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I. Introduction 

 
Nonlinear evolution equation is a significant research subject in the field of physics and mathematics so 

far its theoretical value and applicability have been considered. Many powerful methods [1, 2] have been 

employed by the researchers through decades for seeking the exact solutions to constant coefficient 

nonlinear evolution equations. But as the constant coefficients are highly idealised assumptions, I therefore 

aimed at studying the integrability and symmetry of variable coefficient nonlinear evolution equation [3, 4, 

5, 6, 7 ]. 
 

A Korteweg-de-Vries(KdV) equation with power law nonlinearity and time-dependent coefficients has 

been studied and a solitary wave solutions has been obtained by Biswas [8, 9]. In this work I have verified 

to find exact solutions for a KdV equation with power law nonlinearity and time-dependent coefficients in 

terms of Weierstrass elliptic function [10]. 

 

 
II. Mathematical analysis 

 

The main goal in this paper is to obtain wave solutions in terms of Weierstrass elliptic function.The KdV 
equation with power law nonlinearity having time-dependent coefficients is given by [1] 

 

ut(x,t) + σ (t)up(x, t)ux(x, t) + δ(t)uxxx(x, t) = 0 (1) 

 
where σ and δ are time-dependent variables. Here the first term is the evolution term, while the second 

term represents the power law nonlinearity term, with p as the index of power law and the third term is the 

dispersion term. The special case where p = 1, is the generalized KdV equation with variable coefficients 

and where p = 2, is known as the generalized modified KdV equation with variable coefficients. Equation 

(1) arises in various areas of Mathematical physics, plasma physics, fluid dynamics and lattice vibrations of 

crystal at low temperatures. All these applications start from a more or less general physical model and end 

up in the generalized KdV equation with variable coefficients by considering a specific limit of the 

physical problem. 
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III. New traveling solitary wave solutions in terms of Weierstrass elliptic function 

 
            First, we assume that (1) has solutions of the form 

 

u(x,t) =  v(ξ ); (2) 

   ξ= x +λt; (3) 

 
           λ being the speed of the wave. Substituting (2) and (3) into (1), and after simplification we have-   

λv′(ξ ) +σ(t)(v(ξ ))pv′(ξ ) +  δ(t)v‴(ξ ) = 0  (4) 
    
            Upon integrating, (4) is converted to 
 

                              
  λv(ξ)+ σ(t) /(p+1)vp+1 (ξ)+δ(t)v″(ξ)=C,                                          (5)                                             

    

    

 
where C is the integrating constant. For the sake of simplicity, we shall take C = 0. With the change of 
variable  
                             v(ξ)=V1/p(ξ)                                                                                                                      (6) 

     (5) reduces to 

                          λV2(ξ)+σ(t)/(p+1)V3(ξ)+δ(t)(1-p)/p2 (V′(ξ))2+δ(t)/p V(ξ)V″(ξ)=0                                          (7) 

 
Using the idea of the tanh-coth method [11] I choose to search for the solution to (7) in the form of the 
following expansion 
                      
                          V(ξ)=∑0ai(t)G

i(ξ,g1,g2)+∑M+1
2M ai(t)G

M-i(ξ,g1,g2),                                                               (8) 
 
 

where M is a positive integer to be determined later, ai(t), i = 1, 2,......,2M, are arbitrary functions of the 
variable t and G(ξ ) is a Weierstrass elliptic function which satisfies the following equation 

 

[G′(ξ : g2, g3)]
2 = 4G3(ξ ; g2, g3)- g2G(ξ ; g2, g3)- g3                                                  (9)  

G″(ξ;g2,g3) = 6G2(ξ;g2 , g3)-g2//2 

  
 (10) 

 

 

 

     
 

Substituting (8) into (7) and balancing V 3 with V (ξ )V ″(ξ ) I have 3M = 2M + 1 => 

M = 1 Therefore, (8) takes the form 

V (ξ ) = a0(t) + a1(t)G( ξ; g2, g3) + a2(t)G -1(ξ ; g2, g3) (11) 

 
Substituting of (11) into (7) leads to a system of algebraic equation in the unknowns a0(t), a1(t), a2(t),λ, g2, 
g3, which gives 

                                                        λ =−6σ (t)a0(t)/(p+1)(p+2)                                                                         (12) 

 

                                                    a1(t)  =−2δ(t)(p+1)(p+2)/σ(t)p2                                                                       (13) 

 
                                                                                 a2(t  )=0                                                                                                           (14) 

 

                                                     g2       =λ2p4/12δ2(t)                                                                                           (15) 

 

                                                      g3      =λ3p6/216δ3(t)                                                                                         (16) 

 

 

 

M 
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IV. Summary 

 

It has been observed that the most important key to deriving the exact solutions for a generalization 

variable coefficient Korteweg-de-Vries equation with power law nonlinearity have been obtained by using 

generalized Weierstrass elliptic function expansion method for constructing more general exact solutions of 

nonlinear evolution equations. As a consequence, taking the values p = 1 and p = 2, exact solutions to 

standard KdV and to mKdV equations with variable coefficient a0(t)is an arbitrary functions in the variable 

t; therefore, with variables of these coefficients I can obtain abundant solutions to our model. I also obtain 

coth solution as a limiting case of Weierstrass-eliptic function solution.The advantage of the method is that 

it can be used to obtain more general exact solutions by the known Weierstrass elliptic function. 
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The exact solutions to (1)are obtained using (11) is           

u(x, t) = [a0(t)-2δ (t)(p  +1)(p+2)/σ(t)p2G( ξ; g2, g3)]
1/p      (17)  

                

                

In limiting case (e2 —> e1) solution (17) reduces to 

 

                     u(x,t)=[ a0(t)-2δ (t)(p+1)(p+2)/σ(t)p2e3+(e1-e3)coth2(e1-e3ξ)1/2]1/p                             

              

      (18)  

 

 

Where e1,e2,e3 are the roots of 4y3-g2y-g3=0       and ξ=x+λt and  λ is given by (12).   

                  

http://www.ijmttjournal.org/

