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Abstract — The Signal Processing on Graph (SPG) is an emerging field of research aiming to develop accurate 
methods for big data analysis by combining graph theory and classical signal processing methods. One key 

method in signal processing on graph is the so-called Graph Fourier Transform (GFT) which is a generalization 

of the Classical Fourier Transform (defined for data lying on regular domains :1D for times series or 2D for 

images) to data lying on networks. Those network data are viewed like a set of interrelated data points lying 
on a graph whose graph vertices map the data points and graph links encode the relationship between data.  In 

the classical framework, the Fourier transform is a linear operator that performs the mapping of a vector from 

its initial representation domain to the frequency domain through the Fourier matrix which is an orthonormal 

basis formed by complex exponential vectors constructed from powers of the complex number  . 
Those vectors are of a key importance in the properties of the transform and its applications. However, for each 

graph Fourier transform proposed in the literature, although its graph Fourier matrix is orthonormal, its 

vectors are not complex as in the classical framework, limiting the extension and the use of some useful 

properties of the classical Fourier transform to the graph signals framework. In this work, we present a method 

to define a complex orthonormal basis for the graph Fourier transform that allows to perform spectral analysis 

for graph signals in the frequency domain. The graph Fourier basis we defined is identical to the Fourier basis 

when applied to graph signals defined on a regular domain. We applied the proposed method successfully to 

signal detection on an irregularly sampled sensor network. 

 
Keywords — Fourier basis, linear operator, graph signal processing, Laplacian matrix. 

I. INTRODUCTION 

The ongoing and unstoppable progress in microelectronics and computerized technologies has led to the 

explosion of numeral data, also known as big data, characterized by their higher volume, velocity and variety. In 

order to analyze such complex data, the signal processing on graph community researchers try to generalize the 
classical signal processing methods to data lying on irregular domains for application in various areas such as 

transportation network, social networks, biological networks, smart grids, internet of things, etc.  

Graphs and their algebraic properties are pertinent tools to capture and analyze the irregular structure of 

data living on networks. Basically, a signal  on a graph  is defined such as: 

, is a set of  inter-related data points, lying on the  vertices of a graph in which 

the links between vertices map the relations between data points. The graph   is characterized by the 

set of vertices (or nodes) , the number of vertices , the set of links (or edges) , and the number 

of links . Two nodes  or simply   are connected (  if  , 

where  is a scalar measuring the weight of the links i.e. how important is the relation 

between node  in the data structure. The degree or the strength of a node  is the sum of its 

weighted relations with other nodes, given by . A graph in which 

 is said binary. Furthermore, a graph with directed links is said directed, else 

the graph is said undirected. A pair of nodes can be connected by multiple links; indeed, if a link connects a node 

to itself, it‘s a self-loop. A graph is said simple if it has no multiple links nor self-loop. In this work we consider 

only simple, undirected and binary graphs since most networks encountered in real life usually meet these 

properties and the extension of the proposed scheme to other type of graph can be done naturally. Many 

important properties of a graph are encoded by their related matrices. Among them, the mostly used in graph 

signal processing are the adjacency matrix and the Laplacian matrix. The adjacency matrix  of a graph  of  

vertices is a  squared matrix whose elements are: . Then the 

Laplacian matrix is given by , where . The Laplacian matrix can be 

normalized by two ways to give: the normalized Laplacian matrix    and the random walk 

Laplacian , where  is the  identity matrix. More information on graph 

theory can be found in [1],[2],[3]. 
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The graph signal processing aims to generalized the classical signal processing concepts on data lying 

on irregular domain represented by graphs so that classical signals defined on regular domains can be viewed as 

particular graph signals [4]. This leads to a natural question: what graph represents the regular structure of a 

classical 1D signal? The answer comes from the observation that in the classical form, the inverses discrete 

Fourier transform  of a signal  of  sample is N-periodic since the discrete Fourier transform periodizes the 

signal [5]. So, the best way to tackle the Fourier transform is to consider a classical signal as a N-periodic 1D 
series, and the graph representing a periodic or a cyclic structure is the cyclic graph. Thus, a classical 1D signal 

of samples is equivalent to a signal on graph consisting of a set of  data points lying on a cyclic graph of 

vertices. Fig. 1 shows 64 samples of a sine wave in the 1D time domain (fig 1 a) and the same signal in the 
graph domain, embedded on 64 nodes of a cyclic graph (fig 1 b). Regarding these considerations, the 

generalization of a classical signal processing method to graph signals imply the results obtain in the classical 

framework should be similar to the signals defined on a cyclic graph. However, it‘s not always the case in related 

works concerning the graph Fourier transform. Thus, our main goal is to propose a method that match the above 

condition, and that will allow the embedding on the graph signal processing framework of some useful properties 

of the classical framework such spectral analysis and to see some of its applications. 

II. RELATED WORKS 

Many methods have been extended from the classical signal processing framework to analyze graph 

signals. In general, those methods can be categorized in two kinds. We have first, transformed-based methods 
such as: graph Fourier transform [6],[7],[8], graph wavelet transforms [9], [10,[11], multiscale decomposition 

[12],[13],[14]. Then, we have model-based methods including among others: neural network for graph signal 

analysis [15],[16],[17], supervised and semi-supervised learning [18],[19], [20,[21]. Although the two kinds of 

methods are sometimes interrelated or combined in some situations, we focus in this work on transformed-based 

methods. Among transform-based methods, the graph Fourier transform is of a great importance since it‘s the 

base to defined all other transform-based method. In fact, even in the classical framework, the Fourier transform 

is related to many other transforms [20] such as Gabor transform, wavelet transform, Radon transform. 

The fundamental method that gives rise to the graph signal processing is the so-called graph Fourier 

transform. In the literature two types of graph Fourier transform (GFT) are given: one based on the adjacency 

matrix  [7], and another based on the Laplacian matrix  [23]. But the idea behind is the same: since the 

matrices  and  are both symmetric [24], the spectral theorem states that they are diagnosable in an 

orthonormal basis  which spans the -diemsionnal space, indeed   is always invertible, so the defined 

transform too. The basis  is taken as the graph Fourier transform matrix to define a linear operator that maps a 

given signal on graph  to its graph Fourier transform . The inverse graph 

Fourier transform is then given by . At this step, some observations can be done: 

Remark 1. The basis  is defined on the Euclidean space, so the vectors are real and not complex as in 

the classical form, also the basis  is not unique, while it is in the classical form. 

Let‘s now consider the most popular graph Fourier transform which is based on the Laplacian matrix  [23], [25]. 

The Laplacian matrix   is symmetric because  and  are both symmetric. For a given graph signal 

, the quadradic form  

is viewed as a local variation of the signal on graph  . So, a high (resp. low) variation of two signal samples 

lying on two connected nodes  and  i.e. large (resp. small)   will lead to a high (resp. low) value of  

corresponding to a high (resp. low) frequency. Indeed  is positive semidefinite, which implies that all its 

eigenvalues ( ) are non-negative and at least one is zero because  and the 

set of corresponding eigenvector   form an orthonormal basis of the Euclidean space. 

Orthogonality in very important in transform-based signal processing methods as stated by the following 

theorem 1.  

Theorem 1. Lets  be an orthonormal subset of a vector space with the dot 

product , then   

a.  

 

 

( 1) 
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b.  

 

 

The Parseval Theorem is the energy conservation property of an orthogonal linear transform: so, all the 

information content of the signal is present in the transform or the projection space and can be retrieved by the 

reverse transform. 

 

c.  

 

The Plancherel theorem is the energy decomposition properties of an orthogonal linear transform: the 

orthonormal basis decomposes the signal energy in the N directions of the orthonormal basis vectors. So, this 

could allow to view some details in the transform space that are unreveals in the original space. 

Proof of a. It‘s obvious, since  is orthonormal . 

Proof of b. We have:  

 

 

Proof of c. 

 
Corollary 1. Any reversible transform based-method for data processing that preserves the information 

content of data fills the Parseval and the Plancherel theorems. 

The GFT fills the Parseval and Plancherel Theorem. Moreover, the GFT definition is such that: local 

variation for constant signal is zero since . This is a nice property, since it matches definition 

of frequency in the classical Fourier transform framework, i.e. a constant signal corresponds to minimal local 

variation and thus zero frequency. On the other hand, let‘s consider a Dirac pulse  localized on one vertex of 

the graph, the corresponding local variation is  i.e. the degree of node  [25], this result is far 

from the classical framework in which a Dirac pulse define a high localized variation corresponding to an 

infinite frequency. Indeed fig. 2 (columns 6 and 7) shows that the GFT give results which don‘t match the 

classical framework when applied to basic signals on the cyclic graph. This result is due to the fact that the graph 

Fourier matrix  lies in a Euclidean space, the resulting transformed signal  is real, there is no way to perform 
spectral amplitude and spectral phase analysis. Therefore, many properties of the classical Fourier transform 

which are due to the complex exponential form of the Fourier basis are then lost.   

In summary, we want to perform a graph Fourier transform in which the Fourier basis lies in a Unitary space to 

allow spectral analysis of graph signals. Indeed, the proposed transform should give the same results as in the 

classical framework when applied to the cyclic graph. In the next paragraph we present some important 

preliminaries on which we based to build the method. 

III. PRELIMINARIES 

III.1. Background: The classical Discrete Fourier Transform (DFT). We begin by presenting some 

properties of the classical Fourier transform we have used to develop the proposed technique. 

Definition 1. G iven a vector   in the canonical basis of an -subspace  of 

the unitary space, the DFT is a linear operator that maps the initial subspace , which is usually the ‗‘time 

domain‘‘ to another subspace  known as the ‗‘frequency domain‘‘ though the  Fourier matrix : 

                                                                                    

                                                                         
( 2) 
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 ( 3) 

 

The column vectors  of  are constructed from 

power of the complex numbers .  

Property 1. The classical Fourier transform matrix   unitary. 

Proof. Let‘s write  . Since , then 

 
so, if , then , thus  

where  is adjoint matrix of  and  the  identity matrix.  

Corollary 2. The classical Fourier transform is invertible, and meets Parseval and Plancherel theorems. 

Remark 2. The Fourier matrix  is a Vandermonde matrix defined from the vector . So, if  

 is the polynomial associated to the vector , then  is the vector whose components 

correspond to the evaluation of  at the  unity roots.  

III.2 Relations with some particular operators. The interaction of the classical Fourier transform with 

some specific linear operators is important to understand the basic properties of the Graph Fourier transform. 

The Fourier transform and the shift matrix. Let‘s consider the circular shift matrix and its powers: 

 

 
Applied to a column vector , the circular shift matrix operate a circular shift by one 

position of the vector components so that   

Lemma 1. The Fourier matrix  diagonalizes the circular shift matrix : i.e. 

 

Proof. The characteristic polynomial of  is , thus the eigenvalues of  are the  unity root 

and the eigenvectors are the column vectors of  since each column vector of , is proportional  unity root,  

thus    

A circulant matrix  is an  matrix with the form 

 
In which the first column is the vector and each column is a one position circular 

shift of the previous. In fact, . 

Lemma 2. Every circulant matrix , defined by the column vector  is a 

polynomial of the shift matrix with  components as coefficients:  
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Proof. Observing that 

, 

thus the  column of  and  are equal. 

Theorem 2. Given a  circulant matrix  defined by its first column vector , then it is 

diagonalizable by  and its eigenvalues are given by the Fourier transform of the vector . 
 More precisely: 

 ( 4) 

Proof.  

 

 
Corollary 3. All circulant matrices share a common set of eigenvectors , and any matrix of the form 

 is circulant.  

Corollary 4. Given a circulant matrix  defined by its first column  and 

its Fourier transform . The inverse of  is a circulant matrix 

 with: 

 
Proof.  

 

  

 

Corollary 4. The set of circulant matrices formed a cumulative algebra. 

Proof. 

Given two circulant matrices  defined by two vectors . It‘s obvious that  is circulant. Indeed  

 

 
Thus . 

The discrete Fourier transform and stationary operators. The DFT has a particular relationship with 

a class of linear operator said ‗‘stationary‘‘. 

Definition 2. A linear operator  acting on a signal  is stationary if its action on  is independent on 

the time at which the signal is applied to . If  is the translation operator of  position ( ), then the 

stationarity of an operator  is defined by: 

 

 

 
 

A stationary operator always has the following expression: 

 
Theorem 3 Given a linear operator , the following properties are all equivalents: 

1)  is stationary 

2) The matrix  of  in the canonical basis is circulant, with  being the first column of  

3) The vector  is the impulse response of  i.e. C 

4)  is a convolution operator with the vector   i.e.  

5)  is a Fourier multiplicator by  i.e.    

6)  is diagonalizable by the Fourier matrix and the eigenvalues of  are components of  . 
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Proof. See [26]. 

Let‘s consider a -periodic time series . The first discrete derivative (the gradient operator) of  is given by: 

 
The second discrete derivative (the Laplacian operator) of  is:  

 

 
The matrices of  and  in the canonical basis are: 

 

 

 

( 5) 

 

 

Thanks to theorem 2, The matrices  are stationary operators since their matrices are both circulant. 
Their spectra are given the du Fourier transform of the first matrix column: 

 
( 6) 

 

 

( 7) 

 

The spectrum of the second order derivative is real since the matrix is symmetric. In [26], it‘s shown that 

both first order and second order derivatives are high pass filter and that the second order derivation amplifies 
the high frequencies (resp. attenuates the low frequencies) two times the first order. 

After this overview of the classical Fourier transform and its main properties, lets now study the spectra of some 

graphs of particular interest. 

III.3 Spectrum of the graph Laplacian. The spectrum of a graph is the eigen structure of its matrices.  

The cyclic graph is of a key importance in our analysis since it‘s the graph that matches the 1D time series in the 

classical Fourier framework. We will show some important properties of its spectrum. We focus on the spectrum 

of the Laplacian matrix because it has more information than the other graph related matrix such as the 

adjacency matrix. 

Given that the Laplacian matrix  of a graph is always symmetric, singular (  and positive 

semidefinite, it‘s diagonalizable in an orthonormal basis  of the Euclidian space. The eigenvalues 

( ) are all non-negative. The eigenvectors are all real and form 

the orthonormal basis  thus: 

 ( 8) 

The smallest eigenvalue is  and the corresponding normalized eigenvector is . 

Also, the sum of each eigenvector components is zero since it should be orthogonal to . In the graph signal 

processing community, the matrix  is usually referred to as the graph Fourier matrix since it spans the 
Euclidean space and it preserves metrics. 

Remark 3. The first column vectors are exactly the same in both the graph Fourier matrix and the 

classical Fourier matrix . 

Remark 4: The matrix  is orthogonal and spans the Euclidean space, while the matrix  is unitary and 
spans the unitary space. So many properties and analysis performed in the classical Fourier framework can‘t be 

performed using the graph matric  since its vectors are all real instead of complex. 
Let‘s now look in depth at the spectrum of a graph of a particular interest: the cyclic graph. 

The spectrum of a cyclic graph. A cyclic graph is a graph that has a ring topology where each node on 

a circle is connected to its previous and its subsequent neighbor. Hence the cyclic graph is a special case of 

regular graph of degree 2, indeed it is also a small world graph [27]. A small world graph is a graph in which 

each node on a circle is connected to its k previous and its k subsequent neighbor. The Laplacian matrix of a 

cyclic graph is such as: 
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( 9) 

 

 

We can see, the Laplacian matrix of a cyclic graph is the opposite second order operator (eq. 5), it‘s a circulant 

and symmetric matrix. The set of its eigenvalues: 

 
( 10) 

 

are real sine  is symmetric. The Laplacian matrix of the cyclic graph  is a stationary operator given that its 

matrix is circulant. So, the Fourier matrix  diagonalized it, it is a Fourier multiplicator and a convolution 
operator (theorem 2).  

Remark 5. As seen in the paragraph 3.2, this matrix acts like a high filter which amplify (resp. attenuate) 
high (resp. low) frequencies. 

Considering the remarks 1, 2, 3, 4 and 5, we can summarize by saying that, the graph Fourier 

transform in its actual form is a stationary operator that acts like a high frequency filter on graph signals and 
more over it can’t allow spectral analysis (amplitude, phase and power spectrum analysis for deterministic 

signal, power density spectrum of the autocorrelation function for stochastic signals). Because of these 

observations, when applying the graph Fourier transform on common basic signals (rectangular pulse, sinus 

cardinal, step function, Dirac pulse, sinus function) on a cyclic graph, the results obtain are very different from 

the classical framework (see fig. 2). So, the aim of the next paragraph is to define a graph Fourier matrix 

(formed by complex orthonormal vector in the unitary space) that will give the same results as those of the 

classical framework when applied on the cyclic graph. 

IV. PROPOSED METHOD 

To setup the proposed method, we should first understand the relation between complex basis and real 

basis. 

IV.1. From a complex to a real basis.  

Theorem 3. Every linear operator  in the Unitary space can be represented in the form:  

 

 
Proof   

 
The representation of a linear operator  in the form , is an analogue to the 

representation of a complex number . 
 

Corollary 5. Since the Fourier matrix is a 

basis for the Laplacian matrix  of the cyclic graph, the Basis  formed by the real part of  and the basis 

formed by the imaginary part of  are also orthonormal basis of . : 

 
 

( 11) 

 

 
 

( 12) 

As shown in [28], the equal pair of eigenvalues  gives the two eigenvectors  and 

.The first vectors of both bases are:   and  is the null vector. For  even 

we have  and  is the null vector. It‘s such expressions with null 

vectors and constant vector, that make the real classical Fourier transform less attractive that the complex form 
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in which vectors are oscillating sine and cosine waves capturing information variations in the data of interest.  

For the same reason, we think that a complex basis for signal defined graph can be more attractive that a 

real basis.  

The analyses developed in this paragraph show that it‘s always possible and quite simple to move from 

a complex basis to a real basis with the same properties, but what about the inverse problem: how to move from 

a real basis to a complex basis with the same properties. 

IV.2. Form a real to a complex basis: extension of a Euclidean linear operator to a unitary space. We 

are seeking a way to extend a linear operator in a Euclidean space  to a unitary space . As shown is [29], this 
extension is made by the following way: 

1. The vectors of  are ‗real‘ vectors 

2. We introduce ‗complex‘ vector   

3. The operation of addition of complex vectors and multiplication by a number are defined in the natural 

way. Then the set of all complex vectors forms an -diemsional vector space  over the field of 

complex numbers which contain  as subspace 

4. In  we introduce the Hermitian metric given in the following way: 

 

 

 

Theorem 4. Every linear operation  in  extends uniquely to a linear operator in : 

 
The proof is obvious since  is a linear. 

In a real basis, real operators are determined by real matrices, i.e. matrices with real elements. 

We consider a real operator  with the eigenvalues:  

 
Where  are real and   

Then the eigenvectors corresponding to these eigenvalues can be chosen such that: 

 
The vectors 

 ( 13) 

 

form a basis of the Euclidian space . Here 

 

 

 

( 14) 

 

In the basis (11), there corresponds to the operator  the real quasi-diagonal matrix: 

 

( 15) 

 

 

Thus, for every operator  of simple structure in a Euclidean space, there exists a basis in which  correspond to 

a matrix of the form (13). Hence it follows that: a real matrix is real-similar to a canonical matrix of the form 

(13): 

 
The transpose operator  of  in  upon extension becomes the adjoint operator A in . Therefore: 

Normal, symmetric, skew-symmetric, and orthogonal operators in  after extension become normal, Hermitian, 

Hermitian multiplied by , and unitary operators in . 

All the eigenvalues of a symmetric operator  in a Euclidian space are real, since after the extension, the 

operator becomes Hermitian. For a symmetric operator, we must set , in (13). Then we obtain: 

 
A symmetric operator  in a Euclidean space always has an orthonormal system of eigenvectors with real 
eigenvalues. 
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A real symmetric matrix is always real-similar and orthogonally-similar to a diagonal matrix: 

 
All the eigenvalues of a skew-symmetric operator  in a Euclidean space are pure imaginary (after the extension 

the operator is  times a Hermitian operator). For a skew-symmetric operator, we must set in (13): 

 
then the formulas take the form: 

 

 

 
Since  is a normal operator, the basis (13) can be assumed to be orthogonal. Thus, real skew-symmetric matrix 

is real-similar and orthogonally-similar to a canonical skew-symmetric matrix: 

 
All the eigenvalues of an orthogonal operator  in a Euclidean space are of modulus 1 (upon extension the 
operator becomes unitary) 

Therefore, in the case of an orthogonal operator we must set in (14): 

 
For this basis (13), can be assumed to be orthogonal. The formulas (12) can be represented in the form 

 

 

 
 From what we have shown, it follows that: every orthogonal matrix is real-similar and orthogonally-similar to a 

canonical orthogonal matrix: 

 

( 16) 

 

 

IV.3 The algorithm. From equations (13), (14), (15) and (16), we can derive the algorithm for building 

a complex unitary basis from a Euclidean orthogonal basis. The implementation of algorithm uses some function 

of the interesting GSP toolbox [30]. 

We have used the proposed method to compute the graph Fourier transform of some signals over some 

well-known graph structures. Moreover, we used the proposed method to detect a signal of interest on a sensor 

network. The results are presented in the next paragraph. 
 

V. NUMERICAL RESULTS 

When applying the algorithm above on a cyclic graph, we obtain the classical Fourier matrix. Thus, the 

graph Fourier transform performed on a cyclic graph using our method is exactly the same as the one performed 

in the classical framework (figure 2). So, this is the proof that the proposed graph Fourier transform is a 
generalization of the classical framework on irregular structure. In the following section, we have applied the 

proposed method to other but well-known graph structures with common signals, to measure how the irregular 

structure of a graph can affect the spectrum of its signal (figure 3, and figure 4). Finally, we have successfully 

Algorithm 1. The complex graph Fourier basis. 

Input: The graph structure G 

Output: The complex graph Fourier matrix F 

L←Laplacian(G); 

[V,D]←eigenstructure(L);                          

while i<m 

     V(:,i)←(V(:,i)+jV(:,i+1)); 

     V(:,i+1)← ;  

     i←i+2; 

end 

for i←1:m  

   H(:,i)←H(:,i) ); 

end 
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tested the proposed method in the detection of an event that the occurrence is sensing by an irregularly sampled 

sensor network (figure 5).   

V.1 Spectral analysis of different graph signals. Figure 2 above shows a comparison of the spectral 

graph Fourier transform (SGFT) and the graph Fourier transform (GFT) defined in [30], which is the most 

popular. The comparison focuses on common signal patterns highlighted in the lines of the graphic: the first line 

is devoted to the Dirac pulse, the second to the step function, the third to the sine cardinal, the fourth to the 

rectangular pulse, and the fifth to the sine wave. Column 1 and column 3 are the representations of the same 

signal, but in column 1 the signal is represented in the time domain, whereas in column 3, it is represented in the 

graph domain. The field of comparisons are: the spectrum of the Fourier transform in the classical framework 
(CF): column 2, the spectrum of the SGFT in the graph domain: column 4, the spectrum of the SGFT in the 1D 

regular domain: column 5, the spectrum of the GFT in the graph domain: column 6, and the spectrum of the GFT 

in the 1D domain: column 7. The first observation is that graphics in columns 2 and 4 are the same on each line, 

but different from those in column 7. This is because the SGFT gives the same results as the classical framework, 

given that both have the same basis, but the GFT has a real basis.  

In figure 3 above, we have plotted a Dirac pulse and its spectrum on five graph patterns: a full connected graph 

(line a), a grid graph (line b), a path graph (c), a sensor graph(d) and a community graph (e). We have chosen the 

Dirac function because it‘s the most basic signal and its Fourier transform reveals information on the structure of 

the signal. In the classical framework, the Fourier transform of a Dirac function is the transfer function, thus the 

model of the system through which the signal propagates. So, the response of a system to a Dirac pulse gives its 

signature or its nature. We should keep in mind that the Dirac transform of a regular 1D domain is a constant 
signal, thus a regular 1D domain (or the cyclic graph in the graph signal processing framework) is a constant 

support or the neutral element that does not affect the signal propagating through it. Then the above figure 3, 

shows how the irregular structure of different graphs patterns can affect the signal on it. We can see, when 

observing the spectra of different graph signal in figure 3, that the grid graph and the path graph give responses 

that tends to be regular, in opposite of the other graph patterns. 

V.2 Application to event detection on a sensor network.We have tried to show the application of the 

method on graph sgnal detection.  Signal detection is widely applied in the classical framwork. We supposed we 

have an irregularly sampled sensor network  that surveys the occurrence of a critical phenomenon, such as a 

seism or a volcano  eruption.   The signal of interest  that indicate the  normal activity on the sensor network is 

assumed to be a sine wave  of frequency  plotted on the network sensor (figure. 4.a) 

and on the 1D regular domain (figure 4.b). This signal can be  spread into a random noise signal indicating the 

occurrence of an abnormal activity on the sensor network. The noisy signal is assumed to be white gaussian with 

standard deviation 2:  , so that the recorded signal is:  (figure 3.d and 3.e) we can 

observe that it is difficult to separate the signal of inetrest , from the noisy signal  (figure 3.e). The power 

sepectral density of the  signal  is plotted in figure 3.c, and the one of   in figure 3.f using the proposed 

method.  In figure 3.f and 3.g, we clearly identify the signal of interest and the noise thanks to the proposed 

scheme. 
 

 

 

 

 
 

 

       

A
m

p
li

tu
d
e 

 Samples in the time domain b) Samples in the graph domain 

Figure 1: a classical sine wave in the time domain (a) and in the graph domain (b) 
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Figure 2: Comparing the spectral graph Fourier transform (SGFT) and the graph Fourier transform (GFT) 

 

 

 

Figure 3: SGFT on different graph patterns 
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Figure 4: Spectral analysis on a sensor network graph signal 

VI. CONCLUSIONS 

 We have presented in this work , a  novel method  for  the generalization of the  classical fourier transform 

to graph signal processing. The proposed method  gives the same results as those obtained in the classical 

Fourier framework, when appying it in  a regular domain  modelled by a cyclic graph. The application of the 
proposed scheme allows to detect the occurrence of an alarm signal on a sensor network by analysing the power 

sptectral density of the recorded signal on graph.  The proposed  scheme raises many future works. It can be used 

first in applications such as spectral analysis of determistic  graph signals, and  stationnary stochasctiks graph 

signals. And secondly, it can also be used to   define other related graph signals transform such as wavelet 

transform on graph signals, Gabor transform on graph signals, Radon transform on graph signals, and other 

multiscale graph transforms linked with the graph Fourier transform.  
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