AM-Angus approach,
but the AM-Angus approach gave an excellent result in almost all cases. Additionally, the coverage probabilities

of all approaches depend on k, n and &*, when n were small and when k and o increased. It has been shown
that the interval estimates tend to drop from the nominal level at 0.95.

Overview, the average lengths increased when the value of &% increased for all approaches. The results
indicated that the confidence interval for the common variance of lognormal distributions based on the AM-
Angus approach provides stable coverage probabilities and average lengths. In conclusion, the AM-Angus
approach can be successfully used to estimate the common variance of lognormal distributions.
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