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Abstract : The aim of this paper is to investigate constructing confidence intervals for the common variance 

of lognormal distributions using four approaches, namely the generalized confidence intervals approach (GCI), 

the large sample approach (LS) and the adjusted method of variance estimates recovery approach (Adjusted 

MOVER) based on cox’s method (AM-Cox) and based on Angus’s conservative method (AM- Angus). The 

natural logarithm transformation was used to change the data to a normal distribution. The proposed intervals 

were evaluated focusing on coverage probability and average length using a Monte Carlo simulation. The 

results showed that the AM- Angus approach performs well in terms of coverage probability, but the average 

length was wide. Moreover, the coverage probability of the AM-Cox approach was closer to the nominal level 

more than the GCI approach. All approaches are illustrated using two real data examples. 
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I. INTRODUCTION 

Lognormal distribution is a continuous probability distribution of a random variable whose natural logarithm 

function is close to normal distributed. Sometimes, the lognormal is called the anti-lognormal distribution, 

because it is not the distribution of the logarithm of a normal variable, but is instead the anti-log of a normal 

variable (Johnson and Kotz [1]). The lognormal distribution has been used in a wide range of applications, such 

as environmental study, survival analysis, biostatistics and other statistical fields. 

One of the main interests in statistical inferences is construction of the confidence intervals for the parameter 

of lognormal distribution. Thus, estimating the common parameter of several lognormal populations is one of 

the most interesting problems. There has been many papers investigating approaches for the construction of 

confidence intervals for lognormal distributions in terms of the common mean. For example, interval estimation 

of common lognormal mean of several populations was studied by Baklizi and Ebrahem [2], then Behboodian 

and Jafari [3] presented the generalized inference for the common mean of several lognormal populations, and 
then inferences on the common mean of several log-normal populations: The generalized variable approach was 

proposed by Tian and Wu [4] and Lin and Wang [5], they proposed a modified method on the means for several 

log-normal distributions. On the other hand, the construction of confidence intervals for lognormal distributions 

in terms of the common variance has not yet gained attention from other researchers. Thus, researchers of this 

paper have been motivated by ideas from previous papers about common mean to construct confidence intervals 

of common variance for lognormal distributions. Therefore, methods to construct confidence intervals for a 

common variance of lognormal distributions using the generalized confidence intervals approach (GCI), large 

sample approach (LS) and adjusted method of variance estimates recovery approach (adjusted MOVER) based 

on cox’s method (AM-Cox) and Angus’s conservative method (AM-Angus) are proposed. The concept of 

generalized confidence interval was introduced by Weerahandi [6] and since then these ideas have been 

frequently applied to develop confidence intervals for many common parameters and the results are all 
contented. Example works of Tian and Wu [4], Tian [7], Krishnamoorthy [8], Ye et al. [9] and Lin Shu-Hui and 

Jack C. Lee [10] pay attention to common mean. Tian [11] and C. K. NG [12] were interested in common 

coefficient. In addition, Tian and Wilding [13] was also interested in common correlation coefficient. The 

method of variance of estimates recovery (MOVER) was described by Zou and Donner [14]. Moreover, 

numerous applications see papers by Donner and Zou [15], Suwan and Niwitpong [16], Li et al. [17] and 

Sangnawakij and Niwitpong [18] have been studied. Thangjai and Niwitpong[19] proposed an adjusted method of 

variance estimates recovery approach (adjusted MOVER). This approach used the concept of the Mover to 

develop an approach to construct the confidence intervals from several populations; the result of this approach 

was satisfactory. Therefore, the object of this paper is to present four approaches which can construct the 

confidence intervals of common variance for the lognormal distributions obtained from the transformed data and 

then compare them for each situation. Based on the literature review, there has been no previous works focusing 

on construction of the confidence intervals of common variance for lognormal distributions the using proposed 
approaches. 
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The rest of the paper is structured as follows. Section 2 provides preliminaries of variance of lognormal 

distribution. Section 3 presents the four approaches developed and describes the computational procedures. 

Section 4 presents simulation results to evaluate performances of the four approaches on coverage probabilities 

and average lengths. Two real data sets are used to illustrate the proposed approaches in Section 5. The paper 

closes with a conclusion. 

II. LOGNORMAL DISTRIBUTION AND PARAMETER OF INTEREST 

Let 
1 2( , , , )nY Y Y Y   be independent and identically distributed as lognormal with parameters   and 2 . 

This is to say that the log-transformed variables  
1 1 2 2log , log ,...., logn nX Y X Y X Y    are independent and 

identically distributed as normal, denoted here as 2( , )N   .  

It is well known that the mean and variance of Y are 
2

( ) exp
2

E Y


 
 

   
 

               (1)  

    2 2 2 2 2var( ) exp 2 exp( ) 1 exp( ) 1Y            .       

 (2) 

Consider k  independent lognormal populations with a common variance .  

Let 1 2, , ,
ii i inY Y Y  be a random sample from the i -th lognormal population. This is to say that the log-

transformed variables 2log ( , )il il i iX Y N    , for 1,...,i k , 1,..., ll n . 

This chapter develops a confidence interval for the common variance. The following parameter of interest for 

common variance 

Thus, the common variance is   2 2exp 2 exp( ) 1      .                                (3) 

The common log-variance is   2 2log 2 log exp( ) 1         .                     (4) 

Let  
iX  and  2

iS  denote the sample mean and variance for log-transformed data iX for the i -th sample 

respectively. Let ix  and 2

is  denote the observed sample mean and variance respectively.  

The estimator of   has the following form 

 2 2ˆ 2 log exp(S ) 1   i i i iX S  ,  ˆ
i iX  , 2 2ˆ

i iS  .      (5) 

The variance of ˆ
i  is 

2
2 4 2 4

2

4 2 exp( ) 2ˆ( )
1 1exp( ) 1

i i i i

i

i i ii

Var
n n n

   




    
       

      

.                (6) 

The estimator and variance of estimator are used to construct confidence intervals for the common variance 

of lognormal distributions in the next sections. 

 

LEMMA 1 . For a function g and random variable X we have 

[g(X)] [ (X)]E g E   and 

2var[g(X)] var(X){g [E(X)]} . 

In particular  
2

1
var[log(X)] var(X)

{E(X)}
 . 

Proof. The first two terms of the Taylor series for g are: 

  (x) g(a) (x a)g (a) ....   g  

Setting (X)a E  

(x) g[ (X)] [x (X)]g [ (X)]  g E E E  .          (*) 

Taking expectations on both sides of (∗) gives 

[g(X)] [ (X)]E g E . 

Squaring both sides of (∗) and taking the expectation gives 
2 2 2 2[ (x)] g[ (X)] [x (X)] {g [ (X)]} 2 [E(X)][x (X)]g [ (X)]     g E E E g E E  

2 2 2E{[ (x)] } {g[ (X)]} var(X){g [ (X)]} g E E  

So   
2 2var[g(X)] [g(X) ] [g(X)] E E  
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2var[g(X)] var(X){g [E(X)]} . 

The following lemma plays an important role in the derivation of the confidence intervals. 

 

THEOREM 1 Let 2log ~ ( , )il il i iX Y N   , 1,2, ,i k  , 1,2, , il n   where 2,i i   are respectively population 

mean and population variance of 
iX . Then the estimator of   is 2 2ˆ 2 log{exp( ) 1}    i i i iX S S , the variance 

of ˆ
i  is 

2
2 4 2 4

2

4 2 exp( ) 2ˆ( )
1 1exp( ) 1

i i i i

i

i i ii

Var
n n n

   




    
       

      

.  

Proof.  According to LEMMA 1  

2

1
var[log(X)] var(X)

{E(X)}
 . 

Hence,  2 2

2 2

1
[log{exp( ) 1}] [exp( ) 1]

{E[exp( ) 1]}
  


i i

i

Var S Var S
S

. 

Let 2 2( ) exp( ) 1i ig    , 2 2( ) exp( )i ig    exists and is not 0. Using the Delta method, one can obtain the 

following approximate expression for the mean and variance of 2exp(S ) 1i  ; 

  2 2 2[exp(S ) 1] ( ) exp( ) 1    i i iE g , 

            
4

2 2 2 2 2 2 2
[exp(S ) 1] { ( )} (S ) {exp( )}

1


 

 
    

 

i

i i i i

i

Var g Var
n

. 

So,    
2

2 4

2

2

exp( ) 2
log exp(S ) 1

1exp( ) 1

i i

i

ii

Var
n

 



   
           

.  

Therefore,                
2

2 4 2 4

2

4 2 exp( ) 2ˆ
1 1exp( ) 1

i i i i

i

i i ii

Var
n n n

   




    
       

      

.  

III. THE APPROACHES OF CONFIDENCE INTERVAL ESTIMATION 

1) The generalized confidence interval approach 

An important concept of generalized confidence intervals (GCI) is based on the generalized pivotal quantity 

(GPQ) for a parameter , which was introduced by Weerahandi [6]. A generalized pivot ( , x, , )R X    for interval 

estimation, where X is a random sample from a distribution which depends on a vector of parameters ( , )   , 

  is a nuisance parameters, x  is an observed value of X , as a random variable having the following two 

properties: 

1. ( , x, , )R X    has a distribution free of the vector of nuisance parameters  . 

2. The observed value of ( , x, , )R X   is  . 

Let R  be the 100 -th percentile of R . Then R  becomes the 100(1- )%  lower bound for   and .. 

becomes a 100(1- )%  two-side generalized confidence interval for  . 

Let iX and 2

iS denote the sample mean and variance for log-transformed data ilX for the i -th sample 

respectively, ix  and 2

is  denote the observed sample mean and variance respectively. So, 2 2( 1)i i i in S V    

where iV  is 2 variates with degree of freedom 1in  . 

The generalized pivotal quantity to estimate 2

i  based on the i -th sample can be defined as  

                              2

2 2

2

1

( 1) ( 1)
~

i

i

i i i i

i n

n s n s
R

V  

 
 .                                                    (7) 

 

 

The generalized pivotal quantity to estimate i  based on the i -th sample can be defined as 

                             
2(n 1)s

i

i i i

i

ii

Z
R x

nU



  ,                                             (8) 
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where 
iZ  and 

iU  denote standard normal variate and 2 variate with degree of freedom 1in   respectively.  

The generalized pivotal quantity for estimating   based on the i -th sample is 

 2 22 log exp( ) 1
i i i i

R R R R   
    .                                              (9) 

From the i -th sample, the maximum likelihood estimator of   is 

 2 2ˆ ˆ ˆ ˆ2 log exp( ) 1i i i i       , where ˆ
i iX  , 2 2ˆ

i iS                (10) 

The sample variance for ˆ
i  is 

2
2 4 2 4

2

4 2 exp( ) 2ˆ( )
1 1exp( ) 1

i i i i

i

i i ii

Var
n n n

   




    
       

      

, see Theorem 1.       (11) 

The generalized pivotal quantity proposed for the common log-variance log   is a weighted average of the 

generalized pivot 
i

R  based on k  individual samples as; Tian and Wu [4]. 

         

( )

1

1 i

k i

wi

k

wi

R R
R

R












,                                                        (12) 

where                                      
ˆ( )

1
i

i

w

Var

R
R



 ,                                                 (13) 

 

   2 22 2

2

2 22

ˆ

2 24 exp( )

1 exp( ) 1 1

i ii i

i

i

Var
i i i

R RR R
R

n n R n

  





  
   
            

  

.                  (14) 

That is, ˆ( )iVar
R


 is ˆ( )iVar   with 2

i  replaced by 2
i

R


. 

Therefore, the 100(1- )%  two-sided confidence interval for the common variance of lognormal distributions 

  based on the GCI approach is  

    ( , ) exp ( / 2) ,exp (1 / 2)GCI GCI GCICI L U R R     ,              (15) 

where ( / 2)R   and (1 / 2)R   denote the 100( / 2) -th and 100(1 / 2) -th percentiles of R , 

respectively. 
 

Algorithm 1 

For a given data set ijX  for 1,2, ,i k  , 1,2, , ij n  , the generalized confidence intervals for   can be 

computed by the following steps. 

1)  Compute ix  and 2

is  for 1,2, ,i k  . 

2)  Generate 2

1~
ii nV    and then calculate 2

i

R


 from (1) for 1,2, ,i k  . 

3)  Generate ~ (0,1)iZ N  and 2

1~
ii nU   , then calculate 

i
R  from (2) for 1,2, ,i k  . 

4)  Calculate 
i

R  in equation (9) for 1,2, ,i k  . 

5)  Repeat steps 2-3, calculate 
iwR  from (7) and (8) for 1,2, ,i k  . 

6)  Compute R following (6). 

7)  Repeat step 2- 6 a total m  times and obtain an array of R ’s. 

8)  Rank this array of R ’s from small to large. 

The  ( / 2), (1 / 2)R R    is a two-sided 100(1- )%  confidence interval. 

 

2) The Large Sample Confidence Interval for the Common Variance 

The large sample confidence interval is the standard confidence interval. According to Graybill and Deal [20], 

the large sample estimate of the log-variance of lognormal distribution is a pooled estimated unbiased estimator 

of the log-variance defined as follows: 

                                           
1 1

ˆ 1ˆ
ˆ ˆ( ) ( )

k k
i

i ii i

θ
θ

Var θ Var θ 

  ,                                          (16) 
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where ˆ
i  is defined in equation (5) and ˆ( )iVar   is an estimate of ˆ( )iVar   in equation (6) with 

i  and 2

i  

replaced by 
ix  and 2

is , respectively.  

Therefore, the 100(1- )%  two-sided confidence interval for the common variance of lognormal distributions 

  based on the large sample approach is 

 
1 /2 1 /2

1 1

1 1ˆ ˆ( , ) exp 1 ,exp 1
ˆ ˆ( ) ( )

 

 

    
       

    
    

 
k k

LS LS LS

i ii i

CI L U z z
Var Var

  
 

,                  (17) 

where 
1 /2z   is the (1 / 2) -th quantile of the standard normal distribution.  

 

3) The Adjusted Method of Variance Estimates Recovery Confidence Interval for the Common Variance 

The concept of the adjusted method of variance estimates recovery approach (the Adjusted MOVER) is based 

on the large sample approach and the method of variance estimates recovery approach (the Mover). The Mover 

approach was proposed by Zou and Donner [14], which considers confidence interval for two parameters
1 2  , 

the lower limit L and the upper limit U are given by 

                            
1 2 2 1 2
ˆ ˆ ˆ ˆˆ ˆ[ , ] ( ) var( ) var( )L U z       ,                                  (18) 

Suppose the 100(1 )% two-sided confidence interval for 
i is given by ,i il u , 1,2i  . 

Thus, the estimates variances near the lower ˆˆvar( )i  and upper ˆˆvar( )i limits of 
i  as 

 
2

2

/2
ˆ ˆˆ r ( )i i iva l z   ,  

2
2

/2
ˆ ˆˆ r ( )i i iva u z   . 

For 1,2i  , two-side 100(1 )%  confidence limits for 1 2   given as 

         
2 2 2 2

1 2 1 1 2 2 1 2 1 1 2 2
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ, ( ) , ( )

 
           
 

L U l l u u        .                 (19) 

Let 1 2, , , k    be k  parameters of interest, where the estimates 1 2
ˆ ˆ ˆ, , , k    are independent. The concept of 

the Mover was used to construct of a 100(1 )%  two-sided confidence interval (L, U) for 1 2 k     , the 

lower limit L  and upper limit U  is defined as follows: 

                   1 2 /2 1 2
ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ( ) ( ) ( ) ( )k kL z Var Var Var                               (20) 

and 

    1 2 /2 1 2
ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ( ) ( ) ( ) ( )k kU z Var Var Var              ,               (21) 

Suppose the 100(1 )%  two-sided confidence interval for i is given by  ,i il u ,where 1,2,..,i k . Thus, the 

variance estimate for ˆ
i at i il   and i iu   are equal to 

     2 2

i i /2
ˆ ˆˆvar( ) ( )il z   ,  2 2

i i /2
ˆ ˆˆvar( ) ( )iu z   .             (22) 

Therefore, the lower limit L and upper limit U for 1 2 k      is given by 

2 2 2

1 2 1 1 2 2
ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )k k kL l l l                            (23) 

and                

2 2 2

1 2 1 1 2 2
ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )k k kU u u u                 ,              (24) 

where / 2z  denotes the ( / 2) -th quantile of the standard normal distribution. 

The Adjusted MOVER approach was motivated based on concepts of the large sample approach in 

equations (16), (17) and the MOVER approach in equations (18)-(24). According to Graybill and Deal [20], the 

common log-variance   is weighted average of the log-variance ˆ
i  based on k  individual samples is defined as 

follows: 

                          
1 1

ˆ 1ˆ
ˆ ˆ( ) ( )

k k
i

i ii iVar Var




  

  ,                                      (25) 

where the variance estimate for ˆ
i  at i il   and i iu   is the average variance between these two variances 

and given by 
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2 2
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

  
   

 

; 1,2, ,i k  ,                    (26) 

 where 
/ 2z  denotes the ( / 2) -th quantile of the standard normal distribution. 

Therefore, the lower limit L  and upper limit U  for the common variance   are given by 

             
2

/2
1 /2 2

1

ˆ 1
ˆ( )

k

i i i

z
L z

l









 


 ,    
2

/2
1 /2 2

1

ˆ 1
ˆ( )

k

i i i

z
U z

u









 


 ,                  (27) 

where  2 2ˆ 2 log exp( ) 1i i i iX S S      and ̂  is defined in equation (25). 

Therefore, the adjusted MOVER solution for confidence interval estimation is 

         
2 2

/2 /2
1 /2 1 /2( ) 2 ( ) 2

1 1

ˆ ˆ(L, U) 1 , 1
ˆ ˆ( ) ( )

k k

i i
i ii i

z z
z z

l u

 
  

 
 

 

 
   
   

  .                    (28) 

From the i -th sample, where 1,2,..,i k . The common log-variance   is 

 2 2log 2 log exp( ) 1          

             2 22 2 log exp( ) 1                     (29) 

Let  2

1 2 2    ,  ( ) 2

1
ˆ ˆ ˆ2 2i

i i    , where ˆ
i iX  , 2 2ˆ

i iS  . 

Following Chami et al. [21], two methods for constructing the 100(1- )%  confidence interval for log-mean 

 2 2i i   of lognormal are Cox’s method and Angus’s conservative method. 

According to Cox’s method, the confidence interval for ( )

1
ˆ i is 

 
2 2 4 2 2 4

1 1 1 /2 1 /2, 2 ,2
2 2( 1) 2 2( 1)

 

    
          
     
    

i i i i i i

i i i i

i i i i

S S S S S S
l u X z X z

n n n n
  .             (30) 

According to Angus’s conservative method, the confidence interval for ( )

1
ˆ i is 

 
2 2 2 2

1 /2,( 1) /2,( 1)2 2

2 2, 2 1 ,2 1
2 2 2 2

  
       
             
           

i in ni i i i
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i i

t qS S S S
l u X S X S

n n

 
      (31) 

which 1 /2,( 1)nt   be the 1-   percentile of a t-distribution with  n-1 degrees of freedom, and let 

/2,( 1) 2

,(n 1)

1
1

2
n

n n
q






 
  

 
 

where 2

,(n 1)  is the  - percentile of the chi-square distributions with n-1 degrees of 

freedom.  

Let  2

2 log exp( ) 1i   ,  ( ) 2

2
ˆ ˆlog exp( ) 1i

i   , where 2 2ˆ
i iS  . 

The confidence interval for ( )

2
ˆ i is  

 
2 2( 1)S ( 1)S

, log exp 1 , log exp 1i i i i

i i

n n
l u

V U

        
                    

,           (32) 

where iV  denotes the (1 / 2) -th quantile of the chi-square distribution with 1in   degrees of freedom and iU  

denotes the ( / 2) -th quantile of the chi-square distribution with 1in   degrees of freedom. 

The common parameter 1 and 2  is weighted average of ( )

1
ˆ i  and ( )

2
ˆ i based on k  individual samples. It is 

defined in equation (25) and variance estimate for ( )

1
ˆ i and ( )

2
ˆ i in equation (26) 

Consequently, L  and U are defined in equation (28). One obtains two groups of confidence intervals  1 1, ui il  in 

equation (30) and  2 2, ui il in equation (31) which are defined by am1 and am2.  

 

Hence, the confidence intervals based on cox’s method (am1) of common 1  is  

http://www.ijmttjournal.org/


International Journal of Mathematics Trends and Technology (IJMTT) – Volume 66 Issue 1 - Jan 2020 
 

ISSN: 2231-5373                                http://www.ijmttjournal.org                               Page 141 

        
2 2

/2 /2
1 1 1 1 /2 1 /2( ) 2 ( ) 2

1 11 1 1 1

ˆ ˆ(L , U ) 1 , 1
ˆ ˆ( ) ( )

k k

am am i i
i ii i

z z
z z

l u

 
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 

 
   
   

  .        (33) 

The confidence intervals based on Angus’s conservative (am2) of common 
1  is 

       
2 2

/2 /2
2 2 1 1 /2 1 /2( ) 2 ( ) 2
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ˆ ˆ(L , U ) 1 , 1
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  

 
 

 

 
   
   

  .       (34) 

Consequently, L  and U are defined in equation (28). One gains a group of confidence intervals  , ui il  in 

equation (33) which is defined by am. 

Hence, the confidence intervals (am) of common 
2  is 

        
2 2
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2 1 /2 2 1 /2( ) 2 ( ) 2

1 12 2

ˆ ˆ(L , U ) 1 , 1
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am am i i
i ii i

z z
z z

l u

 
  

 
 

 

 
   
   

  .         (35) 

Therefore,   2 2

1 22 log exp( ) 1           . 

Hence, the adjusted MOVER approach based on cox’s method (AM-Cox) for confidence interval estimation 

of common variance is  

 1 1CL (L ,U ) exp(L L ), exp( )AM Cox AM Cox AM Cox am am am amU U      .        (36) 

The adjusted MOVER approach based on Angus’s conservative method (AM-Angus) for confidence interval 

estimation of common variance is  

               2 2CL (L ,U ) exp(L L ), exp( )AM Angus AM Angus AM Angus am am am amU U      .   (37) 

IV. SIMULATION STUDIES AND RESULTS 

The performance of the proposed confidence intervals for common variance  of lognormal is investigated in 

term of coverage probability and the average length through simulation with the R statistical program. We 
choose a confident interval, which has coverage probability greater than or close to the nominal coverage level 

at 0.95, and a shortest length interval. 

In simulation, the data are generated from lognormal distributions for various combinations of the number of 

samples k   2, 4, 6 and 10, as estimated from 5000 randomly generated samples selected from a normal 

distribution having sizes 1 2 kn n n n   = 10, 30 and 50. The population variances used were 2 2

1 2    

2 2

k  = 0.10, 0.30, 0.50, 0.80 and 1.00 and the common log   take -1, 0 and 1. For the GCI approach, 

2500 R ’s were obtained for each of the random samples. The results of the 95% confidence intervals of 

common variance   are show in Table 1- Table 4, respectively. 

The following algorithm is used to estimate the coverage probability and average length: 

 

Algorithm 2 

Step 1   For h =1 to M  

Generate data set 1 2, , ,
ii i inx x x  from 2( , )iN   , 1, ,i k   

Compute ix  and 2

is  

Step 2      Use Algorithm 1 to construct ( ) ( )( , )GCI h GCI hL U  

Use equation (18) to construct ( ) ( )( , )LS h LS hL U  

Use equation (37) to construct ( ) ( )( , )AM Cox h AM Cox hL U   

Use equation (38) to construct ( ) ( )( , )AM Angus h AM Angus hL U   

If ( ) ( )( )h hL U  , then set ( )hp  1; else set ( )hp   0  

Compute ( ) ( )h hU L  

(end h  loop) 

Step 3     Compute coverage probabilities and average lengths of the confidence intervals 
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Table 1-Table 4 present the coverage probabilities and average lengths for 2, 4, 6 and 10 sample cases, 

respectively. In all sample cases, the GCI approach tends to underestimate the coverage probabilities as the 

number of samples goes up and depends on k and 2 , when the k and 2 increases. It is shown that the proposed 

the GCI interval estimates tend to drop from the nominal level 0.95. The coverage probabilities of the LS 

approach were less than the nominal coverage level for all of the scenarios. The AM-Cox approach provide 

coverage probabilities close to the nominal confidence level at 0.95, but the coverage probabilities depends on k, 

n and 2 , when n are small and k and 2 increases. It was also shown that the AM-Cox approach tends to drop 

from the confidence level at 0.95. The AM-Angus approach tends to have high coverage probabilities compared 

with the nominal level 0.95 for 2 and 4 sample cases. However, for k > 4, the coverage probabilities depend on n 

and 2 similar to the AM-Cox approach.  

Overall, the AM-Cox approach was found to have the coverage probabilities close to the nominal level better 

than the AM-Angus approach, GCI approach and the LS approach respectively. Additionally, performance of all 

the approaches in terms of average lengths increased when 2 increased. The average lengths of the LS approach 

was shorter than the GCI approach, AM-Cox approach and the AM-Angus approach, respectively. However, 

this study selected the approaches with the values of coverage probabilities close to the nominal confidence 

level at 0.95 and shortest average lengths. Finally, it was also discovered that the AM-Cox approach performed 
well for all cases and the average lengths were wide compared with another approaches.  

V. TABLE I 

The coverage probability (CP) and average length (AL) of 95% two-sided confidence intervals for the common variance of lognormal 

distributions : 2 sample cases 

n 
2

i    GCICI  
LSCI  

AM CoxCI  AM AngusCI  

CP AL CP AL    CP 

10 0.10 -1 0.9466 1.6672 0.8884 1.4816 0.9746 2.0120 0.9886 2.2472 

  0 0.9500 1.6723 0.8994 1.4839 0.9808 2.0173 0.9728 2.2541 

  1 0.9514 1.6695 0.8996 1.4825 0.9772 2.0144 0.9860 2.2503 

 0.30 -1 0.9436 2.2817 0.8592 1.8091 0.9722 2.6676 0.9886 3.0904 

  0 0.9406 2.2820 0.8572 1.8087 0.9698 2.6661 0.9838 3.0882 

  1 0.9396 2.2827 0.8470 1.8094 0.9682 2.6663 0.9852 3.0882 

 0.50 -1 0.9360 2.8754 0.8284 2.1205 0.9584 3.2376 0.9788 3.8001 

  0 0.9400 2.8811 0.8252 2.1240 0.9600 3.2443 0.9820 3.8085 

  1 0.9420 2.8773 0.8258 2.1213 0.9634 3.2398 0.9830 3.8029 

 0.80 -1 0.9424 3.7267 0.8084 2.5730 0.9530 4.0552 0.9780 4.7981 

  0 0.9438 3.7484 0.8064 2.5812 0.9538 4.0690 0.9788 4.8146 

  1 0.9394 3.7407 0.8042 2.5794 0.9508 4.0667 0.9780 4.8118 

 1.00 -1 0.9396 4.3103 0.7954 2.8792 0.9466 4.6069 0.9758 5.4616 

  0 0.9336 4.3019 0.7928 2.8760 0.9404 4.6026 0.9720 5.4565 

  1 0.9374 4.2960 0.7818 2.8709 0.9462 4.5935 0.9768 5.4459 

30 0.10 -1 0.9480 0.9082 0.9186 0.8317 0.9816 1.1040 0.9902 1.2352 

  0 0.9516 0.9083 0.9224 0.8316 0.9806 1.1038 0.9898 1.2350 

  1 0.9462 0.9078 0.9174 0.8314 0.9792 1.1035 0.9902 1.2345 

 0.30 -1 0.9460 1.2184 0.8888 1.0269 0.9780 1.4534 0.9932 1.6899 

  0 0.9522 1.2219 0.8982 1.0288 0.9768 1.4564 0.9908 1.6937 

  1 0.9422 1.2200 0.8860 1.0279 0.9764 1.4548 0.9904 1.6917 

 0.50 -1 0.9486 1.5159 0.8746 1.2163 0.9732 1.7529 0.9904 2.0708 

  0 0.9438 1.5121 0.8706 1.2147 0.9706 1.7499 0.9898 2.0669 

  1 0.9472 1.5122 0.8726 1.2139 0.9712 1.7491 0.9906 2.0660 

 0.80 -1 0.9482 1.9433 0.8504 1.4906 0.9720 2.1700 0.9914 2.5928 

  0 0.9448 1.9408 0.8600 1.4899 0.9648 2.1690 0.9872 2.5916 

  1 0.9464 1.9392 0.8588 1.4893 0.9678 2.1681 0.9880 2.5906 

 1.00 -1 0.9436 2.2209 0.8466 1.6710 0.9644 2.4417 0.9884 2.9293 

  0 0.9434 2.2235 0.8448 1.6716 0.9620 2.4424 0.9870 2.9300 

  1 0.9368 2.2195 0.8494 1.6686 0.9582 2.4380 0.9884 2.9247 

50 0.10 -1 0.9516 0.6961 0.9242 0.6408 0.9834 0.8475 0.9910 0.9631 

  0 0.9528 0.6956 0.9288 0.6405 0.9822 0.8471 0.9916 0.9625 

  1 0.9524 0.6958 0.9282 0.6406 0.9838 0.8473 0.9912 0.9628 

 0.30 -1 0.9488 0.9330 0.9046 0.7939 0.9808 1.1170 0.9942 1.3263 

  0 0.9482 0.9321 0.9004 0.7934 0.9788 1.1162 0.9932 1.3252 

  1 0.9504 0.9310 0.9066 0.7926 0.9800 1.1151 0.9932 1.3237 

 0.50 -1 0.9518 1.1525 0.8854 0.9393 0.9782 1.3415 0.9920 1.6217 

  0 0.9482 1.1525 0.8784 0.9393 0.9748 1.3415 0.9914 1.6217 

  1 0.9438 1.1527 0.8816 0.9392 0.9734 1.3414 0.9930 1.6216 

 0.80 -1 0.9474 1.4726 0.8706 1.1538 0.9698 1.6591 0.9912 2.0332 

  0 0.9460 1.4758 0.8670 1.1554 0.9678 1.6614 0.9900 2.0361 

  1 0.9478 1.4738 0.8658 1.1545 0.9708 1.6601 0.9908 2.0344 

 1.00 -1 0.9448 1.6855 0.8608 1.2968 0.9662 1.8680 0.9868 2.3006 

  0 0.9458 1.6860 0.8528 1.2967 0.9676 1.8679 0.9898 2.3006 

  1 0.9448 1.6852 0.8576 1.2968 0.9654 1.8681 0.9898 2.3008 
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TABLE II 

The coverage probability (CP) and average length (AL) of 95% two-sided confidence intervals for the common variance of lognormal 

distributions : 4 sample cases 

n 
2

i    GCICI  
LSCI  

AM CoxCI  AM AngusCI  

CP AL CP AL CP AL CP AL 

10 0.10 -1 0.9398 1.1447 0.8738 1.0477 0.9766 1.4159 0.9866 1.5792 

  0 0.9338 1.1443 0.8664 1.0478 0.9664 1.4156 0.9824 1.5786 

  1 0.9332 1.1429 0.8668 1.0470 0.9708 1.4135 0.9836 1.5759 

 0.30 -1 0.9086 1.5301 0.8030 1.2727 0.9570 1.8623 0.9780 2.1529 

  0 0.9140 1.5261 0.8108 1.2705 0.9568 1.8573 0.9824 2.1465 

  1 0.9192 1.5311 0.8142 1.2741 0.9630 1.8645 0.9848 2.1557 

 0.50 -1 0.9032 1.8980 0.7726 1.4814 0.9490 2.2433 0.9758 2.6282 

  0 0.8982 1.9069 0.7720 1.4854 0.9480 2.2502 0.9788 2.6366 

  1 0.8954 1.8996 0.7636 1.4833 0.9430 2.2467 0.9738 2.6323 

 0.80 -1 0.8822 2.4418 0.7182 1.7848 0.9274 2.7878 0.9666 3.2943 

  0 0.8734 2.4374 0.7120 1.7823 0.9226 2.7833 0.9644 3.2889 

  1 0.8808 2.4444 0.7186 1.7869 0.9246 2.7922 0.9650 3.2997 

 1.00 -1 0.8746 2.7993 0.7084 1.9828 0.9166 3.1427 0.9638 3.7229 

  0 0.8732 2.7918 0.7020 1.9802 0.9104 3.1387 0.9550 3.7183 

  1 0.8748 2.8042 0.6956 1.9875 0.9138 3.1519 0.9610 3.7340 

30 0.10 -1 0.9462 0.6356 0.9158 0.5877 0.9804 0.7785 0.9906 0.8705 

  0 0.9434 0.6355 0.9114 0.5879 0.9784 0.7788 0.9890 0.8708 

  1 0.9468 0.6357 0.9170 0.5877 0.9798 0.7786 0.9904 0.8706 

 0.30 -1 0.9396 0.8475 0.8794 0.7252 0.9750 1.0246 0.9898 1.1907 

  0 0.9344 0.8476 0.8740 0.7249 0.9746 1.0241 0.9922 1.1900 

  1 0.9394 0.8473 0.8808 0.7248 0.9782 1.0241 0.9926 1.1900 

 0.50 -1 0.9274 1.0489 0.8458 0.8559 0.9688 1.2314 0.9916 1.4536 

  0 0.9274 1.0484 0.8522 0.8555 0.9674 1.2307 0.9892 1.4528 

  1 0.9374 1.0468 0.8524 0.8547 0.9732 1.2296 0.9932 1.4514 

 0.80 -1 0.9274 1.3421 0.8252 1.0471 0.9598 1.5226 0.9888 1.8183 

  0 0.9206 1.3406 0.8246 1.0458 0.9580 1.5205 0.9876 1.8157 

  1 0.9222 1.3424 0.8242 1.0470 0.9548 1.5224 0.9870 1.8180 

 1.00 -1 0.9202 1.5344 0.8140 1.1714 0.9548 1.7098 0.9880 2.0502 

  0 0.9222 1.5352 0.8150 1.1723 0.9562 1.7111 0.9898 2.0518 

  1 0.9164 1.5339 0.8030 1.1717 0.9516 1.7103 0.9860 2.0508 

50 0.10 -1 0.9482 0.4891 0.9174 0.4529 0.9820 0.5984 0.9910 0.6797 

  0 0.9454 0.4893 0.9164 0.4529 0.9786 0.5984 0.9902 0.6798 

  1 0.9498 0.4886 0.9188 0.4527 0.9804 0.5979 0.9912 0.6791 

 0.30 -1 0.9388 0.6527 0.8852 0.5603 0.9792 0.7874 0.9948 0.9344 

  0 0.9452 0.6527 0.8918 0.5603 0.9780 0.7874 0.9936 0.9343 

  1 0.9452 0.6527 0.8960 0.5604 0.9778 0.7876 0.9940 0.9346 

 0.50 -1 0.9384 0.8051 0.8668 0.6626 0.9738 0.9455 0.9916 1.1425 

  0 0.9366 0.8050 0.8576 0.6626 0.9722 0.9455 0.9916 1.1425 

  1 0.9444 0.8058 0.8738 0.6630 0.9766 0.9462 0.9942 1.1435 

 0.80 -1 0.9268 1.0283 0.8470 0.8132 0.9628 1.1688 0.9916 1.4318 

  0 0.9336 1.0281 0.8412 0.8130 0.9654 1.1684 0.9904 1.4313 

  1 0.9338 1.0292 0.8470 0.8135 0.9652 1.1691 0.9926 1.4322 

 1.00 -1 0.9306 1.1762 0.8396 0.9133 0.9608 1.3151 0.9892 1.6192 

  0 0.9266 1.1763 0.8388 0.9132 0.9558 1.3149 0.9906 1.6190 

  1 0.9310 1.1779 0.8474 0.9141 0.9608 1.3163 0.9898 1.6207 

TABLE III 

The coverage probability (CP) and average length (AL) of 95% two-sided confidence intervals for the common variance of lognormal 

distributions : 6 sample cases 

n 
2

i    GCICI  LSCI  
AM CoxCI  AM AngusCI  

CP AL CP AL CP AL CP AL 

10 0.10 -1 0.9302 0.9247 0.8452 0.8548 0.9688 1.1514 0.9840 1.2829 

  0 0.9252 0.9239 0.8450 0.8546 0.9692 1.1510 0.9834 1.2823 

  1 0.9238 0.9247 0.8396 0.8549 0.9668 1.1515 0.9806 1.2829 

 0.30 -1 0.8788 1.2253 0.7662 1.0365 0.9490 1.5110 0.9782 1.7450 

  0 0.8808 1.2241 0.7690 1.0358 0.9460 1.5100 0.9764 1.7438 

  1 0.8866 1.2258 0.7628 1.0367 0.9456 1.5116 0.9760 1.7458 

 0.50 -1 0.8566 1.5187 0.7106 1.2060 0.9318 1.8203 0.9686 2.1311 

  0 0.8520 1.5178 0.7050 1.2055 0.9248 1.8194 0.9666 2.1299 

  1 0.8556 1.5200 0.7142 1.2069 0.9250 1.8223 0.9676 2.1336 

 0.80 -1 0.8292 1.9453 0.6636 1.4499 0.8976 2.2569 0.9510 2.6654 

  0 0.8208 1.9447 0.6462 1.4492 0.9026 2.2562 0.9558 2.6647 

  1 0.8226 1.9494 0.6552 1.4515 0.8942 2.2602 0.9558 2.6696 

 1.00 -1 0.7988 2.2259 0.6198 1.6078 0.8736 2.5396 0.9412 3.0072 

  0 0.7980 2.2227 0.6090 1.6062 0.8756 2.5363 0.9370 3.0031 

  1 0.8010 2.2239 0.6152 1.6056 0.8750 2.5352 0.9404 3.0018 
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TABLE IV (CONTINUED) 

The coverage probability (CP) and average length (AL) of 95% two-sided confidence intervals for the common variance of lognormal 

distributions : 6 sample cases 

n 
2

i    GCICI  
LSCI  

AM CoxCI  AM AngusCI  

CP AL CP AL CP AL CP AL 

30 0.10 -1 0.9470 0.5171 0.9068 0.4798 0.9816 0.6351 0.9928 0.7100 

  0 0.9448 0.5173 0.9056 0.4799 0.9832 0.6355 0.9912 0.7105 

  1 0.9366 0.5177 0.9014 0.4800 0.9784 0.6355 0.9898 0.7105 

 0.30 -1 0.9322 0.6882 0.8606 0.5915 0.9722 0.8351 0.9930 0.9701 

  0 0.9344 0.6885 0.8662 0.5917 0.9788 0.8354 0.9944 0.9706 

  1 0.9224 0.6876 0.8604 0.5912 0.9694 0.8346 0.9914 0.9695 

 0.50 -1 0.9170 0.8500 0.8264 0.6973 0.9654 1.0026 0.9922 1.1831 

  0 0.9092 0.8502 0.8262 0.6979 0.9602 1.0034 0.9898 1.1842 

  1 0.9134 0.8503 0.8280 0.6977 0.9664 1.0033 0.9918 1.1841 

 0.80 -1 0.8942 1.0875 0.7976 0.8532 0.9480 1.2402 0.9830 1.4807 

  0 0.9018 1.0870 0.8032 0.8530 0.9508 1.2400 0.9856 1.4805 

  1 0.9070 1.0877 0.8046 0.8531 0.9566 1.2400 0.9884 1.4806 

 1.00 -1 0.8908 1.2444 0.774 0.9551 0.9418 1.3937 0.9840 1.6709 

  0 0.8994 1.2453 0.7920 0.9561 0.9470 1.3952 0.9846 1.6728 

  1 0.8952 1.2438 0.7752 0.9547 0.9442 1.3930 0.9818 1.6700 

50 0.10 -1 0.9408 0.3081 0.9020 0.2863 0.9780 0.3781 0.9930 0.4294 

  0 0.9442 0.3081 0.9042 0.2863 0.9824 0.3780 0.9948 0.4293 

  1 0.9458 0.3084 0.9080 0.2864 0.9784 0.3781 0.9920 0.4294 

 0.30 -1 0.9258 0.4102 0.8674 0.3541 0.9724 0.4973 0.9924 0.5900 

  0 0.9286 0.4100 0.8684 0.3540 0.9710 0.4972 0.9944 0.5898 

  1 0.9322 0.4104 0.8656 0.3541 0.9748 0.4974 0.9932 0.5901 

 0.50 -1 0.9094 0.5061 0.8312 0.4187 0.9634 0.5972 0.9906 0.7215 

  0 0.9122 0.5059 0.8270 0.4186 0.9668 0.5970 0.9932 0.7212 

  1 0.9112 0.5062 0.8368 0.4189 0.9666 0.5974 0.9928 0.7218 

 0.80 -1 0.8818 0.6449 0.7824 0.5128 0.9504 0.7368 0.9916 0.9024 

  0 0.8904 0.6456 0.7992 0.5134 0.9526 0.7376 0.9926 0.9034 

  1 0.8940 0.6457 0.7954 0.5133 0.9558 0.7375 0.9930 0.9032 

 1.00 -1 0.8780 0.7378 0.7750 0.5757 0.9434 0.8287 0.9910 1.0201 

  0 0.8876 0.7379 0.7898 0.5759 0.9476 0.8291 0.9900 1.0207 

  1 0.8826 0.7376 0.7818 0.5756 0.9454 0.8286 0.9902 1.0199 

TABLE V 

The coverage probability (CP) and average length (AL) of 95% two-sided confidence intervals for the common variance of lognormal 

distributions : 10 sample cases 

n 
2

i    GCICI  
LSCI  

AM CoxCI  AM AngusCI  

CP AL CP AL CP AL CP AL 

10 0.10 -1 0.9060 0.7104 0.7920 0.6617 0.9516 0.8892 0.9762 0.9900 

  0 0.9146 0.7101 0.8012 0.6617 0.9574 0.8893 0.9810 0.9901 

  1 0.9110 0.7107 0.7952 0.6620 0.9534 0.8897 0.9732 0.9906 

 0.30 -1 0.8218 0.9355 0.6846 0.8011 0.9190 1.1646 0.9656 1.3439 

  0 0.8176 0.9360 0.6790 0.8013 0.9132 1.1650 0.9602 1.3444 

  1 0.8258 0.9357 0.6798 0.8011 0.9222 1.1650 0.9682 1.3446 

 0.50 -1 0.7632 1.1551 0.6114 0.9314 0.8862 1.4019 0.9540 1.6401 

  0 0.7732 1.1570 0.6122 0.9319 0.8910 1.4032 0.9546 1.6418 

  1 0.7640 1.1552 0.6048 0.9313 0.8884 1.4017 0.9534 1.6400 

 0.80 -1 0.6984 1.4747 0.5272 1.1165 0.8404 1.7324 0.9268 2.0449 

  0 0.6986 1.4757 0.5252 1.1171 0.8354 1.7338 0.9286 2.0467 

  1 0.7124 1.4781 0.5390 1.1183 0.8372 1.7365 0.9264 2.0501 

 1.00 -1 0.6628 1.6815 0.4838 1.2350 0.8100 1.9431 0.9130 2.2998 

  0 0.6570 1.6789 0.4790 1.2340 0.8016 1.9417 0.9058 2.2982 

  1 0.6622 1.6847 0.4972 1.2368 0.8038 1.9475 0.9120 2.3053 

30 0.10 -1 0.9398 0.3996 0.8900 0.3716 0.9768 0.4918 0.9924 0.5497 

  0 0.9388 0.3996 0.8894 0.3717 0.9750 0.4918 0.9906 0.5498 

  1 0.9376 0.3996 0.8860 0.3716 0.9772 0.4917 0.9914 0.5496 

 0.30 -1 0.9012 0.5306 0.8238 0.4578 0.9652 0.6459 0.9910 0.7502 

  0 0.9068 0.5303 0.8306 0.4576 0.9682 0.6457 0.9922 0.7500 

  1 0.9140 0.5306 0.8384 0.4578 0.9680 0.6459 0.9924 0.7501 

 0.50 -1 0.8862 0.6555 0.7906 0.5402 0.9520 0.7764 0.9856 0.9162 

  0 0.8920 0.6557 0.7936 0.5403 0.9568 0.7766 0.9906 0.9164 

  1 0.8850 0.6551 0.7966 0.5398 0.9536 0.7758 0.9870 0.9154 

 0.80 -1 0.8636 0.8383 0.7448 0.6603 0.9446 0.9594 0.9872 1.1453 

  0 0.8598 0.8365 0.7468 0.6591 0.9368 0.9576 0.9836 1.1431 

  1 0.8592 0.8367 0.7448 0.6593 0.9398 0.9580 0.9854 1.1436 

 1.00 -1 0.8392 0.9567 0.7168 0.7378 0.9230 1.0762 0.9808 1.2901 

  0 0.8456 0.9589 0.7348 0.7390 0.9294 1.0781 0.9796 1.2924 

  1 0.8414 0.9580 0.7298 0.7386 0.9174 1.0775 0.9782 1.2917 
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TABLE VI (CONTINUED) 

The coverage probability (CP) and average length (AL) of 95% two-sided confidence intervals for the common variance of lognormal 

distributions : 10 sample cases 

n 
2

i    GCICI  
LSCI  

AM CoxCI  AM AngusCI  

CP AL CP AL CP AL CP AL 

50 0.10 -1 0.9408 0.3081 0.9020 0.2863 0.9780 0.3781 0.9930 0.4294 

  0 0.9442 0.3081 0.9042 0.2863 0.9824 0.3780 0.9948 0.4293 

  1 0.9458 0.3084 0.9080 0.2864 0.9784 0.3781 0.9920 0.4294 

 0.30 -1 0.9258 0.4102 0.8674 0.3541 0.9724 0.4973 0.9924 0.5900 

  0 0.9286 0.4100 0.8684 0.3540 0.9710 0.4972 0.9944 0.5898 

  1 0.9322 0.4104 0.8656 0.3541 0.9748 0.4974 0.9932 0.5901 

 0.50 -1 0.9094 0.5061 0.8312 0.4187 0.9634 0.5972 0.9906 0.7215 

  0 0.9122 0.5059 0.8270 0.4186 0.9668 0.5970 0.9932 0.7212 

  1 0.9112 0.5062 0.8368 0.4189 0.9666 0.5974 0.9928 0.7218 

 0.80 -1 0.8818 0.6449 0.7824 0.5128 0.9504 0.7368 0.9916 0.9024 

  0 0.8904 0.6456 0.7992 0.5134 0.9526 0.7376 0.9926 0.9034 

  1 0.8940 0.6457 0.7954 0.5133 0.9558 0.7375 0.9930 0.9032 

 1.00 -1 0.8780 0.7378 0.7750 0.5757 0.9434 0.8287 0.9910 1.0201 

  0 0.8876 0.7379 0.7898 0.5759 0.9476 0.8291 0.9900 1.0207 

  1 0.8826 0.7376 0.7818 0.5756 0.9454 0.8286 0.9902 1.0199 

TABLE VII 

The coverage probability (CP) and average length (AL) of 95% two-sided confidence intervals for the common variance of lognormal 

distributions : 30 sample cases 

n 
2

i    GCICI  
LSCI  

AM CoxCI  AM AngusCI  

CP AL CP AL    CP 

10 0.10 -1 0.8334 0.4074 0.5806 0.3821 0.8772 0.5125 0.9374 0.5703 

  0 0.8308 0.4073 0.5672 0.3820 0.8718 0.5124 0.9310 0.5701 

  1 0.8330 0.4073 0.5664 0.3820 0.8748 0.5122 0.9326 0.5699 

 0.30 -1 0.5476 0.5334 0.3714 0.4621 0.7448 0.6699 0.8708 0.7726 

  0 0.5624 0.5337 0.3802 0.4623 0.7488 0.6705 0.8774 0.7732 

  1 0.5610 0.5338 0.3722 0.4623 0.7560 0.6704 0.8790 0.7732 

 0.50 -1 0.3772 0.6560 0.2628 0.5362 0.6332 0.8046 0.8092 0.9407 

  0 0.3902 0.6572 0.2734 0.5368 0.6362 0.8058 0.8032 0.9422 

  1 0.3956 0.6565 0.2654 0.5365 0.6334 0.8051 0.8090 0.9413 

 0.80 -1 0.2390 0.8341 0.1800 0.6419 0.4964 0.9925 0.7016 1.1709 

  0 0.2318 0.8345 0.1670 0.6419 0.4898 0.9926 0.6992 1.1710 

  1 0.2364 0.8334 0.1782 0.6416 0.4860 0.9920 0.6956 1.1702 

 1.00 -1 0.1690 0.9493 0.1332 0.7087 0.4074 1.1113 0.6218 1.3147 

  0 0.1780 0.9522 0.1374 0.7105 0.4324 1.1149 0.6438 1.3192 

  1 0.1770 0.9503 0.1346 0.7095 0.4206 1.1128 0.6360 1.3165 

30 0.10 -1 0.9158 0.2302 0.8022 0.2145 0.9528 0.2837 0.9838 0.3170 

  0 0.9142 0.2300 0.8080 0.2145 0.9562 0.2837 0.9842 0.3170 

  1 0.9156 0.2302 0.8088 0.2145 0.9556 0.2837 0.9852 0.3171 

 0.30 -1 0.8324 0.3053 0.7046 0.2643 0.9338 0.3727 0.9822 0.4329 

  0 0.8184 0.3049 0.6874 0.2641 0.9262 0.3724 0.9814 0.4325 

  1 0.8216 0.3050 0.6940 0.2642 0.9338 0.3726 0.9836 0.4327 

 0.50 -1 0.7286 0.3763 0.6180 0.3114 0.8880 0.4473 0.9728 0.5277 

  0 0.7330 0.3761 0.6112 0.3113 0.8906 0.4472 0.9736 0.5276 

  1 0.7340 0.3764 0.6246 0.3114 0.8920 0.4474 0.9756 0.5278 

 0.80 -1 0.6270 0.4803 0.5292 0.3801 0.8288 0.5521 0.9552 0.6589 

  0 0.6304 0.4807 0.5372 0.3802 0.8334 0.5522 0.9546 0.6591 

  1 0.6316 0.4807 0.5318 0.3802 0.8468 0.5523 0.9602 0.6592 

 1.00 -1 0.5692 0.5495 0.4864 0.4254 0.8046 0.6203 0.9458 0.7435 

  0 0.5624 0.5492 0.4874 0.4253 0.7962 0.6201 0.9460 0.7433 

  1 0.5784 0.5494 0.4946 0.4253 0.8026 0.6202 0.9388 0.7434 

50 0.10 -1 0.9306 0.1776 0.8630 0.1653 0.9642 0.2182 0.9902 0.2478 

  0 0.9282 0.1777 0.8604 0.1653 0.9682 0.2182 0.9926 0.2477 

  1 0.9304 0.1776 0.8596 0.1653 0.9684 0.2182 0.9934 0.2478 

 0.30 -1 0.8704 0.2362 0.7812 0.2043 0.9520 0.2869 0.9924 0.3403 

  0 0.8738 0.2362 0.7784 0.2043 0.9512 0.2868 0.9926 0.3402 

  1 0.8790 0.2363 0.7828 0.2043 0.9512 0.2869 0.9924 0.3404 

 0.50 -1 0.8270 0.2914 0.7312 0.2416 0.9352 0.3446 0.9914 0.4163 

  0 0.8126 0.2913 0.7206 0.2415 0.9302 0.3444 0.9900 0.4160 

  1 0.8242 0.2914 0.7258 0.2416 0.9316 0.3446 0.9878 0.4163 

 0.80 -1 0.7514 0.3714 0.6546 0.2960 0.8986 0.4252 0.9880 0.5208 

  0 0.7500 0.3714 0.6492 0.2960 0.9006 0.4252 0.9838 0.5207 

  1 0.7620 0.3716 0.6656 0.2961 0.9046 0.4254 0.9854 0.5209 

 1.00 -1 0.7028 0.4242 0.6142 0.3318 0.8790 0.4776 0.9798 0.5878 

  0 0.7076 0.4242 0.6194 0.3318 0.8770 0.4776 0.9816 0.5878 

  1 0.7150 0.4242 0.6318 0.3320 0.8808 0.4779 0.9840 0.5882 
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VI. AN EMPIRICAL APPLICATION 

In this section, two real data examples are used to illustrate the given approaches in section 2. Both examples 

also used by Lin and Wang (2013) to illustrate the approaches to calculate the 95% confidence intervals for 

common mean of lognormal distributions. The first example (A) was the medical charge data discussed by 

McDonald et al. [22], Zhou et al. [23], and Tian and Wu [4]. The data set (A) was divided into two groups, 119 

of them were an American group and 106 of them were the white group. The second example (B) was the 

pharmacokinetics data from alcohol interaction in men which was studied by Bradstreet and Liss [24]. The data 

set (B) was equally divided into three groups, 22 of them were group 1, group 2 and group 3. Both examples 

also used by Lin and Wang [5] to illustrate the approaches to calculate the 95% confidence intervals for 

common mean of lognormal distributions. The sample mean and the sample variance of the log-transformed 

data for the data set (A) were (9.067, 1.825) and (8.693, 2.693), respectively and the sample mean and the 

sample variance of the log-transformed data for the data set (B) were (2.601, 0.24), (2.596, 0.20) and (2.599, 
0.17), respectively.  

Using the purposed approaches to construct 95% confidence intervals for overall variance of lognormal 

distributions, the results showed that the GCI approach 
GCICI  (21.0999, 23.0355) with an interval length of 

1.9356, the LS approach 
LSCI  (21.2582, 22.6841) with an interval length of 1.4259, the AM-Cox approach 

AM CoxCI    (21.0265, 23.0577) with an interval length of 2.0312 and the AM-Angus approach AM AngusCI    

(21.0228, 23.7104) with an interval length of 2.6876. For data set (B), results showed that the GCI approach was 

GCICI   (3.4638, 4.5040) with the length of interval 1.0402. In comparison, the confidence interval by the large 

sample approach was LSCI   (3.4420, 4.3380) with the length of interval 0.8960. In comparison, the confidence 

interval by the Adjusted MOVER based on cox’s method approach was AM CoxCI    (3.3376, 4.5941) with the 

length of interval 1.2564 and the confidence interval by the adjusted MOVER based on Angus’s conservative 

method approach was AM AngusCI    (3.3243, 4.7579) with the length of interval 1.4336. 

In summary, the results from above two examples show that the Adjusted MOVER based on cox’s 

method approach is much closer to sample variances and length of interval is shorter than the other approaches, 

which support the simulation results in the previous section. In simulation, the large sample confidence interval 

has the shortest average lengths because the coverage probabilities provide less than the nominal confidence 

level of 0.95. Moreover, the large sample confidence interval uses the concept of the central limit theorem. 

Hence, the coverage probability of the large sample confidence interval is close to nominal confidence level of 

1   when the sample size is large. Therefore, the large sample approach is not recommended to construct the 

confidence interval for the common variance of lognormal distributions when the sample size is small. Clearly, 

results from the two real data examples support the results of the simulation.  

VII. CONCLUSIONS 

This article has presented a simple approach to construct confidence intervals for common variance of 

lognormal distributions. The four approaches were the generalized confidence interval approach (GCI), the large 

sample approach (LS) and the adjusted MOVER approach based on cox’s method (AM-Cox) and Angus’s 
conservative method (AM-Angus). Simulation results showed that the LS approach gave unsatisfactory 

coverage probabilities. The coverage probabilities of the GCI approach was close to the nominal confidence 

level at 0.95. The AM-Cox approach overestimated the coverage probabilities same as the AM-Angus approach, 

but the AM-Angus approach gave an excellent result in almost all cases. Additionally, the coverage probabilities 

of all approaches depend on k, n and 2 , when n were small and when k and 2 increased. It has been shown 

that the interval estimates tend to drop from the nominal level at 0.95. 

Overview, the average lengths increased when the value of 2 increased for all approaches. The results 

indicated that the confidence interval for the common variance of lognormal distributions based on the AM-

Angus approach provides stable coverage probabilities and average lengths. In conclusion, the AM-Angus 

approach can be successfully used to estimate the common variance of lognormal distributions. 
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